TOKYO METROPOLITAN UNIVERSITY

DOCTORAL THESIS

Neural Combinatory Constituency Parsing

Author: Supervisor:
Zhousi CHEN Prof. Mamoru KOMACHI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Natural Language Processing Group
Graduate School of Systems Design

March 21, 2023

https://www.tmu.ac.jp
https://cl.sd.tmu.ac.jp/~zchen
https://cl.sd.tmu.ac.jp/~komachi
https://cl.sd.tmu.ac.jp
https://www.sd.tmu.ac.jp

iii

Declaration of Authorship

I, Zhousi CHEN, declare that this thesis titled, “Neural Combinatory Constituency
Parsing” and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where [have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

Publication

Conference Paper

¢ Zhousi Chen, Longtu Zhang, Aizhan Imankulova, and Mamoru Komachi. 2021.
Neural Combinatory Constituency Parsing. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages 2199 - 2213, Online.

Journal Paper

¢ Zhousi Chen and Mamoru Komachi. Discontinuous Combinatory Constituency
Parsing. Transactions of the Association for Computational Linguistics. (accepted
in 2022)

TOKYO METROPOLITAN UNIVERSITY

Abstract

Faculty of Systems Design
Graduate School of Systems Design

Doctor of Philosophy

Neural Combinatory Constituency Parsing

by Zhousi CHEN

vii

HTTPS://WWW.TMU.AC.JP
https://www.sd.tmu.ac.jp
https://www.sd.tmu.ac.jp

viii

Constituency parsing is a task for explicit grammatical structures in natural lan-
guage, which raises questions such as what phrases are in a sentence (e.g., noun
phrase, verb phrase etc.) and what relationship one phrase has with another (i.e.,
including, being included or none). This information is useful when we need to pre-
cisely understand the encoded syntactic and even semantic information (e.g., who
did what to whom).

Constituency parsers generally exhibit higher computational complexity, com-
paring to many other non-structural natural language processing (NLP) models (e.g.,
language modeling, textual entailment, machine translation etc.) and even structural
dependency parsers. The balance between efficiency and effectiveness is an unavoid-
able topic. Some constituency parsers still remains in concept because of their high
computational costs. Meanwhile, explicit syntactic structure becomes less useful in
the face of adaptive neural network creating internal implicit structure. Some tasks
which were once informed by structural information, such as phrase-based machine
translation, now becomes more independent. We call for a simple, versatile, efficient,
and effective constituency parsing family of modern neural technology.

In this research, I contribute a neural combinatory constituency parsing (NCCP)
family which not only fast and accurately builds parsing structures with input words
and simple atomic actions, but also can perform other two structural tasks: word seg-
mentation and fine-grained sentiment analysis. 1 implemented four members as my
main contribution and propose two members in concept with data conversion for
future study as extra contribution. To the best of my knowledge, all four imple-
mented NCCP members stand out with the highest speed, small memory footprint,
and near state-of-the-art accuracy for constituency parsing tasks. They also reflect
linguistic properties during and after the training process.

The four implemented NCCP members correspond to four combinations of two
aspects of tree-based constituency parsing for one of {continuous, discontinuous} task
in either {binary, multi-branching} style. Both tasks assumed all parsing structures
are trees, where each child phrase attaches to only one parent phrase. The differ-
ence lies in whether a phrase can have more than one continuous spans of input
words: all phrases in continuous constituency parsing must have exact one continu-
ous spans; any phrases in discontinuous constituency parsing may have more than
one continuous spans. Discontinuous constituency parsing is a better formalism for
natural language. However, it is also more complex and challenging. For the genre
of graph-based parser, which searches through all parsing possibilities, the complex-
ity explodes from polynomial O(n®) for continuous parsing to exponential O (/)
for discontinuous parsing, where f is the number of continuous spans of a phrase.
NCCP parsers are not graph-based and their empirical complexities are close to lin-
earity. By systematically exploring the choice of neural components, those parsers
can be competitive to graph-based parsers and keep high parsing speed at the same
time.

Specifically, all NCCP members are neural combinators, which compose phrase
embeddings from word embeddings in an iterative bottom-up style. Each member
is equipped with a few different neural components that produce binary yes-or-
no actions to create the unlabeled tree structure and guide the neural combinators
to compose embeddings for constituent category prediction. The neural compo-
nents include O(1) feedforward neural network, O(n) recurrent neural network,
and O(n?) biaffine attention. Without any imposed grammatical constraints, the
parsing speeds soar because of a strong linear tendency of their empirical complexi-
ties theoretically bounded by either O(n?) or O(n%). The expensive biaffine attention

ix

is used within small scales. Moreover, thanks to the versatility of the composed em-
beddings, each parser can be easily adapted for multilingualism. For the continuous
parsers, my binary parser facilitates hierarchical fine-grained sentiment analysis, and
my multi-branching parser integrates useful word segmentation for languages with-
out white space (e.g., Chinese and Japanese).

All four implemented NCCP parsers benefit from data augmentation and training
tricks. For data augmentation, I create random substructures as dynamic training
samples. In the case of binary models, my binarization extends Chomsky normal
form which reflects a language’s branching tendency. The multi-branching models
also benefit from the random substructures and provide evidence for phrase head-
edness, which further shows positive effect for the accuracy of discontinuous pars-
ing. As for training tricks, I exploit the property of discontinuous trees for create
additional loss function to increase model robustness.

Nevertheless, tree structure is still limited for capturing the complex structure in
natural languages. There are a variety of linguistic phenomena, such as A-movement,
gapping, and right node raising, which create structure of directed acyclic graph (DAG)
by child sharing (i.e., multi-attachment). I offer the conversion procedure of Penn
Treebank, Penn Chinese Treebank for those DAG structures as test beds for future
DAG-based parsers. Finally, I offer ideas for a conceptual NCCP pair for DAG pars-
ing. All three pairs of NCCP pairs are consecutively proposed through extension of
new functionality for structures from continuous tree to discontinuous tree, finally
toward DAG.

The organization of this thesis comes into seven chapters. Chapter 1 recaps the
basics of constituency parsing and relevant conception. Chapter 2 reviews recent
parsing technology and issues. Chapters 3-5 include my main contribution. In
Chapter 3, I specify the published four NCCP models, data augmentation and train-
ing tricks, which is experimented in Chapter 4. Chapter 5 follows with the discus-
sion for the experiment and results. Chapter 6 specifies the DAG conversion for PTB
and CTB with a conceptual NCCP pair for DAG. Finally, Chapter 7 summarizes this
thesis and describes the prospects of this research with my future study.

xi

Acknowledgements

First, please allow me to heartily thank to my supervisor Professor Mamoru Ko-
machi, who create the stable research environment and reliable relationship with all
his students. He relentlessly offers me guidance and constructive advice, and helps
my research and even part of my abroad life, as if we were his own family members.
As addressed in an classic Chinese book ({iiaC), Book of Rites, Liji), “ 23 \fifi#, #5%
IEHE, TTREBEEB A, HIHAEZ A, 7 (That is, when teaching and educating peo-
ple, teachers should not only teach by words, but also by their own thoughts and
practices as examples, which is the teachers” professional ethics.) The knowledge
and attitude of Professor Komachi to research and life will always influence me in
future study and career.

Moreover, I would like to sincerely thank Professor Yuji Matsumoto and Profes-
sor Yusuke Miyao who provided inspiring and careful suggestions to my research.
The research topic of constituency parsing sould have been quite serious to new
researchers. As the pioneers who significantly contributed to the community Pro-
fessor Matsumoto and Professor Miyao also helped and influenced me with their
deep thoughts and insights. It is my honor to have them during my five-year PhD
study in Tokyo.

Meanwhile, I would like to extend my thanks to my classmates and friends in
the laboratory: Hayahide Yamagishi, Michiki Kurosawa, Longtu Zhang, Aizhan
Imankulova, Masahiro Kaneko, Yuting Zhao, Tosho Hirasawa, Teruaki Oka, Oryza
Siti Khairunnisa, Hongfei Wang, Zizheng Zhang, Xiaomeng Pan, and many others I
could not included here. It is my very luck to meet you and share common memories
about our lives and studies in Western Tokyo. Specially, I thank Hayahide Yamag-
ishi as well as other students in Komachi Lab for discussing the very initial idea of
my research and encouraging me to proceed. Professor Komachi allows me to shift
my research topic from machine translation to constituency parsing, which appears
to be an intricating world to me.

Finally, I must heartily thank my family members and intimate friends in China.
My parents raised me and always let me have access to better education without
any hesitation. Beyond thousands of miles back to my hometown Guiyang City,
they send me indispensable warmth of emotional and financial supports, so that I
can focus on my research here. I really miss all of you. During the years of COVID-
19 pandemic, when travelling and communication become less convenient, many
people still keep on making the world a better place in their own ways. Please let
me show my best respects to you, even though I might not know you.

Sincerely thank you.

xiii

Contents

Declaration of Authorship iii
Abstract viii
Acknowledgements xi
1 Introduction 1
1.1 Early Facts of Constituency Parsing 1

12 Constituency Parsing 2
121 TreeStructure. 3
Continuous Tree by Context-Free Grammar 3

Discontinuous Tree by Linear Context-Free Rewriting System 4

122 DAGStructure oo 6

1.2.3 Headedness and Lexicalization. 7
Head-driven Phrase Structure Grammar 8

Dependency Parsing: Non-projectivity vs. Discontinuity 9

Combinatory Categorical Grammar 10

1.3 Related Task 11
1.3.1 Chunking: Word Segmentation and Shallow Parsing 11

1.3.2 Structured Semantic Task: Sentiment Analysis 11

1.3.3 Taskfor DAGstructure. 12

1.4 ThesisStructure 13

15 Contribution o o o o oo 13

2 Constituency Parser 15
2.1 Transition-based Parser 15
2.1.1 Finite Automata oo 15

2.1.2 Parsing with Sequence Labeling: Tree Linearization 17

2.1.3 Parsing with Iterative Chunking 20

214 Summary 20

22 Chart-based Parser 21
2.2.1 Binary Chart Parser: from CKY Algorithm 21

2.2.2 N-ary Chart-based Parser: from Earley Algorithm 22

2.3 Jointand Unsupervised Task 24
2.3.1 Joint Constituency and Dependency Parsing 24

2.3.2 Unsupervised Constituency Parsing 24

3 Neural Combinatory Constituency Parsing 25
31 ContinuousPly 25
3.1.1 CB:Orientation, 26

312 CM:Chunking 27

32 DiscontinuousPly i 27

321 DB:Swapandjoint L 27

Xiv

3.2.2 DB: Medoid and Affinity Biaffine Attention
3.3 Dataand Augmentation.
3.3.1 Emptynodeandunarybranch
3.3.2 BinarizationforCBandDB
333 MedoidforDM
334 Oracle e
3.4 Model Implementation
341 NeuralComponent
3.4.2 Pre-trained Word Embedding and Language Model
3.4.3 Overall Architecture
344 CB & DB: Binary Implementation
3.45 CM & DM: Multi-branching Implementation
3.4.6 Multilingualism and Structured Sentiment Analysis
3.5 ModelRobustness
3.5.1 Additional Substructure with Empty Node
352 BasicLossItem..............................
3.5.3 DB Robustness Loss Item: Ply Shuffle.
3.54 DM Robustness Loss Item: Intra- and Interply

Experiments
41 GeneralSetting
42 ContinuousParser
421 Constituency Parsing
OverallResults
AblationStudy o
Tree-Binarization Strategy
Complexityand Speed
42.2 Structured Sentiment Analysis,
Single Task Result
JointTaskResult
4.3 Discontinuous Constituency Parsing
431 OverallResults.
432 AblationStudy
433 Inference with Unsupervised Headedness
4.4 Multilingualism and Word Segmentation for Chinese and Japanese

Discussion

51 Feature of NCCPFamily
51.1 Compact Neural Combinator
5.1.2 CB & DB Orientation: Branching Tendency
513 CM & DM Unsupervised Weight: Headedness
514 Multilingualism o
515 Beyond Constituency Parsing

5.2 Empirical Complexity and Speed

5.3 Accuracyand Robustness
53.1 Contextualizationand Length
5.3.2 Multi-branching Arity and Fan-out Degree
5.3.3 Hyperparameter Tuning and Robustness
534 InferenceErrorRate.

54 Sample Analysis
5.4.1 Continuous vs. Discontinuous Parsing

5.4.2 Unsupervised Headedness in Japanese and Chinese
5.4.3 Structured Sentiment Analysis

6 DAG Conversion for PTB and CTB
6.1 Conversion with Co-indexing
6.1.1 TracewithNullElement
6.1.2 Intra-sentential Gapping
6.2 Exception and Error Correction
6.21 Wrong TraceType
622 CircleinGapping
6.2.3 Ill-formed Coordination
6.2.4 Involving External Phrase
6.2.5 Differenceof PTBandCTB
6.3 Summary and Discussion L.
6.3.1 DataStatistics L.
6.3.2 Comparison with Combinatory Categorical Grammar

7 Conclusion
7.1 ConclusionRemarks
7.2 Potential Social Impact L.
7.3 Weakness and Limitation
74 Future Work e
741 GB:ReplicateNode
7.4.2 GM: Multi-medoid Biaffine Attention
743 Prospects of NCCP family..

Bibliography

XV

67
67

69
70
70
71
72
73
73
74
74
74
74
74
74

77
77
78
78
79
79
80
81

83

List of Figures

1.1

1.2

1.3

14

1.5

1.6

1.7

2.1

2.2

2.3

Evang and Kallmeyer (2011) recover (b) discontinuity from (a) contin-
uous Penn Treebank with trace nodes (blue). We simplified the trace
symbol for this demonstration.
German is a verb-second word order (V2) language, where the sec-
ond position from left of the main clause is occupied by the verb
phrase. Object and other argument can relatively have free positions
with their case markers and inflection as the sign of its grammatical
role. . ..
PTB has traces for gapping remnants (a, noun phrases suffixed with
=1) for recovering the DAG structure (b). We denote different remnant
groups in different colors (i.e., blue, green, and yellow) and shared
components with double lines. The initial coordinate in red contains
the full structure. L
A PTB annotation with control verb ask of 6d. We keep the original
annotation of SBJ, which shows it works as a different argument (i.e.,
an A-movement to be a SuBJect). There is a further A-movement
because of the semantic requirement for the passive voice. Word it
works again as an object forverbgone.
Given the head information, constituency tree can be converted into
dependency graph. Constituency discontinuity and dependency non-
projectivity root in the same syntactic structure of this sentence.

(a) contains samples from Chinese Treebank and Keyaki Treebank. (b)
and (c) are from a sample from CoNLL 2003 dataset, which provides
phrase chunk and NER annotations in parallel.
Two semantic tasks. Left: fine-grained sentiment analysis with Stan-
ford Sentiment Treebank. Right: DAG-based event detection with
BioNLP CG shared task 2013 (Pyysalo et al., 2015; Espinosa, Miwa,
and Ananiadou, 2019).

Binary tree linearizations by (a) Kitaev and Klein (2020) and (b) Wei,
Wu, and Lan (2020). Corresponding edges are denoted in the same
colors. Numbers in (a) enumerates the build sequence: both are from
left to right. Linearized structural actions are at the bottom of (a) and
ingreencirclesof (b).
Binary tree linearizations by (c) Shen et al. (2018b) and Multi-branching
by (d) Gémez-Rodriguez and Vilares (2018). Numbers of non-terminals
enumerates the build sequence: the former (c) divides and conquers
by the order of syntactic distance, while the latter (d) follows the de-
fault left-to-right order. Linearized structural actions are at the bottom
of (Qand (d). e
Multi-branching tree linearization by (e) Yang and Deng (2020). Num-
bers enumerates the possible positions in rightmost chain where ac-
tionscantakeplace.

xvii

10

12

19

XVviii

24 Concurrent bottom-up steps of CKY algorithm by span length in a
chart. This exemplary chart has maximum span length four for four
terminals. o 21

2.5 Instead of description from the respective of spans, the combinatorics
of both continuous and discontinuous are shown as tuples of bits rep-
resenting the existence of terminal symbols. Different constituency
dependencies are shown using different line types and colors. 22

3.1 Two adjacent continuous plies at heights / and h + 1. Plyy, is the cur-
rent layer of subtrees and their actions (i.e., CB’s orientations or CM’s
chunks) result in an intermediate ply;, with probably inconsecutive
node indices. We reenumerate them into a new ply, , for the next
actions. Empty nodes are placeholders marked by gray circles. 26
3.2 Two adjacent discontinuous plies. In addition to continuous plies,
DB inherits the chunk for the swap-joint system and DM gets biaffine
attention action graph described inamatrix. 28
3.3 Tree binarization with numerical p. 30
3.4 Signals from a discontinuous tree. The original m-ary tree (a) is bina-
rized and stratified into (b) and (c) with numeric factors p®, whereas
(a) is stratified into (d) with a categorical medoid factor random. In
(4), wp and ws are randomly selected as medoids for discontinuous
parents I and 5 with more or less twisted descendant lines. I color

“"o

constituent components and show joints with light blue “#” and “o”

which are not activated by agreeing orientation condition. 32
3.5 Example of CB. The simplest member of the NCCP family solely based
on orientation for the tree structure. 35

3.6 Example of CM. The chunk signals are calculated from the difference
of the forward and backward states of the BiLSTM,,. Exemplary frac-
tions show the gate weights under Softmax constraints for vector com-
positionality, which are unsupervised and offer evidence for phrase

headedness. The same mechanism works for DM. 35
3.7 Example of DB. DB produces swap to facilitate traveling of discontin-

uous nodes and joint to combine adjacentnodes. 36
3.8 Example of DM. DM leverages affinity biaffine attention to identify

and combine discontinuous groups. oo oL 36
3.9 A example for the creation of a random @ branch from a flat tree. .. 39

3.10 (a) Constituent children get shuffled and create additional losses. (A1, A2, A3),
Bi, and (Cy, C2) belongs to three different constituents. (b) Pick in-ply
continuous nodes and interply nodes for DM biaffine attention. ... 40

4.1 Grid search with an interval of 0.1 in a space of (tag, label, orientation)

loss coefficients. The best was (0.2, 0.3, 0.5) indicated by an arrow. .. 47
4.2 Probabilistic interpolations of two CNF factors to F1 scores. The ca-

pacity of BiLSTM,,; is almost saturated with 6 or 8 layers. 47
4.3 Linear complexity vs. squared complexity. Redundancy with place-

holder “<0>” helps maintain the triangular shape. 48

“"_r7

5.1 Top: DB signal polarity to p® with orientation right “e” and joint “a
Bottom: DM signal polarity to stratifying medoid factor p™ with affin-
ity “e”, joint “a”, and discontinuity “w”. Continuous and head are ref-
erential only, looking for the least discontinuity and leveraging head

information. (Allpg=0.) 56

4

“” o7
A

Xix

5.2 Beta distribution visualization for TIGER DB at S2. The line thickness
corresponds to the development F1 score. See their other hyperpa-
rameters in Figure 5.6. 57
5.3 Empirical complexities of NCCP parsers for each corpus with lin-
ear regressions (LR) are shown on a light blue background when the
quadratic terms are negative for CB and CM (left) or direct linear and
quadratic coefficient scatter for DB and DM (right). For DPTB and
TIGER, pB €{0,0.25,0.5,0.75,1} and pM e {continuous, head, random, leftmost, rightmost }
are used for the scatter. Cubic LR gives all negative cubic terms highly

closetozero. 60
5.4 XLNet provides an overall improvement for CB and CM on length
bins. All models find it challenging to handle long sentences. 60

5.5 DB and DM’s discontinuity and multi-branching performances. DM
keeps some points ahead in terms of F1 scores on TIGER richer in
discontinuity. 61

5.6 The BO process starts with S1 dev F1 scores (i.e., a small dot at each
legend bottom) and ends with a range of scores in S2. While the mod-
els are not sensitive to hyperparameters (e.g., all gains are less than
0.54), their preferences are different on respective corpora. 63

5.7 Failed parse from the multi-branching model. The model stops pars-
ing and saves computations when it repeats the same chunking posi-

tons. 64
5.8 The numbers of tries to decompose biaffine attention matrices. FAILs
aremarked with “a”. o o o Lo 64

5.9 An exact matched DPTB sample from PLM DB and DM models ver-
sus CB and CM on PTB. The parse contains complex nested clauses
which CM must fail to capture, and it becomes ungrammatical in the
continuous scenario. DB’s outputs include orientations depicted as
arrows and their traveling traces colored for groups. Meanwhile, DM
produces two biaffine attention matrices, one of which has a highly bi-
ased but correct threshold 6 = 0.99. Bar heights indicate values in

matrices and their colors indicate the relationshipto 8. 65
5.10 ATIGER parse. DB natively with g-subtrees achieved the exact match

but DM erred withpz =0. o L. 66
511 A semantic @-subtree by DM with pg > 0. Copula “were” has less

affinity than “when” and “due”. 66
5.12 Chinese (top) and Japanese (bottom) parses from CM model. 67

5.13 Samples from SST (upper parts) and its PWECB prediction (bottom
parts). Sentiment labels are color in red for positive and blue for nega-
tive. Each CB prediction is a string of five labels sorted by their scores
and the leftmost label is theresult. 68

6.1 DAG conversion with both A-movement (*) and A-bar movement
CT*). 71

6.2 DAG conversion with gapping coindexing marks. 71

6.3 Two annotating errors in PTB causing the same index for different
trace types. Top: *ICH* is supposed to be *RNR*. Bottom: *T*-1
should be a null element for null complementizer 0 instead of 73

XX

6.4 Another three annotating error or exceptions in PTB. Top (c): the orig-

7.1

inal annotation leads to a directed cyclic graph instead of DAG. This
is a rare case in PTB and I choose to reduce it to DAG by manually
removing one or more paths. Middle (d): some samples do not follow
PTB guidelines and miss some phrases structure for coordination. I
manually add such phrases by referring to the template phrase. Bot-
tom (e): three samples involve both expletive (*EXP*) and coordina-
tion, which make Algorithms 5 & 6 miss key components. I manually
change the coordination of VP into S and the construction for gram-
matical and symmetric coordination.

GB action cases. v i i e e e

xxi

List of Tables

21
2.2

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

An example of the RNNG shift-reduce parsing process. 16
Chunker-based parsing with BIOE prefix (i.e., for beginning, inside,
outside,and ending). 20

Single-model results on PTB and CTB test datasets sorted by the F1
scores on PTB. Transition-based parsers, chart parser, and others are
marked as T, C, and O, respectively; 1 and | denote bottom-up and
top-down. The number in brackets indicates the beam size. Speeds
are measured in sentences per second. Kitaev and Klein (2018) used
Tesla K80, and the CTB scores are cited from Kitaev, Cao, and Klein
(2019). Zhou and Zhao (2019) used GeForce GTX 1080 Ti (same con-
dition). 45
Improvements with pre-trained language models. I used a greedy
search algorithm on single GeForce GTX 1080 Ti. Rows 6-8 are re-
ported by Yang and Deng (2020) using GeForce GTX 2080 Ti. Kitaev
and Klein (2020) used a cloud TPU with a beam search algorithm and

alargerbatchsize. 45
Effectiveness of using frozen static word embeddings or dynamic sub-
word language model and corresponding peak speed. 45

Results of ablation studies on fastText (top) and BiLSTM,, (bottom)

of the binary model. CB/V is the main experimented CB variant in
othersubsections. 46
Training time and memory consumed by my two data formats. The

time column indicates the time used for 150 training epochs with val-
idations. Development F1 scores are approximately 92.4. The OOM
column lists the length limit for preventing an out-of-memory error.
Kitaev and Klein (2018) took 10 hours for 93 training epochs on GeForce
GTX 1080 Ti to yield theirresults. 48
Models on under weakly comparable conditions. All models are trained

or fine-tuned only on the Stanford Sentiment Treebank without joint
training on other treebanks. All CB models are trained with no struc-
turalloss (ie., y=1). 49
Syntactic information seems not helping sentiment classification. Both
induction of orientation loss and joint training with PTB decrease the
sentiment classification accuracy. The F1 scores are 92.5 and 95.7, re-
spectively for PWEand PLMCB. 50
Overall performances from recent works. Speeds in sentences per sec-

ond are reported on incomparable hardware and software platforms.

Ours and Vilares and Gémez-Rodriguez, 2020, VG20 are on GeForce

GTX 1080 Ti with PyTorch implementation and Ferndndez-Gonzalez

and Gémez-Rodriguez, 2021, FG21 on GeForce RTX 3090. Ferndndez-
Gonzélez and Gémez-Rodriguez, 2022, FG22 involved lexical depen-
dency informationt. oo o o 52

Xxii

49

4.10

4.11
4.12

4.13

4.14

5.1
52

53

54

55

5.6

5.7

6.1

6.2

Means and standard deviations of five runs on test sets with four sig-
nificant digits. DM ourperforms DB. Development sets reflect similar
variability. o 52
Ablation in two-stage training with dev scores. Triplets in {0, 1} stand

for turning on and off (pg, pB ~ Beta(1,1), shuffle) for DB and (pg, B¢, Bx)

for DM. Variants of “1” are S1 — the startof S2. 53
DM is sensitive to pg withdev Flscores. 53
DM medoid factor p®M = uhead offers stable gains even without head

information during training. I tested pPM = random five times. 53

F1 scores of monolingual and multilingual continuous NCCP parsers.

For CTB and KTB, CM extends its chunking function for word seg-

mentation during training and CM is character-based for Chinese and

Japanese but word-based for English. 54

F1 scores of monolingual and multilingual discontinuous NCCP parsers.
.. 54

Parameter sizes of PWE NCCP parsers. 55
Frequencies of orientation with different CNF (biased) and referential
only non-CNF (more balanced) p® = 0.5 in different stratified continu-
oustreebanksforCB. 56
English headedness selection with my multi-branching model CM on
PTB test set. DM also provide very similar statistics. “*” marks the
absence of a DT child for its NP sisters. For quantifier phrases (QP),
some non-quantifiers are more likely to be heads if they appear; e.g.,

adverbs (RB; e.g., “approximately”), prepositions (IN; e.g., “about”),

and relative adjectives (JJR; e.g., “more than”). 58
Similar labels in different treebanks by their Euclidean distances in
multilingual parsers’ FFNN’l‘ub Ot e e 59

Multi-branching and discontinuous F1 scores of DB and DM on (D)PTB
test sets. We grouped k > 1 because only one tree has fan-out k = 2 in

the test set. The scores of CB and CM are from Chen et al. (2021). .. 61
Multi-branching and discontinuous test F1 scores of DB and DM on
TIGER. Fan-outis detailedink. 62

Errors in discontinuous NCCP PLM models with pz > 0. A FAIL
causes a matrix of ones, whereas a 0 close to one gives an identity
matrix — an expensive null action. 64

Statistics of PTB after my DAG conversion. PTB (2.0) has 49,208 sen-
tences. . . . e 75
Statistics of CTB after my DAG conversion. CTB (9.0) has 132,080
SENEENCES. . . . o i e 75

xxiii

List of Abbreviations

CFG
CNF
LCFRS
GCFG
HPSG
CCG
PoS
RNR
DAG

FFNN
RNN
LSTM
BiLSTM
PWE
PLM

RNNG
NCCP
CB
cM
DB
DM

PTB
CTB
KTB
DPTB

Context-Free Grammar

Chomsky Normal Form

Linear Context-Free Rewriting System
Generalized Context-Free Grammar
Head-driven Phrase Structure Grammar
Combinatory Categorical Grammar
Part-of-Speech

Right Node Raising

Directed Acyclic Graph

Feedforward Neural Network
Recurrent Neural Network

Long Short-Term Memory
Bidirectional Long Short-Term Memory
Pre-trained Word Embeddings
Pre-trained Language Model

Recurrent Neural Network Grammars
Neural Combinatory Consituency Parsing
Continuous Binary

Continuous Multi-branching
Discontinuous Binary

Discontinuous Multi-branching

Penn Treebank

Chinese Penn Treebank
Keyaki Treebank
Discontinuous Penn Treebank

Chapter 1

Introduction

1.1 Early Facts of Constituency Parsing

Talking about parsing, we usually mean extracting some form(s) of structures from
strings of plain text. For human languages, the forms of syntactic structures are
the first subject to the reign of grammar, which defines different languages. Noam
Chomsky characterizes a language as “a set (finite or infinite) of sentences, each of fi-
nite length, all constructed from a finite alphabet of symbols.”(Chomsky, 1956) He pro-
vides a formal system, the Chomsky Hierarchy, which includes four levels of gram-
mar to organize the finite alphabet symbols (i.e., words) into grammatical struc-
tures. From regular grammars (type-3) to context-free grammars (type-2) to context-
sensitive (type-1) and finally to unrestricted grammars (type-0), the higher the level
(i.e., lower n of type-n) becomes, the more complex syntactic structures of a language
can be.

The Chomsky Hierarchy has a huge impact on parsing techniques for computer
languages, because the formal grammars behind them are essential tools to interpret
human inputs for controlling and interacting with computers. A parser is said to be
Chomskyan when it meets the description of context-free grammar. Around 1950s
and 1960s, many parsers (Lucas, 1978; Knuth and Pardo, 1980) got invented to con-
vert formal languages (e.g., arithmetic expressions and statements) into low-level
machine code (as complilers). Because context-free grammars are relatively simple,
early parsers are rule-based with limited token string for programming purpose.
Parsing natural languages was not quite feasible by grammar design or computa-
tional power at that time. However, the notion of phrase structure grammar became
central, which led to constituency parsing for natural language.

Constituency parsing is thus one of the long-lived research topics. Two techni-
cal paradigms, graph-based parsing and transition-based parsing, have their roots
back in 1950s and 1960s. Oettinger (1961) discovers deterministic pushdown au-
tomata (DPDA) by using stack-driven recursiveness for a small range of parsing re-
sults, which is essentially how modern neural transition-based parsers works. Sakai
(1961) describes a table-driven parser, which systematically searches through all in-
put combinations for all results. Several years later, his algorithm had a popular
name after the names of its rediscovers, CKY algorithm (Cocke, 1969; Kasami, 1966;
Younger, 1967). The term “table” was gradually placed by synonym “chart”. These
two paradigms of transition-based and graph-based parsing are examples for the
trade off between speed and accuracy, which is still a main topic in this dissertation.

There are other prominent pioneers who laid the foundation of the modern con-
stituency parsing literature from a general aspect, to name a few: Andrey Markov
with Markov chain and its application (Markov, 1906; Markov, 1913), Claude Shan-
non with information theory (Shannon, 1948), Alan Turing with his discovery of

2 Chapter 1. Introduction

stack (Carpenter and Doran, 1977), John Backus and Peter Naur with their nota-
tion (Backus, 1959), and artificial neural network pioneers with their methodologies
(David E. Rumelhart and Williams, 1986). The discovery of parsing methodolo-
gies for context-free grammars, such as top-down LL(k) (Lewis and Stearns, 1968),
bottom-up LR(k) (Knuth, 1965), and Earley Algorithm (Earley, 1970), also helped the
understanding of complexities in formal grammars. Modern researchers constantly
learn and directly or indirectly gain insights from them.

1.2 Constituency Parsing

When referring to constituency parsing, we talk about recursive phase structures nested
to form hierarchical syntactic structure. A grammatical sentence have at least one
whole syntactic structure or one parse. For example, the following English sentence
1a has nested phrases 1b-le combining into a parse:

1. (a) A quick brown fox jumps over the lazy dog. (as a sentence)
(b) a quick brown fox (as a noun phrase)
(c) jumps over the lazy dog (as a verb phrase)
(d) over the lazy dog (as a preposition phrase)
(e) thelazy dog (as a noun phrase)

As demonstrated above, sentence 1a contains a noun phrase 1b and a verb phrase 1c.
Further, 1c contains a preposition phrase 1d which in turn consists of a preposition
over and le. It looks certain to our eyes, whereas the following examples remind us
that there are more ungrammatical interpretations than grammatical ones:

2. (a) aquick brown (incomplete)
(b) fox the (incompatible, discontinuous)

(c) jump over (not in the right context)

On the flip side, different grammatical parses for the same sentence reflect different
interpretations of its meaning:

3. (a) Ishot an elephant in my pajamas.
(b) shot in my pajamas (a discontinuous verb phrase)

(c) an elephant in my pajamas (a continuous noun phrase)

The verb phrase 3b indicates that the agent was wearing pajamas during the ac-
tion. Meanwhile, the noun phrase 3c describes an unusual scene that an elephant
appeared in the agent’s pajamas, which is not a preferable parse.

Generally speaking, the task of constituency parsing is about finding such recur-
siveness of phrases toward terminal words in a sentence. Grammars are sets of rules
that define and judge the correctness of phrasal recursiveness. Their types result in
different levels of recursive structures: from continuous tree, to discontinuous tree, to
directed acyclic graph (DAG). I will discuss the former two tree levels with their corre-
sponding grammar formulations and explain how grammar types lead to different
levels according to their definitions. Then, I briefly mention the DAG with examples
and explanations. My focusing is not the grammars but the structures they form,
which finally leads to my grammar-less parsers in Chapter 3.

1.2. Constituency Parsing 3

1.2.1 Tree Structure

A tree structure embodies a parse when each child phrase belongs to exactly one
parent phrase. The tree structure is the most common case in constituency parsing,
which further divides into continuous and discontinuous trees, as exemplified by 3b
and 3c. (Meanwhile, discontinuity in the context of dependency parsing refers to
lexical projectivity and non-projectivity. See section 1.2.3.)

Informally speaking, continuous trees only contain continuous phrases, where
each phrase has one continuous spans of words. In contrast, discontinuous trees can
have discontinuous phrases, each of which can contain multiple spans of words.

Continuous Tree by Context-Free Grammar

To formally introduce continuous tree, I first refer to context-free grammar (Chom-
sky, 1956, CFG) which defines a formal language L and produce only continuous
phrases. A CFG grammar G is defined by a 4-tuple G = (X, N, R, S), where

G = X is afinite set of terminal symbols, which are actual words of a sentence;

N is a finite set of non-terminal symbols, which generalizes the categories of
phrases, e.g., a verb phrase denoted in VP and a noun phrase in NP;

R is a finite set of production rules, each in the form of A - a, where A ¢ N
and & € (NUZX)* defines how the single left-hand side symbol generates
a string of zero, one, or multiple terminal or non-terminal symbols;

S is a designated start symbol with S € N, which can only appear on the
left-hand side of the production rules.

The essence of CFG grammar lies in the simple form A — & of each production
rule in R which not only defines the maximum one-to-many tree structure but also
determines the adjacency and the order of right-hand side symbols. For example,
rules of A - BC, B —» b, and C — ¢ generate the string bc. Under the constraint, G
only generates continuous trees.

Syntactic ambiguities exist in CFG formal languages, where more than one gram-
matical derivation accounts for the exact same yield of words. For example,

4. (a) NP — the lazy dog (general)
(b) NP — A dog — the lazy dog (left recursive with rule A — the lazy)
(c) NP — the B — the lazy dog (right recursive with rule B — lazy dog)

NP of three words has three approaches to yield its content, where non-terminal A as
well as B are intermediate steps. Such parsing ambiguities prevent some parser from
being deterministic. Especially, binary parsers that relies on production rules whose
right-hand side has no more than two symbols cannot direct handle 4a. Thus, the
Chomsky normal form (CNF) facilitates breaking down the large grammar rules into
smaller binary ones with their right-hand side having at most two symbols, in either
form similar 4b or 4c. (CNF in the context for formal language has more conversion
restrictions beyond our examples.)

The notion of context-free indicates that each production rule can be applied re-
gardless of the context of a non-terminal, where nature languages have properties
that are beyond context-sensitive languages in the Chomsky Hierarchy. In the 1980s,
it became clear that natural languages are not context-free (Pullum and Gazdar,
1982). However, the continuous tree structure behind A — « is very handy and cap-
tures many cases in English. Thus, the early creation of annotated parsing corpora

4 Chapter 1. Introduction

; ;
T T
vp | Nl:’
1
NP-T1 PP-T1 | VP PP
1 1
ADVP NP ADJP NP ADVP NP | ADJP NP
| —— | ——
RB , DT NN VBZ RB IN JJR NNS . RB , DT NN VBZ RB IN JJR NNS .
Now , the push is on for more-distinctive shows . Now , the push is on for more-distinctive shows .
(a) Simplified PTB annotation with traces. (b) Discontinuous tree after conversion.

FIGURE 1.1: Evang and Kallmeyer (2011) recover (b) discontinuity from (a) continuous
Penn Treebank with trace nodes (blue). We simplified the trace symbol for this demon-
stration.

(i.e., treebanks) largely uses parentheses to annotate continuous phrases as labelled
spans. Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993, PTB) is among
such practices of creating treebank. For example, the tree in 1a serializes into a string
of (8 (NP A quick brown fox) (VP jumps (PP over (NP the lazy dog)))).

Treebanks enable data-driven models for parsing nature languages. In addi-
tion to the bracketing format for the majority of continuous trees, PTB leverages
co-indexing trace marks (Evang, 2011) to address discontinuity, as we will cover in
the next subsection.

Discontinuous Tree by Linear Context-Free Rewriting System

Discontinuity of PTB is partly caused by temporal syntactic movement, whereas that
of TIGER Treebank (Brants et al., 2004) is more due to the language’s innate property.
In the case of PTB, phrase components displace from the position where they receive
their original grammatical role to form discontinuous phrases.

For example, as shown in Figure 1.1, the preposition phrase for more-distinctive
shows does not act as any grammatical role for the verb phrase is on. Rather, it is
a modifier for the noun phrase the push, specifying what purpose the push is for.
Thus, there is a discontinuous noun phrase including a left-hand side noun phrase
the push and a right-hand side for more-distinctive show, which both are marked by
the simplified trace mark T1.

The original trace symbols used by PTB contain the types of the movements,
such as *xT* for non-argument movement (A-bar movement) with a type T and * for
any arqument movement (A-movement), and a trace identity number, such as 1, to
identify movements in different phrases. Arguments are grammatical roles played
by each components for their parent phrases. For example, a noun phrase in English
can play as a subject for a sentence or a clause, or as an object for a verb phrase,
preposition phrase. We will cover this topic again in the next sections 1.2.2 and 1.2.3.
In this section, we focus on one type description of discontinuity, Linear Context-
Free Rewriting System (Vijay-Shanker, Weir, and Joshi, 1987; Weir, 1988, LCFRS).

LCFRS is a type of generalized context-free grammars (GCFG), which expands
on CFG by adding potentially non-context-free composition functions to rewrite
rules. Thus, LCERS is not context-free as its name suggested. Specifically, a LCFRS
G'is a 5-tuple (X, N, R, ¢,S), where

G'= X isa finite set of terminal symbols; (the same definition as X of CFG.)

N is a finite set of non-terminal symbols; (the same definition as N of CFG.)

@ is a function that specifies a fan-out degree for each non-terminal, ¢ : N —
IN, which indicates the number of continuous spans within a discontin-
uous phrase (e.g., the discontinuous NP in Figure 1.1 has fan-out degree
2)

1.2. Constituency Parsing 5

VRO?'I'
T
S
1
T T 1
| | VP
T | | :]
PP | | |
1
T T 1 | | |
| | PN | NP |
| | | | T T ; 1 |
I i N o |
— ——
APPR ART ADJA NN VAFIN ART NN APPR NN VVPP §.
In der Europdischen Union wird die Kontrolle bei Unterneh -Z hlii ausgedehnt .
(In the European Union is being the control over company mergers extended)
V2 main verb T

FIGURE 1.2: German is a verb-second word order (V2) language, where the second
position from left of the main clause is occupied by the verb phrase. Object and other
argument can relatively have free positions with their case markers and inflection as the
sign of its grammatical role.

R is a finite set of production rules, each in the form of A - g[A4,..., A,],
where A, Ay,..., A, € N have an one-to-many relation withn > 0. gis a
composition function g : (N*)?(41) x ... (N*)?(A) (N*)?(4), which
corresponds to how ¢(A) spans of A are rearranged among Y; ¢(A;)
spans of children (Aj, ..., A,). Rules may take the form A — g[], where g
returns a string from X.

S is a designated start symbol with S € N, which can only appear on the
left-hand side of the production rules. (the same definition as S of CFG.)

The application of an LCFRS G’ = (£, N, R, ¢, S) is further defined for every non-
terminal A € ¥ and the set of A’s derivation yield(A):

e ¢() eyield(A) for (A —g[]) € R;
(i.e., when rewriting terminal symbols for A, write its derivation directly.)

* o(ay,...,ay) eyield(A) for (A - g[A1,...,Ay]) € Rand a; € yield(A;);
(i.e., when rewriting non-terminal symbols for A, the yields of A must be rear-
ranged by ¢ and redistributed to children (Ay,..., A;).)

* The function ¢ must be linear and non-erasing, which indicates that the rear-
range function g never repeats or reduces strings from input to output.

As already mentioned, the key extension from CFG to LCERS lies in the rearrange
function g. For example, g({x1a2),(B1)) = (w1B142) can achieve the injection of
B1 € yield(B) into «; € yield(A). Meanwhile, the additional complexity of LCFRS is
obviously seen in the different types of g[A1, ..., A,] associated to each non-terminal
A, whereas CFG only has g[A;] or g[] associated. LCFRS has multiple equivalent
mildly context-sensitive grammars for discontinuity in constituency parsing. All of
them has similar complexities for the rearrangement. When considering all possible
parsing trees, the complexity of LCFRS is O(n°/) and O(n3) for CFG in CNF, where
is the input size (i.e., sentence length and numbers of words), f is the fan-out degree.

Similar to CNF, LCFRS has reduced binary version, which reduces the complex-
ity to polynomial O(n®). However, unlike CFG, LCFRS is mainly for natural lan-
guages and LCFRS parsers struggle more than CFG parsers to reach linear complex-
ity and high parsing speed. We cover recent tree structure constituency parsers in
Chapter 2.

6 Chapter 1. Introduction

Finally, we show an annotated German parsing sample in TIGER Treebank. Un-
like English samples in DPTB, German innately have free word order and discon-
tinuous phrases because of its complex case system. For example, modes, voices, or
even separable verbs have their particle locating at the end of the main clause.

1.2.2 DAG Structure

A DAG structure embodies a parse when multiply parent phrases share common
phrase components. In English, there are both syntactic and semantic grounds for
this level of structure.

On the syntactic side, there are two elliptical coordination phenomena called
gapping and right node raising (RNR). Typically, RNR involves but is not limited to
the coordination structures. For example, 5a & 5b are gapping and 5c-5e are RNR.
We use small bracketed font to denote the ellipses:

5. (a) Tolstoy’s characters eat, Pushkin’s icuaracters eati, GOOI’S [characters eat).
(b) The plant was evacuated and workers rwere Sent home.
(c) I haven't seen mimi o7 talked to him in several years.
(d) He nodded to men without talking to her. (without coordination)

(e) It was nothing mMore iman aeding frenzy) 0 nothing less than a feeding frenzy.

In English, gapping occurs in the non-initial conjuncts of the coordinations, where
ellipses are usually verbs. The words or phrases in the incomplete structures are
called remnants, such as Pushkin’s and Gogol’s in 5a. Meanwhile RNR occurs at the
final conjunction of the coordinations, where ellipses can be structures which do not
involve with verbs. Both phenomena challenge the theories of syntax in significant
ways because the incomplete structure with ellipses are not qualified as phrases.
For example, the final coordinated sentence Gogol’s in Figure 1.3 (a) yields a noun
phrase via a strange rule S—NP without including any verbs. A more common En-
glish grammar for 5a would look like Figure 1.3 (b), where the ellipses are borrowed
from the first complete sentence. The result is a DAG.

On the semantic side, a verb cluster, where two or more verbs align in adjacent
order and function as a whole, also creates DAGs. Each single verb in the clusters re-
quires their own predicate-argument structure and selects the existing phrases taken
by the cluster. Not every single verb creates its own predicate-argument structures.
Superordinate verbs, such as control and raising, can redirect its arguments to its
subordinate verbs. Although the verb clusters are formed by syntax, the redirection
of argument is semantically motivated as following:

6. (a) The wind never seems iewinaj to stop.
(Raising verb seem redirects its subject the wind to stop.)

(b) They want [me] to buy reinsurance.
(Raising verb want redirects its object me to buy.)

(c) An uninvited guest tried e wninvited quest to crash the party.
(Control verb try redirects its subject an uninvited guest to crush.)

(d) You ask [it] to be gone.
(Control verb ask redirects its object it to be gone.)

Control predicates semantically select their arguments, whereas raising predi-
cates do not. We do not go further for the difference but highlight these words can

1.2. Constituency Parsing 7

S
I L T T T T 1
s | S | s |
T . 1 | | | | |
NP | | | | | |
— | | [| | |
NP-1 | VP | NP=1 | |
| | | —t— | e |
NNP POS NNS VBP , NNP POS , NNP POS .
Tolstoy 's characters eat , Pushkin 's , Gogol 's

(a) Original PTB annotation with traces for gapping.

S
I T T T T 1
S | s | s |
| | —_— | — |
| NP |
—	—l		
NP			
— —			
T . | | | |
NP | | | |
— | | | |
NP VP | NP | |
—— | [—t— [|
NNP POS NNS VBP , NNP POS , NNP POS .
Tolstoy 's characters eat , Pushkin 's , Gogol 's

(b) DAG after conversion with original traces.

FIGURE 1.3: PTB has traces for gapping remnants (a, noun phrases suffixed with =1)
for recovering the DAG structure (b). We denote different remnant groups in different
colors (i.e., blue, green, and yellow) and shared components with double lines. The
initial coordinate in red contains the full structure.

create clusters as a whole and can individually select and share argument from the
context to from DAGs. For example, the noun phrase me in 6b works as an object for
want and as a subject for buy at the same time.

Noticeably, 6b also includes another phenomenon for DAG creation, the passive
voice. Beside it being the object of ask and the subject of be gone, passive voice also
require the syntactic subject to be the object of gone.

By far, We have investigated some causes for the creation of DAGs. However, we
do neither cover more the details nor cover a formal grammar for DAG structures
(Kamimura and Slutzki, 1979) in this thesis. There are reasons. On one hand, my
work focus on grammar-less parsers for the general structures of trees and DAGs.
My methods do not rely on complex symbol logic based on grammars. On the other
hand, formal grammars for DAG are too complex and are not as widely adopted as
CFG and LCFRS grammars.

1.2.3 Headedness and Lexicalization

We see S—NP as a strange rule because we expect an verb or a verb phrase to be the
essential part of a complete sentence.

Headedness is the argument that each phrase has one child as its head from which
the phrase receives the major grammatical information that the head projects. Among
non-terminal symbols, there is a proper subset of symbols, called pre-terminals, each
of which directly yields one and only one terminal. We also call them lexical sym-
bols, word classes, lexicons, or part-of-speech (PoS). Each symbol may include specific
inflectional information of its yield. For example, VBP for word ask of 6d indicates a

8 Chapter 1. Introduction

T

|

| I_I_|

| | VP

| | ——

| | | VP |

| | | ——— |

| | | | vP

| | | —t— | |
NP-SBJ NPT3 NP-TBJ—I I I I m|= N1|> i I I I
PRP VBP PRP -NONE- TO VB VBN -NONE- . PRP VBP PRP TO VB VBN
You ask it *-3 to be gone *-1 . You ask it to be gone

(a) Original PTB annotation with traces and empty nodes (b) DAG conversion

FIGURE 1.4: A PTB annotation with control verb ask of 6d. We keep the original anno-
tation of SBJ, which shows it works as a different argument (i.e., an A-movement to be
a SuBJect). There is a further A-movement because of the semantic requirement for the
passive voice. Word it works again as an object for verb gone.

non-3rd person singular present verb in PTB annotation scheme. Then, headedness
makes sense for the rule VP-»VBP NP S.
There are debates on the headedness argument. For example,

7. (a) Theold (a noun phrase without a noun)

(b) Right and wrong (coordination with an ambiguous head resolution)

in 7a, if the noun is not the essential part of the noun phrase, the phrase should be
called a determiner phrase (DT) rather than a noun phrase (NP). Meanwhile, in 7b,
the coordination should not be call a coordination phrase because each subordinate
phrase has clear grammatical function than the coordinating conjunction (CC—and)
for the superior structure. Apart from the debates, let us move on to some grammars
that highly depend on headedness.

Head-driven Phrase Structure Grammar

Head-driven phrase structure grammar (Carl Pollard, 1988, HPSG) is an symbolic
teature enrichment for CFG production rules, which specifies and relies on the head
information. It does not facilitate non-context-free, like LCFRS extension to CFG.

To be more concrete, each production rule is equipped with a set of grammatical
constraints:

A—->un

{set of constraints for {A} ua}

where the set of constraints consists of feature checking for each symbol. For exam-
ple, the following checks the compatibility for feature of agreement

S— NP VP

1.1
(NPAGREEMENT) = (VPAGREEMENT) D

1.2. Constituency Parsing 9

and

NP — DT NN
(DTAGREEMENT) = (NNAGREEMENT)
(NPAGREEMENT) = (NNAGREEMENT)

for sentences, such as we jump and he cries, and noun phrases, such as a cat and those
dogs. The feature names inside () are paths towards a primitive value or a compound
feature description structure, called attribute-value matrix (AVM). A flat AVM is a
set of primitive feature-value pairs:

FEATURE; VALUE;

FEATURE, VALUE,

An AVM can nest in another AVM under one of its feature path:

AGREEMENT
PERSON THIRD

NUMBER SINGLE]

If both AVMSs of NP and VP in 1.1 contain the above AMYV, then constraint is met. As
a result, the two AVMs can safely merge by the unification operation following the
CFG rule. Under path (AGREEMENT), a new AVM for S forms by unifying NP’s and
VP’s AVMs,

NUMBER SINGLE
PERSON THIRD

NUMBER SINGLE
PERSON THIRD

L]

NUMBER SINGLE
PERSON THIRD

where U is the unification operator. In addition, when two operands AVM contain
mutually different features, those feature-value pairs will be kept in the new AVM.
Otherwise, the unification, like

L]

PERSON FIRST

NUMBER PLURAL
PERSON THIRD

NUMBER SINGLE]

fails and thus the current parsing step fails.

HPSG decomposes features into primitive values and organize them into AVMs
so that the constraint checking and feature passing can be become concise, like the
above AGREEMENT example. During parsing, the feature information flows from
the bottom terminals to upper non-terminals. It naturally requires a HEAD feature
that majorly passes from one of the phrase children to the parent, highlighting the
impact of headedness and lexical information (Pustejovsky, 1998).

Dependency Parsing: Non-projectivity vs. Discontinuity

Dependency parsing (Tesniere, 1959; Hudson, 2021) is another early parsing for-
malism that develops in parallel with constituency parsing. In contrast to creating
phrasal structure as parsing, dependency parsing directly link words to their argu-
ments, which are binary semantic or syntactic lexical relations between words with

10 Chapter 1. Introduction

s advmod prep
Il
T
NP
E | NEN o
| VP PP det advmod P
ADVP NP ‘ ADJP NP Now the «— push «—is—>on for — shows
 —] nsubj amod ’/
RB , DT NN VBZ RB IN JJR NNS
Now , the push is on for more-distinctive shows . more-distinctive
(a) Discontinuous Constituency Parsing. (b) Non-projective Dependency Parsing.

FIGURE 1.5: Given the head information, constituency tree can be converted into de-
pendency graph. Constituency discontinuity and dependency non-projectivity root in
the same syntactic structure of this sentence.

no focusing on phrases. (However, there are some labeling tricks to have depen-
dency graph bearing phrasal information.) Predicate-argument relationship plays
an important role, as shown in Figure 1.5 (b). Many English verb phrases have head
verbs as the predicates in relation to arguments inside or near their phrases. Re-
cent efforts (Zhou and Zhao, 2019) combine head information of dependency and
phrase information of constituency into a simplified HPSG parsing and witness mu-
tual benefits on both tasks. Similar to constituency parsing, there are also levels from
tree to DAG for dependency parsing (Sagae and Tsujii, 2008; Fancellu et al., 2019).

Given the head information, a constituency parsing tree can also be converted
into a corresponding dependency tree. The projectivity and non-projectivity of de-
pendency tree commonly corresponds to continuity and discontinuity of constituency
tree. When two edges among four words in a dependency tree get crossed the de-
pendency tree becomes non-projective. In Figure 1.5 (b), the edge between “Now”
and “is” comes across with the edge between “push” and “for”. In its corresponding
Figure 1.5 (a), the discontinuous constituency parsing reflects this non-projectivity
as constituency discontinuity. Without considering the creation of phrase structure,
earlier dependency parsing approaches has shown their advantages of native sup-
port for non-projectivity. For example, McDonald et al. (2005) formulize dependency
parsing as finding maximum spanning trees (MST) in directed graphs at O(n®) or
lower complexities, pioneering the genre of graph-based parsing. Finding global op-
tima is similar to the characteristics of chart-based parsing for constituency parsing,
which I will introduced in Section 2.2.

Combinatory Categorical Grammar

Along with HPSG that assigns information-rich AVM to each word, combinatory
categorical grammar (Steedman, 1997; Steedman, 2004, CCG) assigns a category as
a string of constituency labels and operating direction symbols to each terminal.
The direction symbols indicate where its relation is about (i.e., to its left or right),
somewhat like the function of edges in dependency parsing.

CCG is one of the lexicalized grammars whose compound category interact with
each other under symbolic unification rules, such as forward application.

X—-X/YY
X—->Y X\Y

For example, an English intransitive verb receives a category S\NP which means it
takes an NP as its subject on its left side (i.e., “\”) to form a sentence S. Likewise, a
ditransitive verb receives a category ((S\NP)/NP)/NP with (.../NP)/NP indicating

1.3. Related Task 11

the direct and indirect objects on the right side (i.e., “/”). Derivations look like

S — NP S\NP — He smiles
S — NP S\NP — I (S\NP)/NP NP - I ((S\NP)/NP)/NP NP tea — Ioffer him tea

Note that the exemplary ditransitive verb ((S\NP)/NP) /NP as a predicate refers to
its three argument, creating a semantic frame. CCG is often in the middle ground
between syntactic and semantic parsing, which involves deeper predicate-argument
structure (Baldridge and Kruijff, 2002).

Futhermore, CCG has other advanced rules, such as type raising, composition,
and decomposition, which allow terminals to have local categories and exchange
them in respond to the context. These rules cover and can differentiate long-distance
dependencies, such as gapping, raising, control, and right-node raising. Despite that
its parsing process is in a context-free style with binary rule application to adjacent
categories, those flexible compound symbolic categories allows some discontinuity
or non-projectivity to be addressed (Little, 2010).

1.3 Related Task

1.3.1 Chunking: Word Segmentation and Shallow Parsing

The full parse tree is not always necessary, which bring shallow parsing or partial
parsing to the topic. Chunking tasks, such as word segmentation and named entity
recognition (NER), require the identification of non-overlapping continuous spans
in the input plain string.

Word segmentation can be seen as a chunking task. Although word segmenta-
tion in English can be relatively easy to tackle with regular expression, it is more
demanding for other languages without using explicit delimiters (e.g., white space),
such as Chinese and Japanese, as shown in Figure 1.6 (b). Many tasks for those
languages start with a word segmentation pre-processing.

In the case of NER, the named entities are scattered continuous spans of words
in the sentences, which refer to entities in the real world, such as person names,
organizations, locations, etc. Shallow phrase chunks and named entities are not
necessarily in the relation of container and content. Some phrase chunks and named
entities has both common parts and respective parts. As shown in Figure 1.6 (c), the
organization People’s Daily is split into two NPs with one of it containing a determiner
the.

1.3.2 Structured Semantic Task: Sentiment Analysis

Sentiment analysis is a task to identify or quantify affective states and subjective
information from natural languages. There are sentiment corpora of different do-
mains, such social media sentiment (Pak and Paroubek, 2010), product review (Ke-
ung et al., 2020), and etc. Among them, Stanford Sentiment Treebank (Socher et al.,
2013b, SST) stands out with sentiment organized in binary tree structure, as shown
on the left side of Figure 1.7. The sentiment or semantics of a phrase is affected by
its child phrases or words.

The tree stuctures in SST are syntactically generated by a constituency parser
(Klein and Manning, 2003). Instead of a constituency label, each phrase has a sen-
timent label, which has five ordered categories ranking from very negative (label
0) to neural (label 2) to very positive (label 4). Socher et al. (2013b) also provide a

12 Chapter 1. Introduction

|z |Teh |, BRI BEEE X IR Z | BRI BHAS - ITIEIIDITIHBI. |
|58 B BA R B EWE B4 |1 7 1B | | RREIZRRA GRS T Pl EE 82, |

(a) Word Segmentation

TOP
T T T T T T T T T T T 1
LT T e T T
" Thursday 's overseas edition of the People 's Daily quoted Tang as saying .

T T T

r T T T T T
| | [| | |
| | [| | |
That is to end the state of hostility

(b) Named Entity Recognition

TOP
T T T T T T T T T T T T T T T T T 1
NP VP VP NP PP NP |1 NP NP PP NP NP VP NP PP VP |
| | (! | T | —— | | | | |
’
b

WDT VBZ TO VB DT NN IN NN NNP POS JJ NN IN DT NNPS POS JJ VBN NNP IN VBG .
That is to end the state of hostility , " Thursday 's overseas edition of the People 's Daily quoted Tang as saying .

(c¢) Phrase Chunking

FIGURE 1.6: (a) contains samples from Chinese Treebank and Keyaki Treebank. (b) and
(c) are from a sample from CoNLL 2003 dataset, which provides phrase chunk and NER
annotations in parallel.

role .
entit
Very negative(0) theme i Y
Negative (1) mechanisms - " ([trigger
N mfluencmg
Neutral (2) linking event
s theme=rs......... .
Positive (3) theme H
Very positive(4) theme cause induction [27..

cause _antagonlsm 'hem
carcmogene5|s theme cause anglogeneS|s
theme atloc

Fw

r
|
| N —
2 | 4
| 1 I | : .
I T____i I I ,—l—i M [induction] H angiogenesis]é
s ;; i T
I i—j } I ; zl’_l_i I i causetheme : : cause theme i i atloc
: N H N P
| I \ | — —— | | - : ‘ P *
e s 32;VEGF Elg ElEi

2 2 1 2
Despite the film 's shortcomings , the stories are quietly moving .

FIGURE 1.7: Two semantic tasks. Left: fine-grained sentiment analysis with Stanford
Sentiment Treebank. Right: DAG-based event detection with BioNLP CG shared task
2013 (Pyysalo et al., 2015; Espinosa, Miwa, and Ananiadou, 2019).

model with a binary vector combinator to minitor the sentiment change along the
tree branches in a bottom-up style. With the specialized component, the accuracy
of the root sentiment is significantly higher than those approaches of flat models
(Moore and Barnes, 2021) (except for those with pre-trained language models).

1.3.3 Task for DAG structure

Comparing to tree structure, DAG structure provide more flexible and accurate in-
formation, which is typically semantic. For example, DAG dependency parsing cap-
tures more complete predicate-argument structure (Sagae and Tsujii, 2008; Tokgtz
and Eryigit, 2015; Hershcovich, Abend, and Rappoport, 2017), DAG semantic pars-
ing (Fancellu et al., 2019; Fancellu et al., 2020), and DAG event detection (Pyysalo
et al., 2015; Espinosa, Miwa, and Ananiadou, 2019; Espinosa et al., 2022), as shown
on the right side of Figure 1.7.

To my knowledge, DAG constituency parsing still lack published researches.
One reason might be lacking of large scale constituency graphbanks. However,
the trace systems in PTB and CTB introduce DAG structures. Previous works fo-
cused on the conversion within tree structure (Ficler and Goldberg, 2016; Evang and
Kallmeyer, 2011). In Chapter 6, I specify the conversion of PTB and CTB for DAG
with code and manual check.

1.4. Thesis Structure 13

1.4 Thesis Structure

In the following chapters, we will recap recent state-of-the-art constituency parsers
in Chapter 2. My research on parsing family based a neural combinator is specified
in Chapter 3 and the experiments follows in Chapter 4. Chapters 3 & 4 also extend
our parsers for non-parsing tasks, including structural sentiment analysis, NER, and
word segmentation. Also, there are efforts for multilingualism. In Chapter 5, we
focus on providing future DAG conversion for PTB and CTB Treebanks.

1.5 Contribution

My main contributions are the following:

¢ Propose a neural combinator family, neural combinatory constituency parsing
(NCCP), for continuous and discontinuous tree structure constituency parsing.
They include binary and multi-branching parsers in four variants: continuous
binary (CB), continuous multi-branching (CM), discontinuous binary (DB),
and discontinuous multi-branching (DM). They have low empirical complex-
ities and new state-of-the-art parsing speeds with comparable accuracies to
recent parsers. DM without pre-trained language models possesses the new
state-of-the-art accuracy on TIGER Treebank.

* Demonstrate training and inferring methods with roots in ideas of grammars
and linguistic phenomena. Unlike parsers that resort to the single tree trans-
formation from normal forms, we embrace all valid tree transformations, in-
cluding but not limited to Chomsky normal forms. These tricks with tree trans-
formation is effective for my models and can be adopted by other parsers.

Based on the main contribution, I provide extra contributions:

¢ Combine monolingual NCCP models into multilingual parsers which do not
exhibit significant performance changes.

* Demonstrate joint tasks with non-constituency structural tasks, including sen-
timent analysis and word-segmentation.

¢ Provide DAG conversion from PTB and CTB to graphbanks for future works.

15

Chapter 2

Constituency Parser

In this chapter, I introduce recent constituency parsers for tree structure. In the re-
cent decade, NLP researches shift from using statistical methods to using artificial
neural networks and significantly improve the empirical performance with the con-
stant emergence of large annotated corpora. Neural networks are known to be data-
driven and show the significant improvement when data is abundant. Despite the
demand for data size, neural approaches are self-adaptive and save expensive labor
on manual feature engineering. I focus mainly on fully supervised neural parsers
whose experiment are conducted at least on PTB.

As already mentioned, constituency parsing demands hierarchical structures. It
requires a model a serial of steps to either achieve a successful parse or recognize
a failure. A transition-based parser does not explore all the possible parsing struc-
tures and may be misled by its previous steps (Dyer et al., 2016; Kitaev and Klein,
2020; Wei, Wu, and Lan, 2020), whereas a chart-based (i.e., tabular-based or table-driven)
parser systematically explores all the possibilities and chooses the most plausible
one (Kitaev and Klein, 2018; Corro, 2020). When a language can be generated by
a formal grammar, both transition-based and chart-based parsers can achieve per-
fect results. However, natural languages always produce exceptions and the as-
sumptions of grammar generating language may not even stand sometimes. Thus,
transition-based and chart-based parsers have their respective relative advantages:
a balance between accuracy and complexity. In the following content, a parser by
default refers to a fully supervised neural constituency parser.

2.1 Transition-based Parser

I generalize transition-based parsers to be the category that relies on a series of local
actions to incrementally build a parse. First, the numbers of inputs and actions for
classic finite automata are not essentially equal and the order of the inputs and actions
are sequential. Next, a genre via sequence labeling or supertagging requires the num-
bers of inputs and actions to equal. The inputs can be simultaneously mapped into
concurrent actions which are applied in some order. Finally, the genre of parsing
with intertive chunking applies a group of multiple non-conflicting actions in parallel
and repeats until the ending requirements are met.

2.1.1 Finite Automata

Typical finite automaton parsers exploit a stack to store unfinished parse fragments.
Each action is triggered by their state and input, reminiscent of early ideals, such as
the Turing machine, top-down LL(k), and bottom-up LR(k) parsers.

16 Chapter 2. Constituency Parser
‘ Stack ‘ Queue ‘ Action
0| - over | the | lazy | dog | NT(PP)
1| (PP over | the | lazy | dog | SHIFT)
2| (PP | over the | lazy | dog NT(nP)
3| (PP | over (NP the | lazy | dog SHIFT
4| (PP | over (NP | the lazy | dog SHIFT
5| (PP | over (NP | the | lazy | dog SHIFT
6 | (PP | over (NP the lazy dog) | - REDUCE
7 | (PP over (NP the lazy dog)) | - REDUCE

TABLE 2.1: An example of the RNNG shift-reduce parsing process.

Recurrent Neural Network Grammars (RNNG). RNNG (Dyer et al., 2016) is a
parser-generator pair. The generator is a generative language model based on the
state of parsing. Whereas typical language model does not involve parsing struc-
ture, RNNG acts as a language model with additional parsing tree generation. The
essence lies in how RNNG’s parser produce and encode parsing trees.

A continuous constituency tree (w, 1) can be uniquely serialized into a sequence
of actions a; € a(w, n) by a pre-order tree traversal. With input terminal symbols w
(i.e., words) in a queue Q, non-terminal symbols 7, and an empty stack S, an action
is among three types,

* NT(X) opens a non-terminal X and pushes it to S for the following actions,
¢ SHIFT shifts a terminal from Q and pushes it to S,

¢ REDUCE pops the top elements til an open non-terminal, create a subtree with
the popped elements, and pushes the new subtree to S.

A parsing process of a multi-branching (or m-ary, m € IN) tree (PP over (NP the
lazy dog)) is demonstrated in Table 2.1. The current action 4; is determined by
the parser state consisting of action history embedding a.;, stack embedding S;, and
queue embedding Q;, which are all summarized by stack LSTM, a specialized RNN.
RNNG parser terminates parsing when there is only one closed element in S.

Instead of action pairs of NT(X) and REDUCE, Fernandez-Gonzélez and G6mez-
Rodriguez (2019) proposed another action REDUCE#m to support flexible multi-
branching m-ary trees.

RNNG parsing has certain problems and issues as a finite automaton parser. For
instance, actions of NT(X) and REDUCE (or push and pop) may not paired and
the number of SHIFT may not equal to the number of words. Furthermore, the
distribution of actions can be very uneven for the input words w. For example, a
deep tree structure causes multiple NT(X)-REDUCE pairs concentrating on a small
number of words. RNNG is for continuous parsing and there are many properties of
continuous tree serialization that are not exploited by RNNG. Later on, the parsing
genre with sequence-labeling which relies mainly on properties of continuous trees
and reduces the structural task into a simpler sequential task (i.e., tree linearization).

To extending finite automaton parsers for discontinuity, there are approaches of
adding swap or gap actions which allow top elements at the stack to be locally re-
ordered. However, for long syntactic dependency, multiple discontinuous actions
are necessary for the element to travel inside the stack, increase the parsing com-
plexity.

2.1. Transition-based Parser 17

222N 2NN 2N

on w2 23 G4 &3

(a) Orientation of Tetra-tagging. (b) Left child (green), right child (red), and none (gray).

FIGURE 2.1: Binary tree linearizations by (a) Kitaev and Klein (2020) and (b) Wei, W,
and Lan (2020). Corresponding edges are denoted in the same colors. Numbers in (a)
enumerates the build sequence: both are from left to right. Linearized structural actions
are at the bottom of (a) and in green circles of (b).

2.1.2 Parsing with Sequence Labeling: Tree Linearization

Sequence labeling parsers fix the size of the tree-constructing actions proportional
to the size of the input words. Hence, by calculating for each input word, all the
necessary actions can be evenly obtained from each input. This genre is diverse,
whose mechanisms exploit properties of binary tree (i.e., CNF), such as orientation,
left child boundary, and syntactic distance (lowest common ancestor for binary tree).
general multi-branching tree properties, such as number of common ancestor and
strong incremental of each terminal. I omit constituency labels for the simplicity of
the specification.

Orientation. Kitaev and Klein (2020) proposed a linearization method to map an
unlabeld binary tree without unary branches of n words into 2n - 1 orientation (i.e.,
they call direction) tags. As shown in Figure 2.1 (a), each orientation is either left-
ward or rightward; except for each terminal, there is orientation at their “space” in
between, which we call it interstice. Orientations at interstices are for the binary
non-terminals.

Clearly, Tetra-tagging has linear parsing complexity with 2n — 1 actions. When
taking the action sequence from left to right, the right-left orientations act like push-
pop (or NT(X)-REDUCE of RNNG) pairs. Tetra-tagging is reported having the high
continuous parsing speed, despite their incomparable cloud hardware.

Hightlight on left children. Wei, Wu, and Lan (2020) proposed a tree linearization
strategy focusing on the left children of a binary tree, as depicted in Figure 2.1 (b).
Because each child is on either left or right side for its parent in a binary tree, when
slicing all tree nodes correspond to their spans, orientation-like uniqueness appears.

For instance, they chose focusing the left children and fixing the right endpoints
of spans. The uniqueness of left child in each span group appears. The top node is
treated as a left child to fit in mechanism, like the Tetra-tagging. On the flip side, if
one focuses on the right children and fixing the left endpoints of spans, the unique-
ness of right child in each span group also appears, when the top is treated as a right
child. Based on the position of the uniqueness in each span groups, the binary tree
is linearized as a position sequence of length n.

18 Chapter 2. Constituency Parser

— 1 — 3
2 1
~~—
/ 3 ~ 4 / \ 2
/N RN
A B C D E A B C D E
3 2 1 4 2 3 3 1
(c) Syntactic distance. (d) Numbers of common ancestors.
(Height of lowest common ancestor) (In absolute scale)

FIGURE 2.2: Binary tree linearizations by (c) Shen et al. (2018b) and Multi-branching
by (d) Gémez-Rodriguez and Vilares (2018). Numbers of non-terminals enumerates the
build sequence: the former (c) divides and conquers by the order of syntactic distance,
while the latter (d) follows the default left-to-right order. Linearized structural actions
are at the bottom of (c) and (d).

This method is also an example for balance between complexity and speed. Find-
ing the uniqueness of a group is somehow more than a local decision and less than
the global optimum for chart-based parsers. Thus, with a complexity of O(nlogn),
their accuracy is higher than some of the recent local parsers.

Syntactic distance. The notion of syntactic distance is proposed as Parsing-Reading-
Predict Networks (PRPN) by Shen et al. (2018a) for language modeling based on
syntactic structure, like RNNG. However, unlike the explicit parsing based on su-
pervision in RNNG, PRPN’s parsing is unsupervised and targeted at inducing syn-
tactic information from language modeling. Syntactic distance is the information
produced during the process of RNN adapting to predicting tokens, when RNN
tries to gain or “forget” information from previous reading via a gating function.
The idea becomes more concrete with a specialized RNN by Shen et al. (2019).

Shen et al. (2018b) explicitly refers syntactic distance to height of lowest common
ancestor in continuous binary tree, as shown in Figure 2.2. Specifically, instead of
regarding the integers as discrete labels, their parser actually regards the order of
the integers. This means, the syntactic distances are predicted as continuous values
that follow the order in the tree linearization sequence. The actual value of each
output is not importance, while the relationship is crucial.

The building sequence of Shen et al. (2018b) is also different from previously
mentioned (a) and (b). It greedily selects the highest syntactic distance, breaks the
string into two parts, and iterates the process in a swift divide-and-conquer strategy
of complexity O(nlogn). Although a method by Stern, Andreas, and Klein (2017)
does not model syntactic distance, their models include a similar top-down divide-
and-conquer splitting strategy based on span score. This strategy is also observed in
a genre, easy-first parsing, mainly for dependency parsing (Goldberg and Elhadad,
2010; Nivre, Kuhlmann, and Hall, 2009; Versley, 2014).

Lowest common ancestor. In constrast, Gémez-Rodriguez and Vilares (2018) fo-
cused on modeling the discrete height and common ancestor information. Because
height is an unbounded discrete value, controlling it within a range becomes neces-
sary. Thus, they also proposed a relative scale by the difference of adjacent heights

2.1. Transition-based Parser 19

T T
A A B A B (lf

Initial with A — B triggers ATTACH(0) — C triggers ATTACH(1)

— —0

0\1 - — ‘
| | | | |

A B C D A B C D E

- D triggers ATTACH(1)

(e) Strongly Incremental Parsing.

E triggers JUXTAPOSE(0)

FIGURE 2.3: Multi-branching tree linearization by (e) Yang and Deng (2020). Numbers
enumerates the possible positions in rightmost chain where actions can take place.

and adopted for the experiment. Their complexity is linear and has a parsing speed
on PTB closely behind my parser.

Methods of (a), (b), and (c) still stay only for continuous parsing, probably be-
cause they highly rely on properties dedicated to continuity. However, Vilares and
Gomez-Rodriguez (2020) extended (d) for discontinuous parsing by adding Lehmer
code to encode the sparse discontinuity. Lehmer code for each terminal stays at zero
in the continuous case, while it becomes positive for local permutation for disconti-
nuity.

Strong incremental. Incremental parsing is a style rather than a concrete method.
In contrast to having tree fragments in stacks of finite automaton parsers at medi-
ate steps, incremental parsers, at any steps, always have one and only one well-
formed tree under construction. Yang and Deng (2020) further hightlights the no-
tion of strongly incremental that each input triggers one and only one action, which,
in their system, ATTACH or JUXTAPOSE the input to the working tree. This
method strongly belongs to tree linearization with input and action proportion one-
to-one, which is slightly reminiscent of tree-adjoining grammar (Joshi, 1983, TAG).
(However, mildly context-sensitive TAG may assign a terminal with a tree fraction.)
Specifically, they indicated rightmost chain to the chain of nodes starting from the
root and iteratively descending to the rightmost child, where actions can take place.
Each action takes an integer argument i referring to a position in rightmost chain and
has two types,

e ATTACH(i) attaches the current terminal to the i-th node in the chain and
inserts a new node for further possible actions.

e JUXTAPOSE(i) juxtaposes the current terminal with the i-th node in the chain,
insert two new nodes — one for the terminal and the other for the new common
parent of the two siblings.

I show how the model parses multi-branching trees (d) with some empty dummy
nodes in Figure 2.3. Each terminal triggers an action to build the only continuous

20 Chapter 2. Constituency Parser

Level # | Chunk Tags
4| BS IS IS IS IS IS IS IS ES
3| 0 0 0 0 BVP IVP IVP IVP EVP
2| 0 0 0 0 0 BPP IPP IPP E_PP
1|BNP INP INP ENP 0 0 BNP INP ENP
0 ‘ A quick brown fox jumps over the lazy dog

TABLE 2.2: Chunker-based parsing with BIOE prefix (i.e., for beginning, inside, outside,
and ending).

tree with the growing margin limited to the rightmost chain, which resembles the
span groups by their right endpoints of (b). They share a complexity of O(nlogn).
Using empty dummy nodes for the tree shape is not a serious problem because all
models in this subsection use mediate dummy nodes for unary and binary branches.

2.1.3 Parsing with Iterative Chunking

A chunker breaks a continuous sequence into multiple consecutive spans. From the
opposite viewpoint, it connects consective units into larger spans. Collobert (2011)
iteratively exploits a chunker and turns it into bottom-up combinatory parser, as
demonstrated in Table 2.2.

Collobert (2011) adopts neural networks like previously introduced local parsers.
The parser supports multi-branching trees. However, it has a certain drawback: the
complexity is bounded by O(n?) instead of O(nlogn) in the case of left or right
recursive trees of height n — 1. The culprit is that the chunker lacks a compose func-
tion to reduce multiple children into a new terminal node. The forth level in Table
2.2 could have only two nodes of (B_S, E_S) for (NP, VP), respetively, if a compose
function were introduced.

On the flip side, the pioneering Ratnaparkhi (1997) adopts a statistic approach
with a compose function. Although the complexity is still bounded by O(n?) in
the left or right recursive case, there is fewer nodes to calculate and the empirical
complexity stays linear. But neither of them does not support discontinuity.

2.1.4 Summary

I covered three types of local neural constituency parsers, including finite automata,
sequence-labeling, and chunker-based. Besides their common locality, they share
another profound trait: less grammar. They focus more on the general structural side
with constituency label handled by a simple neural classifier based on its location in
the structure. However, this trait does little or no harm to the performance with
adaptive neural approaches. We will see this trait extending to recent chart-based
neural parsers.

All parsers support multi-branching trees, but most parsers managed indirectly
via binary tree with dummy nodes and some parsers directly support multi-branching.
This is probably because supporting flexible m-arity demands a type of an unbounded
number of actions, like REDUCE#m (Ferndndez-Gonzalez and Gémez-Rodriguez,
2019). However, Fernandez-Gonzélez and Gémez-Rodriguez (2019) demonstrated
that multi-branching parsing can have some advantages, at least some speed-up.

2.2. Chart-based Parser 21

0,2) 1,3) 2,4

0, 1) (1,2) 2,3) 3,4 0,1) 1,2) 2,3) 3,4

Max span length: 1 Max span length: 2
0,4
0,3) (1,4) 0,3) (1,4)
0,2) (1,3) 2,4) 0,2) (1,3) 2,4)
o, 1) (1,2) 2,3) 3.4 o, 1) (1,2) 2,3) 3,4
Max span length: 3 Max span length: 4

FIGURE 2.4: Concurrent bottom-up steps of CKY algorithm by span length in a chart.
This exemplary chart has maximum span length four for four terminals.

In terms of constituent discontinuity, some approaches is extended for the chal-
lenging reign of higher complexity. Transition-based are the majority for the exten-
sion, while sequence-labeling is not only possible but feasible. To my knowledge,
Chunker-based parsing is native in continuous parsing with no research for discon-
tinuous parsing.

2.2 Chart-based Parser

2.2.1 Binary Chart Parser: from CKY Algorithm

CKY Algorithm. CKY algorithm is first discovered by Sakai (1961) and named af-
ter rediscoverers of Cocke (1969), Kasami (1966), and Younger (1967). It requires
input to be a binary tree, typically in CNF, and work with bottom-up dynamic pro-
gramming to find the optimal structure, as shown in Figure 2.4.

Each triangle represents a span denoted by the 2-tuple. Larger spans (i.e., larger
triangles) contain smaller spans (i.e., smaller triangles), which creates the constituent
hierarchy. At first, the optimal solution lies in each individual spans and the calcu-
lation is trivial. At the second step, spans of length 2 depends on two child spans it
contains. the optimal solution is the sole combination of the two children’s optimal
solutions (e.g., (0,2) from {(0,1),(1,2)}). From the third step, more combinations
appear (e.g., (0,3) from {(0,1),(1,3)} or {(0,2),(2,3)}) and the search complexity
for optimal combination of the top span grow in cubic time.

Formally, for n terminals, spans of length | share combinatorics of complexity
I -1 because the left span and the right span are continuous and non-overlapping.
There are n - + 1 concurrent spans at /. Consequently, the binary continuous chart
has a fixed 2" (n—1+1)- (I -1) ~ O(n®) complexity for CKY decoding algorithm.

Neural continuous binary chart. Stern, Andreas, and Klein (2017) and Kitaev and
Klein (2018) proposed models with neural components trained for providing scores
for spans and labels for CKY decoding process. Their neural backends are RNN
and BERT, respectively. They outperformed previous neural architectures with CKY
decoding (Durrett and Klein, 2015). Instead of introducing grammatical production
rules, contextualization of terminal nodes with RNN and BERT plays a key role. The

22 Chapter 2. Constituency Parser

1111
1111 1101 1011
1110 0111
1110 0111
/ 1001 0101
1100 0011 1100 0011
7N\ 7N\
1000 0100 0010 0001 1000 0100 0010 0001
(f) Continuous Binary Chart (g) Discontinuous Binary Chart

FIGURE 2.5: Instead of description from the respective of spans, the combinatorics of
both continuous and discontinuous are shown as tuples of bits representing the exis-
tence of terminal symbols. Different constituency dependencies are shown using differ-
ent line types and colors.

trend of less grammar is followed recent neural models with CKY algorithm (Zhou
and Zhao, 2019; Zhang, Zhou, and Li, 2020; Mrini et al., 2020).

Neural discontinuous binary chart. In the same vein for discontinuous parsing,
Corro (2020) proposed a chart parser family based on discontinuous spans for binary
LCFRS garmmars. The unrestricted member has O(n°) complexity and supports the
full grammar type coverage and the very restricted member has O(n®) complexity
and support a few rudiment discontinuous grammar types, which are adapted from
continuous grammar rules via label tricks. Although the O(1n®) member does not
cover many discontinuous grammar types, the it empirically covers the continuous
and rudiment discontinuous grammars in great number (98% of constituents ob-
served in linguistic treebanks). The O(n®) member also achieves the best overall
performance thanks to the empirical facts. However, their discontinuous accuracies
are lower than other recent parsers.

I show an instance for how discontinuous binary chart has higher complexity,
as depicted in Figure 2.5. In (f) continuous binary chart, node 1110 has two types
of binary combinations, namely {1000,0110} and {1100,0010}. Node 1110 is one
of two children in the third layer (with maximum span length 3). Meanwhile, in
(g) discontinuous binary chart, node 1110 has one more discontinuous combination,
{1010,0100}. It is also one of four children in the third layer. The numbers of both
children and its combination grows, generally resulting in total complexity grow.
As mentioned in 1, the complexity grows exponentially with the fan-out degree f.
All observed discontinuous chart-based parsers limit f < 2 with binary combination
(Corro, 2020; Stanojevic and Steedman, 2020).

2.2.2 N-ary Chart-based Parser: from Earley Algorithm

Earley algorithm. Earley algorithm (Earley, 1970) is a flexible top-down left-corner
algorithm with dynamic program searching for optimum. Unlike CKY algorithm
with fixed complexity, Earley algorithm’s complexity starts from linear time to cubic
time, depending on the grammar type (i.e., respectively in the cases of deterministic
context-free grammars, unambiguous context-free grammars, and general context-
free grammars).

Term top-down means that it starts with the top non-terminal on the left-hand side
of the production rules; and term left-corner indicates that it then first “processes”

2.2. Chart-based Parser 23

symbols on the right-hand side of the rules with a left-to-right progress marked with
“e”. To “process” means to predict, to scan, and finally to complete each rule.
All “processes” are organized in a chart of n + 1 levels (n for number of terminals).
Each step contains a flexible numbers of “processes”. Some rules at level i may be
“processed” and allowed to enter level i + 1 and to trigger predict for its right-hand
side symbols; some rules will complete as being accepted or discarded. Level 1
starts with a designated start rule and each level i > 1 starts with the sole scan to
take in a terminal symbol.
For example, given a phrase at home and rules as the following,

e PP — IN NP (start rule)
e NP> NN | NN NN
e IN —at | with

* NN — home | work
the inference with the Earley algorithm’s chart of length 2 operates as the following,

1. e at home

(a) Predict: PP — e IN NP (start rule)
(b) Predict: IN — e at (from 1a)
(c) Predict: IN — e with (from la)

2. at e home

(a) Scan: IN—at e

(b) Predict: PP — IN e NP (from la and 2a)
(c) Predict: NP — e NN (from 2b)

(d) Predict: NP — e NN NN (from 2b)

(e) Predict: NN — e home (from 2c and 2d)
(f) Predict: NN — e work (from 2c and 2d)

3. at home o

(a) Scan: NN — home e

(b) Complete: NP — NN e (from 2c and 3a)

(c) Complete: PP — IN PP e (from 2b and 3b, final accept)
(d) Complete: NP — NN e NN (from 2d and 3a, discard)

At level 1, the start rule 1a triggers 1b and 1c, which all predicts will be exam-
ined in later levels. Level 2 scans a terminal and processes the previous predicts.
Finally, level 3 scans the final terminal and screens one complete rule 3c with a dy-
namic programming backtrack retrieving the full tree derivation (i.e., 3¢, 3a, and 2a).

Earley algorithm shares some common points with finite automaton parsing
with strongly incremental tree linearization. 1) Actions. Earley algorithm have
predict, scan, and complete organized in n + 1 levels, whereas a strongly incre-
mental finite automaton parser has a sequence of actions of length n. 2) States. A
state for each rule in Earley algorithm determines the effect of scan and the result of
complete, whereas a state of a finite automaton parser determines what action(s)
it can take. 3) They support general (or multi-branching) continuous tree struc-
ture. The sheer difference is that Earley algorithm is global with all possible parsing
derivations included at each level. 4) They create left-to-right dependency that do
not allow full concurrency as CKY algorithm.

24 Chapter 2. Constituency Parser

Recursive Semi-Markov Model. Concurrency is one main reason for the preva-
lence of neural network. The fact that Earley algorithm relies on top-down sym-
bolic deduction may also make it hard for neural concurrency. Based on the idea of
concurrency for CKY algorithm, Xin, Li, and Tan (2021) brought continuous multi-
branching chart-based parsing with a CKY-like recursive Semi-Markov model. For
instance, node 111 can be any one of combinations {100,010,001}, {100,011}, and
{110,001} in their chart. As a continuous constituency parser, their complexity
is O(n*) with a slight advantage of multi-branching accuracy. Like Ferndndez-
Gonzélez and Gémez-Rodriguez (2019), they suggest that supporting native multi-
branching bring some advantages.

2.3 Joint and Unsupervised Task

2.3.1 Joint Constituency and Dependency Parsing

As the initial attempt to formulate a simplified HPSG (Zhou and Zhao, 2019) that in-
tegrates constituent and dependency representations into head-driven phrase struc-
ture, they merge the functionality of the CKY-based parser (Kitaev and Klein, 2018)
and a chart-based dependency parser (Dozat and Manning, 2017) for joint train-
ing. The work includes two variant parsers, one encode head child position in con-
stituent span with prefix and the other explicitly locate the head child. Although the
full HPSG is much more informative than their formalism with only indication of
head, their result shows that both constituency and dependency parsing are com-
patible and offer extra gain for each other. Mrini et al. (2020) demonstrate separately
trained models for either parsing formalism. Zhang, Zhou, and Li (2020) borrow de-
pendency parsing model architecture for continuous constituency parsing. Discon-
tinuous constituency parsing also take a similar approach and show significant gain
from additional head information. (Ferndndez-Gonzalez and Gémez-Rodriguez,
2022).

2.3.2 Unsupervised Constituency Parsing

Unsupervised constituency parsing is a task to find phrase structure from plain lan-
guages without manual annotation as modeling supervision. The task is also known
as grammar induction (or tree induction in the case of unlabeled tree). This is also
an active research topic for neural models.

As introduced in previous subsections, RNNG is a pair of supervised parser and
generative language model relying on parsing actions. By adding a CRF parser
which produces a distribution over binary trees to train RNNG, Kim et al. (2019)
extended RNNG into unsupervised RNNG (URNNG) for tree induction. The CRF
is aimed to maximize the evidence lower bound for the tree structure and RNNG
receives random trees for the identical input sentence and learn from them as super-
vision. PRPN (Shen et al., 2018a, DIORA) can directly infer binary trees with syn-
tactic distance. Finally, based on embedding, Drozdov et al. (2019) obtains labeled
tree structure by leveraging inside-outside algorithm (Baker, 1979) to repeatedly en-
code a sentence into tree nodes and recover the sentence from the tree nodes. Htut,
Cho, and Bowman (2018) and Li et al. (2020) compared their performances. While
DIORA exceeds in many metrics, there still exists a huge gap between unsupervised
and supervised constituency parsers.

25

Chapter 3

Neural Combinatory Constituency
Parsing

This chapter specifies neural combinator-based constituency parsers for {continuous,
discontinuous} contituency parsing in {binary, multi-branching} styles. The combina-
tion of properties produces four models: CB, CM, DB, and DM, where the binary
are special cases of the multi-branching models. The binary are specialized in some
tasks (e.g., sentiment analysis) which provide only samples in binary tree format
and they show interesting phenomena during the experiments.

All four NCCP models contain a common recursive layer-wise loop of 1) concur-
rent yes-or-no structural actions, 2) vector composition functions based on 1), and
3) multi-class prediction for tag or label based on vectors of 2) with no grammatical
constraints. Specifically, each layer is called a ply consisting of a sequence of nodes.
Initially, each node is an input word represented as an embedding vector. During
parsing, the ply nodes become partial derivations or subtrees with their roots still ar-
ranged as a sequence and represented as embedding vectors. When there is a single
node in the ply, the parse terminates with a parse tree.

NCCEP is transition-based. Similar to a finite automaton parser, each the state
of which leads to an action, the ply is the state to NCCP, each of which leads to
concurrent actions to modify the ply itself. Also, similar to a chunker-based parser,
NCCP iterates with concurrent actions. My implementation utilizes neural recurrent
components to make those greedy actions for bottom-up tree construction.

3.1 Continuous Ply

Two continuous parsers are base models for discontinuous parsers. I call continuous
binary parser CB and continuous multi-branching parser CM. CB’s binary structural
action is called orientation and CM’s binary structural action is called chunk. I denote,

orientation(x;) € {0,1}, (3.1)
where 0 is for orientation left and 1 for orientation right, and
chunk(x; ® x;,1) € {0,1}, (3.2)

where 0 is for chunk boundary and 1 for chunk inside and & is the concatenation op-
erator just for two adjacent nodes. For CB, orientation action is designated for each
node 7; in the ply. For CM, chunk action is for each interstice between n; and n;,1.
Both models iteratively work on a ply = (x3,...,x,), each node of which repre-
sents a leaf or a subtree. Their bottom-up parsing process with ply height is illus-
trated in Figure 3.1. The current snapshot ply, containing (xj,...,x5) nodes can be

26 Chapter 3. Neural Combinatory Constituency Parsing

Orientation left Chunk inside
Orientation right Chunk boundary

PIYp41 ‘ ‘ ‘ Plypt . ‘ .
ply;, . ‘ ‘ plyy, .
py, @ & @ @ @ v,

(a) Binary ply (b) Multi-branching ply

FIGURE 3.1: Two adjacent continuous plies at heights # and i + 1. Ply;, is the current
layer of subtrees and their actions (i.e., CB’s orientations or CM’s chunks) result in an
intermediate ply; with probably inconsecutive node indices. We reenumerate them into
anew ply, ., for the next actions. Empty nodes are placeholders marked by gray circles.

leaf termials if /1 = 0 or non-terminal if /1 > O (tree height /1 € [0, H)). The combination
of nodes is conducted by the guidance of respective structural actions and results in
an intermediate ply,. We rearrange the nodes of inconsecutive indices into ordered
ones of ply, ., by

CONDENSE : (n ply nodes) — (x1, ..., Xn),

so that a new ply, ,, is ready for the next iteration (i.e., CONDENSE(ply,) = ply,,,,). The
CONDENSE function is a simple linear and regular function that never changes the
order of, nor adds, nor drops non-empty nodes.

Similar to recent grammarless neural parsers, I assume that all constituency cat-
egory information be encoded in each node x;. The implementation details will be
covered in Section 3.4.

3.1.1 CB: Orientation

Adjacent agreeing orientations in CB lead two node to combine into a new node.
Specifically, if
orientation(x;) — orientation(x;,1) =1, (3.3)
then
compose : (Xj, Xit1) = Xi, (3.4)

where compose is an abstract binary combinator for vectors, which will be imple-
mented in Section 3.4. Otherwise, nodes stay intact regardless of its orientation,

X; —> X;j. (35)

Unlike the orientation system of tree linearization by Kitaev and Klein (2020),
CB does not have the actions for interstices. Although this difference brings more

3.2. Discontinuous Ply 27

theoretical complexity to CB, it makes CB more easy to be extended for the fol-
lowing discontinuous parsing. Moreover, CB’s observed or empirical complexity is
bounded by the theoretical complexity. Low empirical complexity leads to higher
parsing speed regardless of the theoretical complexity.

Complexity. Clearly, the theoretical complexity of CB is O(n?) by worse case that
the binary tree is purely left recursive or right recursive (i.e., linguistically left-branching
or right-branching) where each ply, has only one pair of agreeing orientation pair
and thus ply, has length of n - h. It takes n — 1 plies for complete a tree with the total
number of nodes across all plies as the complexity of CB:

nf(n —h) ~O(n?).
h=0

3.1.2 CM: Chunking

In the case of CM, each closest chunk boundary pair (Ib, rb) groups multiple nodes
in-between (xp41, ..., X;p) into a new node xyp,1. Specifically, for i € [Ib, rb], if

chunk(x; ® x;,1) = 1(i € (Ib, b)), (3.6)

then
compose : (Xips1, - -, Xrh) = Xps1, (3.7)

where 1(-) is the indicator function and compose is an abstract flexible m-ary combi-
nator for vectors with m > 0. The indicator function returns 1 if the statement inside
is true; otherwise, it returns 0. Function compose will be implemented in Section 3.4.

In terms of iterative chunking for constituency parsing, CM is more close to Rat-
naparkhi (1997) which combines phrase children to a parent instead of Collobert
(2011) without combining. Anyhow, all chunker-based parsers share the common
native support for multi-branching.

Complexity. The theoretical and empirical complexities of CM are bounded by
those of CB. This is because CM’s compose function groups equal or more nodes
than CB’s compose. Thus, there must be equal or less nodes in all CM’s plies. The
theoretical complexity of CM is O(n?).

3.2 Discontinuous Ply

DB refers to discontinuous binary parser and DM to discontinuous multi-branching
parser. They are still ply-centered with iteration based on continuous ones. DB and
DM inherit all functionalities from CB and CM. As extension for discontinuity, I
equip DB with a swap-joint system and DM with a biaffine attention mechanism.

3.2.1 DB: Swap and Joint
For DB, we extend the agreeing orientation composition with a swap-joint switch
action(x; ® x;,1) € {joint, swap}
joint : compose(x;, Xiji1) = X; (3.8)

swap : (xi, Xiv1) = (Xiv1, Xi).

28 Chapter 3. Neural Combinatory Constituency Parsing

Orientation left Chunk inside O Disc. continuous
Orientation right Chunk boundary " Disc. discontinuous
t > Affinity

Phps . ‘ ‘ ‘ Py . .
ply, ‘ . ‘ ‘ Py 9.
w, @ ®Oee . 86

(c) Binary ply (d) Multi-branching ply

FIGURE 3.2: Two adjacent discontinuous plies. In addition to continuous plies, DB
inherits the chunk for the swap-joint system and DM gets biaffine attention action graph
described in a matrix.

One joint reduces the ply length by one and the swap does not affect the length but
affects its order. The function compose is a binary combinator inherited from CB.

Without the agreeing orientation condition, concurrent adjacent actions would
conflict in a ply (e.g., two swaps for (x1,x2,x3) leaves an undecidable x;.) Thus, DB
activates joint and swap if

orientation(x;) — orientation(x;,1) =1, (3.3)

then
action(x; @ Xjy1) . (3.8)

Otherwise, nodes stay intact regardless of its orientation as in Formula 3.5.

As exemplified in Figure 3.2 (c), (x1,x2) and (x4, x5) meet the condition in For-
mula 3.3. Then, joint and swap are respectively triggered for (x1,x2) and (x4, xs5)
because of action(xo ® x1) = joint and action(x3 ® x4) = swap. Node x; is relayed with
neither joint or swap.

Complexity. In extreme cases, DB takes 5 fully swapping plies and 7 fully joining
plies. Each ply costs O(n) computation resulting in the upper bound O(n?).

3.2.2 DB: Medoid and Affinity Biaffine Attention

For DM, I first characterize whether x; and x; from a ply are two siblings of the same
parent constituent as

affinity(x;, xj) €{0, 1}, (3.9)

3.3. Data and Augmentation 29

where 0 for false and 1 for true. Thus, DM decides a discontinuity action of x; and
then forwards it to a group action for either a discontinuous or a continuous con-
stituent as in Formula 3.10:

action(x;) € {discontinuous, continuous}

discontinuous :
G = {xj | affinity(x;, x;) = 1}
medoid e {j | x; € G
{ilxj G} (3.10)
compose(G) = Xyedoid
continuous :

G={xj|lb<i<rb, Ib<j<rb, and affinity(x;, xj;1) =10(j ¢ {Ib, rb})}

compose(G) = Xjpy1 -

We select one medoid for each discontinuous constituent to determine its position in
the modified ply, whereas the choice of medoid for continuous constituents makes no
difference. Continuous nodes split into segments of (xp41, =+, Xyp) with (Ib, 1b+1)
and (rb, rb+1) as boundaries as CM. Function compose is a flexible m-ary neural
combinator inherited from CM.

Dozat and Manning (2017) characterized each dependency tree as a sparse asym-
metric matrix via biaffine attention, with each sole positive signal in a row (or col-
umn) indicating a lexical dependency (from a word to its head or vice versa). Nev-
ertheless, lexical dependency is not available for constituency parsing, and biaffine
attention becomes expensive at O(n?) complexity.

In contrast, we designate discontinuous affinity as a small dense symmetric bi-
affine attention matrix and control its computational size of O(1n?). Otherwise, con-
tinuous affinity for adjacent nodes takes a special form of

chunk(x; ® x;.1) = affinity(x;, Xj.1)

with a simpler O(n) complexity.

Via fast chunking or a small biaffine attention matrix, DM balances for its ef-
ficiency. As exemplified in Figure 3.2 (d), discontinuous (x1,x2,x5) are grouped as
one because of their mutual affinity, which is equivalent to a 3 x 3 biaffine attention
matrix of ones. Node x; is selected as medoid for the constituent’s location in the
new ply. Meanwhile, continuous (x3,x4) forms a constituent for chunk(x; ® x;1) =
affinity(x;, x;41) =1(i ¢ {2,4}) and i € [2,4].

Complexity. In extreme cases, every DM ply involves a matrix of affinity for all
nodes and decreases ply length n only by one. Assume that we can handle decom-
posing affinity matrix within O(n?). Each ply costs O(n?) with the upper bound
O(n?).

3.3 Data and Augmentation

I state the conversion from tree into layers of action signals for fully supervised train-
ing. In convenience, I merge CM and DM'’s chunk semantics into joint to unify the
interstice signal. Before introducing oracle, tree preprocessing is necessary, as speci-
fied in the following three subsections.

30 Chapter 3. Neural Combinatory Constituency Parsing

[| | 1
A B C D

Eﬂ Wj Vm

A B C D A B C D

(a) Original tree.

(b) pB = 0 binarization (c) pB = 0.5 binarization (d) pB = 1 binarization

FIGURE 3.3: Tree binarization with numerical p5.

3.3.1 Empty node and unary branch

Similar to a range of previous works, such as Chen et al. (2021), Shen et al. (2018b),
Kitaev and Klein (2020), and Corro (2020), we adopt an empty label “&” for sub-
structure (e.g., binarization). Besides, we collapse each unary branch into a single
node and join their constituent labels regarding their hierarchical order (e.g., S+VP as
derivation S—VP) with easy restoration during inference.

3.3.2 Binarization for CB and DB

Many previous works (Shen et al., 2018b; Kitaev and Klein, 2020; Corro, 2020) bi-
narize tree with one factor (commonly using either CNF left or right) for training.
However, neural models are known to be hungry for training data and even pseudo
corpus yield by themselves leads to better accuracy performance. In the case of ma-
chine translation (Sennrich, Haddow, and Birch, 2016a), pseudo corpus also helps
reduce the error propagation (i.e., exposure bias).

Iterating with ply as state, NCCP works in a similar way to neural machine trans-
lation models. For more variation in the training set which brings higher accuracy,
I propose to extend the two CNF factors into a continuous numeric factor. I do not
leverage extra head information for binarization because such information is not in-
cluded in other parsers in comparison and its binarization produce only one static
variation, which does not significantly augment the training set.

Specifically, C children of a constituent join one by one in CB and DB via their
orientation and joint signals. For ¢ € [1, C), [1, c]-th children are set to orientation right
(1) and (¢, C]-th are left (0). Neighboring children have positive joint signals if they
are siblings. Otherwise, negative joints swap them toward their siblings. I normalize

a factor
g c—-1

Pt
for treebank binarization. In continuous parsing, p° € {0,1} implies CNE. As an
effect of binarization, new phrase label & is introduced, as exemplified in Figure 3.3.

The results are in Section 5.1.2. I further leverage substructure creation with this new
label in Section 3.5.1.

e[0, 1] (3.11)

3.3. Data and Augmentation 31

3.3.3 Medoid for DM

Similar to binarization which is not only a must preprocessing to CB and DB but
also a augmentation trick, the choice of medoid for DM also have these roles. For
training and inference, I introduce a set of categorical medoid factors

oM e {random, leftmost, rightmost } (3.12)

to stratify a multi-branching tree: 1) random picks a random child with uniform prob-
ability, whereas 2) leftmost and 3) rightmost take the two ends of a discontinuous
group.

Factors leftmost and rightmost are like CNF left and right which only produce
static variation of trees. However, random yield stochastic combination of medoids of
discontinuous phrases in a parse. Like the previous binarization, I do not introduce
extra head information for DM as medoid. However, the model is able to produce
what is very close to the phrasal head. The experiment is in Section 4.3.3.

3.3.4 Oracle

NCCEP parsers are fully supervised models with ply action layers for each model
component. Herein, I define signals in the follow format of each stratified tree,

* aflat sequence of signals as x1., for (x1,...,x,), where n is the sequence length.

* H flat sequences of signals as x%fi , where h € [1, H] is the index (i.e., height) of
a flat sequence and th is the h-th flat sequence of length 1;,.

At minimum, a tree has three common types of signals:
* x1., the sequence of terminals (i.e., words),
* t1., the sequence of pre-terminals (i.e., PoS tags),

. l}f; the sequences of non-terminals excluding pre-terminals (i.e., sequences of
constituent labels).

PoS tag and constituent label are multi-class signals. Noticeable, constituent la-
bel always has @ nodes when some non-terminals has both pre-terminals and non-
terminals as children, as shown in Figure 3.4 (d). In addition to the general signals,
I specify signals for each NCCP member as the following.

and

Signal from a binary tree. CB and DB commonly feature in orientation ol1-1
L:H

1:ny
DB has extended joint len,,_—11- Both orientation and chunk are binary signals, as defined

by Formulas 3.1 and 3.2.

CB signals : (X1., t1:n, l%ﬁz,o%jth_l) (3.13)
DB signals : (X1, tn, Loy, 0000 1] (3.14)

Signal from a multi-branching tree. CM and DM commonly feature in joint. For
DM, the extension includes discontinuity and affinity biaffine attention matrix. Dis-
continuity is defined by Fomula 3.10.

32 Chapter 3. Neural Combinatory Constituency Parsing

\L'3 Ws W6
(a) Original
|
' |
151 = lz% = l; =NP lsl = 152 = 133 =NP Disc. affinity for ——: 1o H
l|3 = lS Z? = 15 :
lf =S W ! AN 115 =S ! x Medoid: | &l
2.0 . 2 =2 =Np
Ji it
¢ (0] Ori. left * /;’ * 0 112 = / \
i ANSN P Ji VNV AN BP=s / 30
L AR A LA i ri G oGO0 @ T BT
e Orl.:lght A W e Mg
! I ; z
/f‘ ?? iﬁ . Act. joint ??][’ ? £ Is 1
3 5 e > 3 5 e w3 W5 We
W} WS W6 A u,‘j‘ WS W6
ct. swap (d) Multi-branching
(b) Binary pB = 0 “lef” (c) Binary p® = 1 “right” oM = “random”

FIGURE 3.4: Signals from a discontinuous tree. The original m-ary tree (a) is binarized
and stratified into (b) and (c) with numeric factors pB, whereas (a) is stratified into (d)
with a categorical medoid factor random. In (4), w, and ws are randomly selected as
medoids for discontinuous parents /2 and I3 with more or less twisted descendant lines.
I color constituent components and show joints with light blue “+” and “¢” which are
not activated by agreeing orientation condition.

CM signals : (X1, t1n, 1 nh,]}ffh ! (3.15)

DM signals : (X1, t1., 1} "h']% ,i %,d%;fh_l, a%ilz_ali;,ll:dh]) , (3.16)

where d}, = Zfz”l df’ < ny, indicates the number of discontinuous nodes that is no larger
than the number of total nodes in layer h.

I visualize an instance of the signals from a discontinuous tree in Figure 3.4. In
the case of a continuous tree, the stratification produces fewer signals with simpler
structure. I can view CB as a special case of DB where action(x; ® x;,1) = joint stands
for each i. Thus, ji; ff “! = chunk inside stands for the supervision signals of CB. In the
same vein, CM as a special case of DM has action(x;) = continuous for the model and

d%fh ! = continuous for the supervision signals.

3.4 Model Implementation

3.4.1 Neural Component

Feedforward Neural Network. Feedforward neural network (FFNN) is the simplest
type of artificial neural network. It connects every unit in an input vector (i.e., input
vector as an input layer) and weights it to every unit in its output vector (i.e., output
vector as an out layer). An FFNN can be a single-layer perceptron (SLP) without a
hidden vector (i.e., a hidden layer) or be a multi-layer perceptron (MLP) by stacking
multiple SLP which creates one or more hidden layers.

3.4. Model Implementation 33

Specifically, I show the case of SLP as following,
y = activation(Wx +b),

where x,y € RN are the input and the output vectors, respectively. W e RN*N and
b ¢ RN are weight matrix and bias vector, which belong to model parameters that
adapt to the input and output during the training process with backpropagation.
The activation : R - R function is differentiable, which maps Wx + b to activated
output y. By linking the output of a SLP to the input of the other SLP, I get an MLP
with a hidden layer. The activation function plays an curcial role in MLP. Without it
(or with an linear activation function), the MLP will reduce to an equivalent SLP.
I use FFNN referring to a 2-layer MLP by default in this thesis.

Long Short-Term Memory. Long short-term memory (LSTM) is special recurrent
neural network (RNN) for modeling a sequence of input vectors (x1,...,x,) and a
sequence of output vectors (y1,...,Y,), where n is the sequence length. A single-
layer LSTM network contains four SLPs as the gate functions to modify the state vec-
tor sequence (hy, ..., h,) and cell vectors (co, ..., c,) through time steps. Vectors of
ho and ¢ are the initial vector, which can be zero vectors or adaptive vectors of the
model parameters. Any x; € RN can have a different dimensionality from other
vectors in an LSTM.
Specifically, a single-layer LSTM network is organized as following,

i = 0;(Wix; + Uihi—1 + by)
fi=0r(Wexj+Ugshi_1 +by)
yi = 0o(Wox; + Uphi—1 + b,)
¢ =0.(Wex; + Uchi_q +be)
Ci=fiOcCi1+i;0C
hi=yiooy(ct).

The SLPs for i;, f;, and y; are input gate, forget gate, and output gate, which reg-
ulate time intervals in order to compose cell vector c¢; (with cell candidate ¢;) and
the hidden state ;. Functions of ¢s are activation function for different gates or
the other vectors. Typically, gate activation ¢;, 0y and 0, are sigmoid function and
the others are hyperbolic tangent function. The model parameters are updated via
back-propagation through time.

Like MLP, multiple LSTM layers can be stacked. An LSTM is usually unidirectional
and forward, which modeling the sequence from left to right (or vice versa). Other-
wise, by concatenating a forward and a backward LSTM, a bidirectional LSTM (BiLSTM)
layer forms. I use BiLSTM referring to a RNN module of one or more stacked bidi-
rectional LSTM layers.

When make comparison, I also use bidirectional Quasi-Recurrent Neural Net-
work (Bradbury et al., 2017, BiQRNN). This network is a member of the RNN family
with a simpler gating mechanism.

Loss Function. Meanwhile, a loss function for each single signal comes in respec-
tive two types: binary and multi-class. I take HINGE-LOSS as the elementary loss
function for binary signals,

HINGE-LOSS(t,y) = max(0,1-t-y),

34 Chapter 3. Neural Combinatory Constituency Parsing

where t € {0,1} is a target gold answer from supervision and y € R is the model
prediction. I choose CROSS-ENTROPY as the elementary loss function for multi-class
signals,

n
CROSS-ENTROPY(t,y1.1) = — »_ 1(t # i) - log(v),
i=1
where t € [0, 1) is a target gold answer from supervision and y € (0,1)" is the model
prediction of a distribution for n classes with ¥} ; y; = 1. I refer BCE-LOSS to the
binary version of CROSS-ENTROPY.

3.4.2 Pre-trained Word Embedding and Language Model

The process of training is the process of encoding the relationship between input
and output into the model parameters to form inductive bias. Different training
processes encode different levels of information into the models.

Given a sequence of (X1, ..., Xy), pre-trained word embeddings (Mikolov et al., 2013;
Bojanowski et al., 2017, i.e., PWE) encode the node relationship within a span of a
fixed-length n, whereas pre-trained language models (Devlin et al., 2019; Yang et al.,
2019, i.e., PLM) encode the node relationship with in a full span of a variable length
n. In other words, PWE encodes local information in a small range (at sub-phrase
level) but PLM further globally contextualizes information of the input sequence (at
sentence level). An embedding vector in PWE is static no matter what context it has.
In contrast, an embedding vector in PWE depends on its context.

In terms of efficiency and effectiveness, a PWE is usually compact and fast. Fur-
thermore, fastText (Bojanowski et al., 2017) encodes subword information and elimi-
nates the effect of unknown words at inference phase. Meanwhile, a PLM costs more
computation for both training and inferring, which usually perform better than a
PWE except for some very short sentences.

Finally, just mildly mention that classic generative language modeling is a way of
producing strings not from a formal grammar but from the perspective of proba-
bility. Such a model can both generate (via sampling) and evaluate (via assigning
probabilities to) strings for a language. Some PLMs fail to be generative because
they are bidirectional, such as ELMo and BERT.

3.4.3 Opverall Architecture

All NCCP members share the same outer loop and neural components introduced in
Section 3.4.1, as shown in Algorithm 1. The PARSE function takes word embeddings
e1.n from words x1., and contextualizes them with BiLSTM., as the 0-th layer for the
next PoS tagging and interative structural labelling processes. I implemented FFNN,,
and FFNNj,,; as 2-layer MLP with parameters in their first layers shared. Supervision
signals, t1., and l}r’: , meet model prediction, 1., and l}g , creating losses of L;; and
Liape; with CROSS-ENTROPY loss function. For each plies, the FOLD function differs for
different NCCP members. BiLSTM,;, provide further layer-wise contextualization
z’f:nh for xi’znh.

Again, the chunk component of CM and DM is denoted as joint for their common
interstice position with DB, following the previous signal unification.

3.4.4 CB & DB: Binary Implementation

CB and DB share identical structure except FFNN_y,,,,x and L., which are exclusively
for DB, as shown in Algorithm 2. The orientation function is hinted by BiLSTM,. A

3.4. Model Implementation

35

Model CB Components:

: with Sigmoid
’ @BiLSTMply

FFNNOrl

@/' -\¢ @/ \g \¢ FFNNlabel

#CC NP #VBP . FFNN®

----- -

: : BiLSTM E
. . . O . .EDJ&BEDDSIX{\IGS)

Yet parents demand them

=

FIGURE 3.5: Example of CB. The simplest member of the NCCP family solely based on

orientation for the tree structure.

VP Model CM Components:

.| FFNN

#VBZ #PDT #DT #JJ #NN #IN NP

*-0-0-0-0-0—-0 .

Parse such a long sentence in time

FEFNN multi

£y with Softmax

B FENN,,
BiLSTM

1

1

1

L]

L]

1

1

1

L]

L]

1

1

1

: Sforward

1
* backward

1

L]

L]

1

1

1

L]

L]

1

1

1

L]

1

1

A

k
FFNN l(aIZel

(k)
tag

BlLSTMcxt (k)
EMBEDDING

B N

FIGURE 3.6: Example of CM. The chunk signals are calculated from the difference of
the forward and backward states of the BiLSTM,;,. Exemplary fractions show the gate
weights under Softmax constraints for vector compositionality, which are unsupervised
and offer evidence for phrase headedness. The same mechanism works for DM.

36 Chapter 3. Neural Combinatory Constituency Parsing

Extension from

CB & CM
For R-L pairs: Discontinuous Binary
O as swap Model Components:
‘ asjoint _LL e,

P P ‘0 FFNNjomt

FFNNbpinary
(for R®L pairs)

: W o 400 (k)
Y = : - FENNaber

" FFNNY,

FFNNori

o
s

................. > Ply flow
—— > Lex flow

FIGURE 3.7: Example of DB. DB produces swap to facilitate traveling of discontinuous
nodes and joint to combine adjacent nodes.

Discontinuous

Multi-branching:
Discontinuous: +----- < >lel) 0 et

Biaffine attention for D: ‘O FFNNjoint

FENNpuiri :
............ (for C(®C)* and D groups)

............................. ‘
; - FFNNjobel

b - FFNN,
.<>. .0' .<>., ,<>v BiLSTM,

.................... F FNNdzsc

‘ B lLS TMcxt

: aff aff
. W W&

o

Continuous: —

FIGURE 3.8: Example of DM. DM leverages affinity biaffine attention to identify and
combine discontinuous groups.

3.4. Model Implementation 37

Algorithm 1: Combinatory Parsing

1 Function PARSE (x1.,):
2 ply < [] and n, < n with height 1 < 1;
3 xi’:nh < BiLSTM.yt (embeddings of x1.,);
4 fori <~ 1tondo
5 £ < FFNNye (x1);
6 [< FFNNj g (x1);
7 append a tree with (x;, f;, lAZh) to ply;
8 while n;, > 1 do
9 ziﬂnh < BiLSTMyy, (xil:nh);
10 xial < FOLD(ply, ., , 2,);
11 h<h+1;
12 fori < 1ton,do
13 [« FFNNjgper (x1);
14 label i-th tree of ply with flh ;
15 return the sole tree in ply;

Algorithm 2: Binary Ply

Function FOLD (ply, X1.4, Z1:n):
fori < 1tondo
O« FFNN,; (z));
JI < FENN it (2; © 2141); // Only for DB
w.r.t. Section 3.1.1 for CB or Section 3.2.1 for DB, apply actions to ply
and x; « COMPOSE (x;, Xj1);

g Rk W N =

6 Function COMPOSE (x, xg):
7 A < 0 FFNNpjyary (XL © XR);
8 return A © xp + (1-A) ® xg;

single-layer FFNN,,; with a threshold reduces the outputs to an integer of either O or 1
to indicate two possible orientations. The COMPOSE function uses sigmoid activation
“o” to create a pair of complementary gates for xr, xg from A, which is a vector of
the same size as the embeddings. “©” represents pointwise multiplication.

CB and DB only use O(n) components, as shown in Figures 3.5 & 3.7.

3.4.5 CM & DM: Multi-branching Implementation

To resemble the binary gate A, I use the Softmax function for each chunk or group,
as described in Algorithm 3. Binary interpolation A is a special case of the multi-
branching A0, because Sigmoid and Softmax functions are closely related. Exam-
ples of CM and DM are shown in Figures 3.6 & 3.8.

Vectors of z1,, and Ay., are exchangeable. I choose the configuration using A,
in Algorithm 3 because it performs slightly optimal in my experiments. Similarly,
A; in COMPOSE function is a vector. I consider average of A; (i.e., A;) for inference and
headedness visualization. DM infers with a special factor

pM = uhead , (3.17)

38 Chapter 3. Neural Combinatory Constituency Parsing

Algorithm 3: Multi-branching Ply

1 Function FOLD (ply, X1.4, Z1:n):

2 (Z1: ® Z1:) < 21 (forward & backward);

3 fori < 1tondo

4 d} < FFNNgioc (2,); // Only for DM
5 Ai < (Zi=Zi1) © (Zi - Zin1);

6 Ji < FFNNjint (A; © Ajs1);

7

8

foreach i, j-th discontinuous dAﬁlw do // Only for DM

‘ ﬁ’[lij] < x] WY A, + b // Only for DM

9 find discontinuous groups by checking &"; // Only for DM
10 foreach group indices G and its medoid do

11 w.r.t Section 3.1.2 for CM or Section 3.2.2 for DM, apply actions to
ply and Xinedoid < CUMPOSE(Ag, XQ);

12 return CONDENSE (x1.,,);

13 Function COMPOSE (Ag, xg):
14 Ag < Softmax(FFNN,,,11i (Ag));
15 return Zig A O Xx;;

which takes X,e0i4 < arg max;eg A; as the group medoid.

To identify discontinuous groups in affinity biaffine attention matrix, DM takes
M = UB?l:D,l:D] in range (0,1) (D = ZZ-dAf‘) and booleanizes it into B « M > 0. 1t 1)
tries default threshold 6 = 0.5 as natural selection for sigmoid activation and check
whether all following statements are true:

* Bis symmetric,
® anyrows o, w € Barev #0,

e ecitherv=worv' -w=0.

It succeeds in most cases. Otherwise, it 2) tries a value from M as 6, checks and loops
again. I order the thresholds by their distances to the default 0.5. If all 2) fail, it 3)
simply falls back in grouping all nodes as one and count one FAIL.

3.4.6 Multilingualism and Structured Sentiment Analysis

For both continuous and discontinuous constituency parsing, there are large anno-
tated treebanks in different languages. Clearly, a common aspect of those treebanks
is the phrase structure with different PoS tagging and constituency tagging schemes.

Because my approach decomposes tagging and labelling from the structure con-
struction, I can achieve multilingualism with a very minor modification on Algo-
rithm 1. As highlight in Algorithm 4, I pass an additional argument k for the PARSE
function to indicate the language and the scheme of the current treebank. Because
the original FFNN;,, and FFNN,,; are 2-layer MLPs which share their first layer,

FFNN’t‘ug and FFNNf . only differ in their second layers.

3.5. Model Robustness 39

Algorithm 4: Multilingual Neural Combinatory Parsing

Function PARSE (k, x71.,,):
x!' <« BiLSTM.y (embeddings of xy., for corpus k)

1!]’1h

1
2
3
4 fori< Oton-1do
5 f; < FFNN K (x0)

tag
? ko (20
li < FENN 7, (X7)

6

7

8 while n;, > 1 do
9 fori < 1ton; do
o 1

11

o kK oh
[< FFNN j,,(x})

|
T 1 T 1

3 (1) A tree with five children

Py =Px) = 5 with selected children in red.

an EEE

[I | | | [| |
(2) Again, select children in blue. (3) Stop, no further &-subtrees.

Random @-subtrees

FIGURE 3.9: A example for the creation of a random @ branch from a flat tree.

3.5 Model Robustness

3.5.1 Additional Substructure with Empty Node

Innate empty node. Structure of g-tree has several causes. First, both processes
of binarization and stratification cause innate @ nodes, as specified in Sections 3.3.2
and 3.3.4.

B {Bernoulli(aright) for CB (3.18)

Beta(ajp, arigne) for DB

As for binarization, Formula 3.18 illustrates sampling binarization factor for CB
& DB and medoid for DM. I use Bernoulli distribution for CB and beta distribu-
tion for DB to resemble DM’s uniform pM = random distribution or reflect linguistic
branching tendency with CB & DB’s pB. The choice of different distribution func-
tions for CB & DB is based on my publications.

Random empty node. Then, besides the innate @-subtrees, I create more the in-
termediate @-subtrees with a random process. The @-subtree is an inspiration of
CM'’s deterministic _SUB node. The latter balances subtrees without increasing their
heights and improves accuracy with efficiency. However, (¢) @-subtree is random
and creates imbalance. It creates only one stretching branch by iteratively grouping
nodes with possibility pg, which has three significant aspects:

40 Chapter 3. Neural Combinatory Constituency Parsing

High ply &
A®
(A]’ A27 B]’ C]a A3’ C2) A‘
(Biaffine
attention
l« inputs)
(Ar. Ay, By, Gy, Ay, C) o Tnterply /-

Add A M or T WA+ b

: : TR (@ X, \ Continuous
x = 7 |A A, Discontinuous

\... -------------------- s “ b

Low ply A . W Loy

l A® FYV S !DXC AA Ly

. e . TT R c
L' and L, via the original (ﬁfﬁ’m DxD | aAdd :CxC . ff‘gﬁf
ply of joint and orientation attention & IR sttt
inputs) i : CxD outputs)

(a) Ply shuffle robustness for DB (b) Intra- and Interply robustness for DM

FIGURE 3.10: (a) Constituent children get shuffled and create additional losses.
(A1,Az,A3), By, and (Cq,Cy) belongs to three different constituents. (b) Pick in-ply
continuous nodes and interply nodes for DM biaffine attention.

¢ Random stretching branches add mild variations to the context as state for
robust ply actions in FOLD.

* Random discontinuity creates DB orientation layers that are impossible by pP®
binarization.

* They reduce large (possibly continuous) constituents into smaller (possibly
discontinuous) pieces without adding a large payload to biaffine attention,
which narrows the gap between DB and DM (DM is more vulnerable to dra-
matic many-to-one compose).

/a7

Taking NP “a good day” for instance, any of “a day”, “a good”, and “good day”
can be an intermediate option for creating the NP. On the one hand, these options
create varied contexts for the remaining parts of a ply. On the other hand, assume
that “a day” (which is not a pP® product) is selected. DM learns to discern it with
the other possible “a day” in biaffine attention based on their context.

3.5.2 Basic Loss Item

We choose HINGE-LOSS for binary prediction and CROSS-ENTROPY for multi-class pre-
diction, following NCCP. Respecting the context in Algorithms 1-3, our basic loss
items are

Ltagz Ligvel, Lori, Ljntr Lyisc, Lgﬁf
by accumulating their items across all layers. E.g., Lfﬁf < Xijh HINGE—LOSS(u}[ll.’ i ﬁﬁ.’].])
with D for discontinuous affinity. We have additional loss items in the following sub-
sections.

3.5.3 DB Robustness Loss Item: Ply Shuffle

To further let DB cover more ply variants, I introduce (a) shuffle and its resultant

losses LZFZI and szfz . It shuffles child order of a constituent, takes the new sequence

3.5. Model Robustness 41

to FOLD, and reuses the ply of orientation and joint for additional losses. For example,
a VP to the left of a NP gets shuffled to the right with the same ply “right e left”
producing the additional losses. DB’s additional loss items are

Lshﬂ Lshﬂ

ori’ “jnt *

3.5.4 DM Robustness Loss Item: Intra- and Interply

Continuity and discontinuity in DM undergo different identification processes via
discontinuity. To minimize the difference, in addition to L} for cardinal discontinuous
nodes from the same ply, I introduce (b) Ly and LY for continuous and interply
affinity. These reduce the risk of biaffine attention forwarding incorrect discontinuity to
weird actions because of unseen cases. I use .- cr(dz?) and B, - o (xIT- WP AL £ bP) to
limit the sample size, where / is the next ply after i containing discontinuous nodes.
Fallible signals are more likely to form losses via HINGE-LOSS. DB’s additional loss
items are

Lgﬁ(, L;}f.

43

Chapter 4

Experiments

4.1 General Setting

Data. For continuous parsing, treebanks PTB and CTB are widely chosen for ex-
periments. I follow previous data splits for PTB, CTB, and KTB. Specifically, PTB’s
sections 2-21 were used for training, section 22 for development, and section 23 for
testing. CTB’s articles 001-270 and 440-1151 were used for training, 301-325 for de-
velopment, and 271-300 for testing. There is no widely accepted data split for the
KTB corpus, except for some random divisions, because KTB contains mixed data
from sources such as newswires, book digests, and Wikipedia. I randomly reserve
2,075 samples for development, 1,863 samples for testing, and the remaining 3.3 mil-
lion as training samples. (Check my code' for the random seed and other details.)
The Evalb program?” provides F1 scores for evaluation.

For discontinuous parsing, treebanks DPTB and German TIGER are the most
commonly used testbeds. The data split of DPTB follows PTB as described above,
whereas TIGER’s common splits are sentences 1-40474 as train set, 40475-45474 as
development set, and 45475-50474 as test set. The Discontinuous DOP program 3
offers both overall and discontinuous F1 scores for evaluation. The preprocessing of
data is described in Section 3.3.4.

Model. To compare with other parsers with a lexical component and exploit con-
textualization, NCCP takes frozen pre-trained fastText as static word embedding
(PWE) or fine-tuned 12-layer pre-trained XLNet or BERT as contextualized embed-
ding of pre-trained language models (PLM) as lexical input.

I choose fastText (Bojanowski et al., 2017) as PWE because it can be easily ob-
tained either online or via pre-training from scratch with the corpora at hand. The
difference is examined in Section 4.2.1. When training from scratch, PTB texts are
fed into chow instead of skipgram with their default settings for 50 epochs (denoted as
CB/E). Meanwhile, online official pre-trained embeddings provide the default lex-
ical inputs. English (wiki.en.bin), Chinese (cc.zh.300.bin), German (cc.de.300.bin) and
Japanese (cc.ja.300.bin) ernbeddings4 are used for (D)PTB, CTB, TIGER, and KTB,
respectively.

Meanwhile, PLM models are useful for various tasks (Kitaev and Klein, 2018; Ki-
taev and Klein, 2020; Zhou and Zhao, 2019; Yang and Deng, 2020; Mrini et al., 2020).
I chose XLNet (Yang et al., 2019) for English and BERT for German”. Specifically, ei-
ther a 1-layer is used to convert the 768-unit output to the model size. NCCP model

1https ://github.com/tmu-nlp/UniTP

thtps ://nlp.cs.nyu.edu/evalb/

3https ://github.com/andreasvc/disco-dop

4h1:1:ps ://fasttext.cc/

5https ://github.com/huggingface/transformers and https://www.deepset.ai/german-bert

https://github.com/tmu-nlp/UniTP
https://nlp.cs.nyu.edu/evalb/
https://github.com/andreasvc/disco-dop
https://fasttext.cc/
https://github.com/huggingface/transformers
https://www.deepset.ai/german-bert

44 Chapter 4. Experiments

size is 300 for vector compositionality. The BiLSTM.y (/1) has six layers by default.
The hidden sizes for 2-layer FFNN;,,;, FFNN,,;, and FFNN_,,,,x are less than 300. I use a
GeForce GTX 1080 Ti with 11 GB to test inference speed. The batch size for training
is 80 and gets doubled to 160 at the inference phase.

I used the Adam optimizer with a default learning rate of 10~3, while I opted for
the XLNet’s Adam hyperparameters when tuning the pre-trained XLNet (e.g., their
learning rate was 107°). HINGE-LOSS was the default criterion for orientation while
binary cross-entropy (BCE-L0OSS) was tested. I adopted a warm-up period for one
epoch and a linear decrease after the 15-th decrease since the last best evaluation.
The recurrent dropout rate was 0.2; other dropout probabilities for FFNNs were set
to 0.4. For model selection, the training process terminated when the development
set did not improve above the highest score after 100 consecutive evaluations.

4.2 Continuous Parser

Specific settings. For the binary model CB, I explored training with dynamic datasets
via sampling two CNF factored datasets

o8 ~ Bernoulli(ag,) € {0, 1} (3.18)

indicating CNF-left (0) and CNF-right (1). This is because of the following: 1) The
experiments with the non-CNF factors (i.e., midin and midout by Chen et al. (2021))
did not yield any promising results; thus, I have not reported them. 2) The lan-
guage was loosely left-branched, right-branched, or did not show a noticeable ten-
dency. Moreover, the use of a single static dataset may introduce a severe orienta-
tion bias. 3) All factors are intermediate variables and equally correct. I denote the
Bernoulli sampling strategies with two static CNF-factored datasets at certain ratios
and named each strategy in the format “L(1 - aign;%)R(arignt%)” according to the
ratio percentages. My experiments mainly focus on CB because of CM do not have
corresponding data augmentation and is less accurate than CB.
The coefficients of the three losses were explored and the default were

LCB =0.2- ng +0.3- Llabel +0.5- Lori (41)
LCM =0.2- ng +0.3- Llubel +0.5- Lchk (42)

The binary model CB is a representative NCCP model on which I did the ma-
jor ablation work for neural configuration to understand the characteristics of other
models. For example, the influence of extra information from official pre-trained
fastText, different numbers of BiLSTM.y; (/) layers, not fine-tuning but leveraging
contextualization of PLM with a 1-layer FFNN (/0) or an n-layer BiLSTM (/n*) for
model adaptation, and the dimension of vector compositionality are explored.

4.2.1 Constituency Parsing
Overall Results

Table 4.1 lists the parsing accuracy and speeds of the single models in ascending
order according to their F1 scores for the PTB corpus. The transition-based parsers
with O(n) complexity appear at the top of the table, followed by other types of
models, and the chart parsers running in O(n®) time are at the bottom of the table.
The models exhibit similar trends for the CTB. Shen et al. (2018b) and my models
belong to type O and have similar complexities. Generally, the accuracy follows the

4.2. Continuous Parser 45
Corpus Penn Treebank Chinese Treebank
Single Model without PLM Type Speed LP LR F1 |Type LP LR F1
Watanabe and Sumita (2015) T (32) - - - 90.7|Tr(64) - - 843
Gomez-Rodriguez and Vilares (2018) | O 898 - - 90710 - - 831
Cross and Huang (2016) T (1) - 921 90.5 91.3]- - - -
Liu and Zhang (2017) T (16) 79.2 92.1 91.3 91.7|T} (16) 85.9 85.2 85.5
Stern, Andreas, and Klein (2017) C 75.5 93.0 90.6 91.8]- - - -
Shen et al. (2018b) Ol (1) 111.1 92.0 91.7 91.8|0J (1) 86.6 86.4 86.5
Charniak and Johnson (2005) C - - - 9211- - - -
PWE NCCP CM with fastText O1 (1) 1122.6 92.1 92.1 921|071 (1) 86.0 84.7 85.3
PWE NCCP CB with fastText Ot (1) 1327.2 92.8 92.3 925|01 (1) 85.8 86.2 86.0
Nguyen et al. (2020) Oy (1) 130.2 92.8 92.8 92.8|- - - -
Kitaev and Klein (2018) C 2125 93.9 93.2 93.6|C 919 91.5 91.7
Wei, Wu, and Lan (2020) Ol (1) 155 941 933 93.7|0) (1) 89.9 87.4 88.7
Zhou and Zhao (2019) C 226.3 939 93.6 93.7|C 92.3 92.0 92.2
Zhang, Zhou, and Li (2020) C 1092 94.2 94.0 94.1|C 89.7 89.9 89.8

TABLE 4.1: Single-model results on PTB and CTB test datasets sorted by the F1 scores
on PTB. Transition-based parsers, chart parser, and others are marked as T, C, and O,
respectively; 1 and | denote bottom-up and top-down. The number in brackets indicates
the beam size. Speeds are measured in sentences per second. Kitaev and Klein (2018)
used Tesla K80, and the CTB scores are cited from Kitaev, Cao, and Klein (2019). Zhou
and Zhao (2019) used GeForce GTX 1080 Ti (same condition).

Fine-Tuned Model F1 sents/sec Type
Kitaev and Klein (2018) 95.13 70.8 C
Kitaev and Klein (2020) 95.44 1200 T
Nguyen et al. (2020) 95.48 - o}
Zhang, Zhou, and Li (2020) 95.69 - C
Wei, Wu, and Lan (2020) 95.8 - o)
Xin, Li, and Tan (2021) 95.9 26 C
Zhou and Zhao (2019) 96.33 64.8 C
Yang and Deng (2020) 96.34 71.3 T
Mrini et al. (2020) 96.38 59.2 C
PLM CB with XLNet 95.72 411.2 o))
PLM CM with XLNet 95.44 369.4 0))
PLM CB with XLNet & 2-layer BiLSTMy; | 94.67 398.4 0))

TABLE 4.2: Improvements with pre-trained language models. I used a greedy search
algorithm on single GeForce GTX 1080 Ti. Rows 6-8 are reported by Yang and Deng
(2020) using GeForce GTX 2080 Ti. Kitaev and Klein (2020) used a cloud TPU with a
beam search algorithm and a larger batch size.

CB with Frozen fastText Frozen XLNet
n-layer BiLSTMqy F1 sents/sec F1 sents/sec
0 65.02 1386.6 | 89.24 411.2
2 91.34 1350.0 | 93.74 398.4
6 9254 13272 | 93.89 382.7

TABLE 4.3: Effectiveness of using frozen static word embeddings or dynamic sub-word
language model and corresponding peak speed.

46 Chapter 4. Experiments

PWE Specification F1

CB/r with random initialization. 91.73
CB/e with tuned official fastText. 91.69
CB/E with frozen pre-trained fastText from PTB. 92.31
CB/F BiLSTM, into FFNN,,. 88.97
CB/R BiLSTMy, into BiQRNN,,. 92.42
CB/L BiLSTMply with BCE-LOSS. 92.32
CB/B Biaffine inputs for vector A in cubic time. 92.53
CB X1 ® xR as input for vector interpolation A. 92.54
CB/S x1 @ xg as input for scalar interpolation A. 91.83
CB/v No input; bias vector interpolation A. 92.36
CB/s No input; bias scalar interpolation A. 91.95
CB/+ Simple adding inputs by x1, + xg 91.86

TABLE 4.4: Results of ablation studies on fastText (top) and BiLSTM,;,, (bottom) of the

binary model. CB/ " is the main experimented CB variant in other subsections.

complexity, whereas the speed roughly follows the year of publication rather than
complexity or type.

I fine-tuned PLM models® and compare them with other parsers using fine-tuned
language models. These are listed in Table 4.2. Owing to XLNet, model complexities
grow to O(n?).

Ablation Study

Models with PWE (fastText). Iinvestigate the binary model through ablation. The
impacts of fastText are presented in the upper part of Table 4.4. CB/r does not re-
quire any external data beyond PTB, which is comparable to models without a pre-
trained GloVe Pennington, Socher, and Manning (2014).

Then, I replace BiLSTM,, with an FFNN,;, to examine its effect. The results are in
the bottom rows. The comparison proves whether the embeddings are collaborative
for the orientation signals because FFNN regards each input independently.

Lastly, I examine the binary combinator of CB in the lower part of Table 4.4.
When replacing the COMPOSE Algorithm 2 with xy, + xg, additive vector composition-
ality is retained (Mikolov et al., 2013) as the naive CB/+ variant. The model can
infer a full tensor tree; however, ADD causes the vector magnitude to increase with
the tree height cumulatively. This is unwanted in the recurrent or recursive neural
network. I also examine other variants that do not cause such recursive problem.

In terms of the F1 score, the most competitive variants of the main CB/ "/ are
CB/B and CB/v, suggesting that fine interpolation can effectively facilitate vector
compositionality. The similarity in results of CB/S, CB/s, and CB/+ validate this
suggestion. This indicates that vector compositionality is not as trivial as an additive
function at the scalar level, and a matrix operation is sufficient. CB/B is the costliest
variant with a tensor operation that runs very slowly (30 sents/sec).

Finally, I used a grid search to explore the hyperparameter space of the three-loss
coefficients. Figure 4.1 shows that the performance correlates to the orientation loss
the most, but it is not overly sensitive to the hyperparameters.

®For the fine-tuned XLNet, using either the leftmost or rightmost sub-word yielded similar results
earlier. However, averaging sub-words produced F1 scores under 94.

4.2. Continuous Parser 47

Max.Orientation @ (0.2, 0.3, 0.5) 92.5

0.7 e o 92.0
o o

0.5- o O () 91.5

e © 6 0 ©
0.3- e 6 6 06 0 O
e & 6 6 & o O
0l1- - e © @ © o o o

91.0

Orientation Loss Coefficient

MaxI.Tag —6.3 0 073 Max.i_abel
Difference of Tag and Label Loss Coefficients

FIGURE 4.1: Grid search with an interval of 0.1 in a space of (tag, label, orientation) loss
coefficients. The best was (0.2, 0.3, 0.5) indicated by an arrow.

AT

F1

92-
BiLSTMcxt

6-layer
91- A 8-layer
86-

85-

86-
84-

dl-g1M uyz-g1D us-did

Left L75R25 L50R50 L25R75 Right

FIGURE 4.2: Probabilistic interpolations of two CNF factors to F1 scores. The capacity
of BiLSTM.y; is almost saturated with 6 or 8 layers.

PWE and PLM Contextualization. I compared the results using frozen fastText
with those using frozen XLNet in Table 4.3. The accuracy of the model increased
along with the depth of BiLSTM.y, and it exhibited the most significant increase
across all variants. XLNet tokenizes words into sub-word fractions. For the frozen
XLNet, using leftmost, rightmost, or averaged sub-word embeddings as the word
input yielded similar results.

Tree-Binarization Strategy

To reflect the branching tendency, the best single model for PTB was obtained on the
dynamic L95R05 dataset. This dataset is a probabilistic interpolation between the
left-factored dataset (for 95% chances) and a right-factored dataset (for a,g; = 5%
chances) in Figure 4.2. The best model for CTB appeared on the left side at L70R30,
scoring 86.14, whereas the best for KTB was on the L30R70 dataset, scoring 87.05
with a 6-layer BiLSTM.y;. Typically, the results for all the corpora had a minimum at
L50R50. For English, the left “wing” was higher than the right; the opposite trend
was observed for Japanese. For Chinese, no clear trend was obtained.

All studies described in the previous sections were conducted on the PTB L85R15
dataset.

48 Chapter 4. Experiments

0800 oA T S

ﬁ Stratified Triangular ; /\VP

2]

£ 600- ~ N

o S <0> VP

~ 400 PZEN PN

D #CC NP #VBZ NP

4] [I I

& 200- T clc PlRP V]|3Z NIl\IP
0 25 50 75 100 Yet I want Coke

Training Batch Length (Triangular)

FIGURE 4.3: Linear complexity vs. squared complexity. Redundancy with placeholder
“<0>” helps maintain the triangular shape.

Complexity and Speed

Format Time/150 Memory OOM
Stratified | 7.5hours 3.3 GB -
Triangular | 159 hours 8.2 GB 100

TABLE 4.5: Training time and memory consumed by my two data formats. The time
column indicates the time used for 150 training epochs with validations. Development
F1 scores are approximately 92.4. The OOM column lists the length limit for preventing
an out-of-memory error. Kitaev and Klein (2018) took 10 hours for 93 training epochs
on GeForce GTX 1080 Ti to yield their results.

To examine the empirical linear speed advantage, I inflated the training data with
redundant nodes to resemble the triangular chart of CYK algorithm, as depicted
in Figure 4.3 and Table 4.5. The parse in the triangular inflation is the worst-case
complexity of O(n?). Meanwhile, training with linearity halved the training time,
reduced memory usage, and canceled the length limit for the three treebanks. There
is a sheer difference between linearity and squared complexity.

4.2.2 Structured Sentiment Analysis

Specific settings. I follow the default Stanford Sentiment Treebank (SST) data split
as my training and testing corpus for CB. Optionally, I jointly train it with PTB to
check the compatibility of the syntactic and semantic treebanks. The model is similar
to the multilingual model introduced in 3.4.6, except that FFNN?[ISZ};I has an indepen-
dent hidden layer that produce sentiment labels in {0,1,2,3,4}.

SST has sentiment polarity overturns from positive to negative or vise versa,

including negation and other semantic accounts. For example,
* “Hilariously” as (3), “inept” as (1), “and as " (2), “ridiculous” as (1)
* “inept and” as (1)
* “inept and ridiculous” as (1)
* “Hilariously inept and ridiculous” as (0)

where {0,1} are negative, 2 is neutral, and {3,4} are positive. Because a parent
node’s sentiment depend on those of its children, the tree structure is expected to

4.2. Continuous Parser 49

Model binary 5-class
without pre-trained language model All Root All Root
RNTN (Socher et al., 2013b) 876 854 80.7 457
BiLSTMyiy,-300 (Barnes, Klinger, and Walde, 2017) - 82.6 - 45.6
Tree-LSTM jiy,-300 (Tai, Socher, and Manning, 2015) - 88.0 - 51.0
PWE CBy;y_300 with 0-layer BiLSTM,; 889 834 802 428
PWE CB ;=300 With 1-layer BiLSTMy¢ 893 855 798 4738
PWE CB ;300 with 6-layer BILSTM.y; 89.9 86.0 80.7 489
with pre-trained language model

XLNety arce (Yang et al., 2019) - 94.4 - -
RoBERTay sgc (Sun et al., 2020) - - - 59.1
BERTgase (Munikar, Shakya, and Shrestha, 2019) 940 912 839 532
PLM CBy;y,-300 with XLNetgase 943 937 826 562

TABLE 4.6: Models on under weakly comparable conditions. All models are trained
or fine-tuned only on the Stanford Sentiment Treebank without joint training on other
treebanks. All CB models are trained with no structural loss (i.e., vy = 1).

be better capture the sentiment for the root node (i.e., the sentence’s sentiment) in a
bottom-up style. Thus, loss function is
SST SST SST
Leg =7 - Ligge+ (1) - Lo,
where there is 7y € (0,1].

Note that syntactic approaches (e.g., RNTN and ours in Table 4.6) tested with SST
follow the original syntactic structures. RNTN cannot predict the structures whereas
ours can be trained to predict the structures. However, using the original syntactic
structures causes some troubles as shown in the next two sections.

Single Task Result

PWE and PLM CB variants trained with 7y = 1 are listed in Table 4.6 along with recent
strong sentiment models. There is a significant gap between models that adopt PLM
or not. Beside the accuracy, RNTN as well as CB models can cover all four accu-
racy categories for a tree in one pass and leverage structural vector compositionality
following the original syntactic structures. Meanwhile, BERTg s (Munikar, Shakya,
and Shrestha, 2019) also managed but in several passes. Sequential BILSTM and
bare PLM models (i.e., BERT, RoBERTa, and XLNet) can not leverage the original
syntactic structures and thus provide only accuracy for roots at phrase or sentence
level.

Joint Task Result

As an ablation study on the semantic task, I examine 0 < v < 1 on both PWE and
PLM CB models, as shown in Table 4.7. Moreover, joint training with PTB is also
tested whose results are reported.

I report that the accuracy of CB decrease when the orientation loss LgrSiT are in-
cluded in the overall loss function. These syntactic structures as an additional loss
item seems not to cooperate well with the semantic labeling part. Furthermore, joint
task with syntactic PTB also shows the similar results, especially with PWE models.
Beside the promising results from individual tasks on PTB and SST, I do not observe

50 Chapter 4. Experiments

Model L%%T binary 5-class PTB
without pre-trained language model | A | All Root All Root | F1
PWE CB (only w/ SST) 01 |83 799 786 419 -
PWE CB (only w/ SST) 05 | 878 820 79.6 451 -
PWE CB (only w/ SST) 09 | 887 854 802 472 -
PWE CB (only w/ SST) 0.99 | 887 853 804 484 -
PWE CB (only w/ SST) 1 1899 860 807 489 -
PWE CB (w/ SST & PTB) 05 | 87.8 841 792 447 | 917
PWE CB (w/ SST & PTB) 1 | 881 844 792 444 |917
with pre-trained language model

PLM CB (only w/ SST) 05 | 93.8 926 829 554 -
PLM CB (w/ SST & PTB) 05 928 912 826 519 | 954
PLM CB (only w/ SST) 1 943 93.7 826 542 -
PLM CB (w/ SST & PTB) 1 1933 927 828 541 | 956

TABLE 4.7: Syntactic information seems not helping sentiment classification. Both in-
duction of orientation loss and joint training with PTB decrease the sentiment classifi-
cation accuracy. The F1 scores are 92.5 and 95.7, respectively for PWE and PLM CB.

mutual benefits by joint training CB on SST with PTB at corpus level or the semantic
part with the syntactic part at structure level. See the discussion in Section 5.4.3.

4.3 Discontinuous Constituency Parsing

Two-stage training for PWE model. The first stage (S1) requires approximately
300 epochs with general hyperparameters. Loss functions are sum of all loss items:

shfl y S

S1
LDB = Ltag + Ligper + Ljnt + Lori + Lori nt

s1 i
LDM = Ltag + Ligper + Ljnt + Lgisc + Z ba
ieD,X,C

Adam optimizer’s learning rate is y = 1073. DB uses uniform binarization Xleft =
&rignt = 1. DM uses @-subtree ratio pg = 0.25, robustness . = 0.1, and By =1 for both
efficiency and accuracy.

The second stage (S2) involves 100 short trials with a Bayesian optimization (BO)
tool Akiba et al., 2019, optuna; each trial requires less than 30 epochs and brings
hyperparameter adjustment:

S2 sh sh
LDB = Ktgg * Ltag + apel * Ligper + -+ + “]'nj;l : L]'njtq
S2 i
Lpy = ,Btag * Ltag + ®1apel - Ligper + -+ + Z (Bi-Ly,)
ieD,X,C

Trials follow practical constraints: learning rate y € (107%,1073), beta’s left, Xright €
(1073,10%) instead of (0, +o0), and [0, 1] for the others.

PLM models also use general hyperparameters with learning rate 107 at S1.
PLMs are frozen during the first 50 epochs to avoid noise pollution and then are
fine-tuned with learning rate 3 x 107. They inherit explored hyperparameters from
PWE models at S2, except for learning rate 3 x 107°.

4.3. Discontinuous Constituency Parsing 51

4.3.1 Overall Results

Table 4.8 shows F1 scores of recent neural discontinuous parsers under comparable
conditions on test sets. We follow their reported number of significant digits and
reduce the effects of random initialization with an average of five runs. The details
are shown in Table 4.9.

DM models achieved state-of-the-art performances in terms of discontinuous F1
scores and parsing speeds. Although speed tests are reported on different platforms,
my parsers lead by a significant margin. In terms of overall F1 score, my parsers out-
perform some chart parsers (Stanojevic and Steedman, 2020; Ruprecht and Morbitz,
2021) and slightly underperform the overall best outline, as characterized in bold-
face.

Chapter 4. Experiments

52

‘AJ[IRLIEA IR[TUUIS }D[JOI S}OS JUIW
-doeasg ‘g swrojzadmo W@
‘syISIp JuedHIUSIS INOJ UM S)as
J$9} UO SUNI 9AY JO SUOHPIAIP
piepuejs pue SUes|N :6F 14V

“yuoryeurioyur Aouspuadap [eIIX3] PIAJOAUL g7 ‘7707 “ZINSLIPOY-ZaWO) pue Za[LZUOD)-Zapueuiay "060€ XL
9DI0J99) U0 17D ‘1207 ‘ZoNnSLIPOY-ZoWor) pUk Z3[RZUOoD)-ZapuguIa,] pue uoreyuswaidwr Yd1oTAJ Yim 1L, 0801

XD 9DI0J95) U0 318 OZOA ‘0207 Zon3LIpOoYy-Zowor) pue SaIe[iA pue sinQ ‘suriojje[d arem}jos pue arempiey o[q
-eredwodur uo pajrodar axe puodas 1ad sadusjuLs ur spaadg SYI0M JUadaI WO SeduewIofIad [[eIsAQ) 1§°F 14V,

€9'0Fc6'0Z 600F1968 | INA W1d
Ga'0¥89'69 91078768 | 4dd
12°0¥¢0c9 €T0FIT'S8 | INd IMd
Z£°0%¥80°09 80°0F88¥8 | dd

Ira Td (1593) YIOILL
64 0F70€8 900F¥0'96 | INA W1d
£L0°CFC99L VCOFV8Y6 | dd
69°0F¥1'8Z 0107906 | WA IMd
¢8'0Fc9'aL G00Fs6'l6 | dd

Ira Td (s’ d1dd

G€S 60L 968 | SLE 0€8 066 (¢)O Iojeurquio) (op) AsVEyAg 10 (W) IINIX /M INA
beb L69 S68| SLT 99L 86 (z4)0 IojeurquIo) (op) ISVALHG 10 (Wd) IPNTIX /M gd
LT LT9 988 | €I ¥eL S'S6 (;4)0 SURI[-IOPIONY (op) 3SVE1YHg 10 (U3) IN'IX /M [ZDA
86T 0€9 G88| 641 IFL 1'S6 (¢)O MeyD-1epIoy | (9p) ISVELYHG 10 (Ud) IBDN'IX /M 17D
09 069 €88| 4§ S08 €66 - 1eyD 1484 /™ (1202) ZNqION pue pypaxdny
- I'79 006 - 689 876 (¢)O ey LdAd /M (0202) 0110

- 0IZ 868 - - - (z4)0 PIsenmn ASVATNAG /M 77D PIseq-Ipiog
08 I'IS 9%8| 08 805 616 (z1)o Burpaqe]-bag ISVATIAL /M 0TDA PISeq-19puIo]
[epow 98enSue] pauren-axd yjm

00EL 079 T1S8| 04 I8 16 (¢)O 10jeUIqUIOD) (op 2 ud) 1xaLIsey /M A
09IL 109 6¥8| 06 9SL 06 ()0 I0yeUIquIo)) (ep 3 wd) IxaLISey /M g
08 019 168 | 98 19, 816 - yreyD ey /m (1207) ZNGIQN pue Jydaxdny
vy TIS TS8| Ss€ 619 6'T6 ()0 1eyD (0202) 0x10D
- ges ¥es - 9 6§06 (41)O 1reyD (0207) ueWpadIg pue diaslourg

- 979 998 - - - (;#)O0 pIsemmN | (S102) Te 1 Sury /m gz paseq-Ipuro]
89S S6E SLL| 119 8Sy 888 (WO 3urpqe-bag | (G107) e 32 Bur] /m OTDA Poseq-1ojuog
9 695 ST8| 8 €49 606 ()0 EEE SRl (6107) UdYOD puE XNnoAeoD)
9T 6685 LT8| 08 €IZ 016 (w)o dey-suery, (6107) UaYOD pue ‘9qqer) ‘Xnoaeo)
padds 1TId 1 | peeds 1Ia 14 | Aaxerduro) adAL [epow a8enGue| pauren-aid ynoyim
395 3593 YAOILL 19 3593 4Ldd [PPOIN

4.3. Discontinuous Constituency Parsing

53

Development set Test set
Model DPTB TIGER DPTB TIGER
(Stage) F1 DF1 F1 DF1| F1 DJF1 F1 D.F1
DB (0,0,0) 90.93 6328 87.73 56.49 | 90.82 6248 8229 48.90
(0,1,1) 91.61 69.84 8870 61.15|91.69 71.60 83.56 54.32
(1,0,1) 91.62 7425 8793 59.85| 9126 69.12 8286 54.33
(1,1,0) 91.48 7097 89.05 63.32|91.65 70.18 84.32 56.45
(1) f(1,1,1) 9172 66.82 89.28 63.49 | 91.76 73.49 84.53 59.68
(82) —optuna 9225 76.60 8959 66.03 | 92.08 7430 84.56 59.64
DM (0,0,0) 91.62 79.37 8830 6241|9126 7152 83.15 5581
(0,1,1) 91.74 79.02 89.64 67.40 | 91.51 78.86 84.89 61.02
(1,0,1) 91.44 7870 88.61 65.10|91.16 7438 83.79 58.30
(1,1,0) 91.84 7737 89.78 67.78 | 91.81 7853 85.06 62.15
(1) f(1,1,1) 9216 8029 89.77 68.20 | 92.07 77.39 85.17 62.02
(82) —optuna 9237 8276 89.84 6845|9213 7799 8520 62.15

TABLE 4.10: Ablation in two-stage training with dev scores. Triplets in {0,1} stand for
turning on and off (pg, pB ~ Beta(1,1), shuffle) for DB and (pg, B¢, Bx) for DM. Variants

of “1” are S1 — the start of S2.

Model Devset pz=0 01 1025 05
pg PPTB 91.61 91.79 91.72 91.95
TIGER 88.70 89.04 89.28 89.25
DM DPTB 9144 91.80 92.16 89.86
TIGER 88.61 89.45 89.77 88.61

TABLE 4.11: DM is sensitive to py with
dev F1 scores.

4.3.2 Ablation Study

Test data DM Medoid p™M F1 D.F1
uhead 95.05 83.58
leftmost 95.00 81.64
DPTB rightmost 95.03 82.47
random (min) 95.01 82.18
random (max) 95.04 83.17
uhead 89.62 71.61
leftmost 89.56 71.43
TIGER rightmost 89.56 70.92
random (min) 89.55 71.26
random (max) 89.61 71.52

TABLE 4.12: DM medoid factor pPM =
uhead offers stable gains even without
head information during training. I
tested pPM = random five times.

I ablate the PWE models in two-stage training, as shown in Table 4.10. Only one
representative run with ablation is shown because of the similar low variability on
development sets. DB has two data augmentation items py and p® as well as one
model item ply shuffle. On py refers to py = 0.25 and off py = 0. Off Beta(1,1) refers
to a static pDB =0.5and (0,0,0) shows the performances of bare DB models.

On the flip side, DM’s (0,0,0) contains randomness because of pM = random.
We do not intend to examine a static pP™ as DB yields the negative results. Based
on effective training tricks, the variants enter the BO process at S2. DM shows its
sensitivity to pg in Table 4.11.

54 Chapter 4. Experiments

Model Type PTB CTB KTB
Nl | o1 e
Noclmgul | 1L 00 0
P o s CTo 7)ol | 21107 5

TABLE 4.13: F1 scores of monolingual and multilingual continuous NCCP parsers. For
CTB and KTB, CM extends its chunking function for word segmentation during training
and CM is character-based for Chinese and Japanese but word-based for English.

DPTB TIGER
Model Type F1 DF1 F1 D.F1
Monolingual | 91.76 7349 84.53 59.68
PWE DB Multilingual | 92.07 73.86 84.58 58.83
PWE DM Monolingual | 92.07 77.39 85.17 62.02

Multilingual | 92.09 79.45 84.77 59.89

TABLE 4.14: F1 scores of monolingual and multilingual discontinuous NCCP parsers.

4.3.3 Inference with Unsupervised Headedness

Both CM and DM provide unsupervised headedness A. Chen et al. (2021) were un-
able to test the benefits of CM’s unsupervised headedness because it is a final prod-
uct that cannot affect parsing. However, DM’s medoid affects parsing performance.
On PLM DM, we select different oM categories, which affect the location of all dis-
continuous constituent, and examine their generalization on test sets, as shown in
Table 4.12. All models are trained with o™ = random but inference with o™ = uhead
exerts positive gains on accuracy.

4.4 Multilingualism and Word Segmentation for Chinese and
Japanese

Finally, I merge all models into two multilingual parsers respectively for continuous
parsing and discontinuous parsing. The method is described in Section 3.4.6. Thus,
the continuous parser is trained on PTB, CTB, and KTB; the discontinuous parser is
trained on DPTB and TIGER. I show their comparable results in Tables 4.13 & 4.14.

The only difference of a monolingual parser and a multilingual PWE parsers lies
in EMBEDDING', FFNN},,, and FFNN}, . Apart from well-studied fastText EMBEDDING,
inspecting FFNN’fag and FFNN’l‘ah o to different k is discussed in Section 5.1.4.

Because Chinese and Japanese do not use white space for word segmentation,
a deliberate additional word segmentation process is very common for parsing the
sentences in these two languages. Extending chunker-based parsing to word seg-
mentation is a very natural option for my CM model. I assign the first ply to be a
word segmentation layer and train CM for the sub-task. At inference phase, I use
the gold word segmentation for F1 scores. The results are in the bottom of Table 4.13.
See the discussion in Section 5.1.4.

55

Chapter 5

Discussion

5.1 Feature of NCCP Family

5.1.1 Compact Neural Combinator

NCCEP parsers are neural combinators. Each comprises not only a neural encoder
for scoring (i.e., Algorithm 1) but also a simple non-neural decoder for decision and
removal of @ nodes. The decoder is a symbolic extension of the encoder in that both
run in bottom-up manner, and the decoder interprets the scores as local-and-greedy
decisions. Other neural parsers also fit a similar encoder-decoder framework. How-
ever, decoders with dynamic programming often include forward and backward
processes heterogeneous to their forward encoders (Kitaev and Klein, 2018; Kitaev
and Klein, 2020). The encoder and decoder in my model and (Shen et al., 2018b) are
more homogeneous and can be easily merged. My parsers are bottom-up combina-
tory, while theirs was top-down splitting. Similar homogeneity can be found in an
easy-first dependency parser (Goldberg and Elhadad, 2010).

These parsers are also beyond pure neural combinators, such as RNTN by Socher
et al. (2013a) and Tree-LSTM by Tai, Socher, and Manning (2015). Their models
do not include a structural prediction components and rely on external structure
providers. The CB model in Figure 4.1 indicate that the structural orientation is a
crucial factor for parsing accuracy.

BiLSTM.; +CB +CM +DB +DM
3.25M 0.36M 0.55M 1.32M 1.45M

TABLE 5.1: Parameter sizes of PWE NCCP parsers.

Although vector composition can be as complex as cubic tensor operation (Socher
et al., 2013b), neural combinators often do not have a very large model dimension
like 768 or 1024 of pre-trained languages models (Devlin et al., 2019; Yang et al.,
2019). Each composition is limited to a fixed time and memory size by the model
dimension. Thus, my parsers can be fast and efficient with vector compositional-
ity using a medium 300 dimension. From the results of multilingualism in Section
4.4, I know that sharing the structural parsing backend in Algorithm 4 does not
significantly affect parsing accuracy in each language. Thus, I suppose my models
do not store too much language-specific knowledge in their parameters. Instead, I
exploit external language-specific knowledge in pre-trained word embeddings and
languages models by using vector compositionality. This makes my parsers concise.
Apart from the external knowledge, NCCP has no more than 5M parameters, as
shown in Table 5.1. Meanwhile, the model of Shen et al. (2018b) has more than 20M.

56 Chapter 5. Discussion

CNF | Left-factoring o° = 0 | Mid-factoring p® = 0.5 | Right-factoring p° = 1
Ori. | Left Right Left Right Left Right
PTB | 38M 44M 3.0M 53M 23M 6.5M
CTB | 25M 1.7M 1.9M 20M 1.4M 2.8M
KTB | 45M 0.9M 28M 1.7M 1.8M 21M

TABLE 5.2: Frequencies of orientation with different CNF (biased) and referential only
non-CNF (more balanced) pB = 0.5 in different stratified continuous treebanks for CB.

DPTB Tiger
0.7 -

0.6-
0.5-
0.4-
A A A A A A A a

0.3- a A A A

0 025 05 0.75 1 head 0 025 05 0.75 1 head
left right left right
DPTB Tiger
0.98-
0.96 -
0.94-
0.92-

0.17 - A A, A
0.16-
015- , . 4

0.03-

0.02 -

0.01-

0.00- & N N
CO“‘:\“\) ‘(\ea ‘a‘-\do \e“m X \g‘(\‘-mos 0 \ (\“0\) ‘(\ea X a"\do \e‘\mog ,"m()s

FIGURE 5.1: Top: DB signal polarity to p® with orzentatzon right “e” and joint “a”. Bot-

tom: DM signal polarity to stratifying medoid factor pM with affinity “e”, joint ”A” and

discontinuity “w”. Continuous and head are referential only, looking for the least dzsconti—
nuity and leveraging head information. (All pgz =0.)

All models contain compact components without grammar restriction. By keep-
ing the model simple and of small dimension, NCCP achieves the highest parsing
speeds for both continuous and discontinuous constituency parsing tasks. Besides,
it reflects linguistic properties with other features based on neural combinator.

Variability of discontinuous models are examined to be small except for the dis-
continuous F1 score of PLM DB on DPTB, as shown in Table 4.9. The main cause
may not be the random initialization but the different training processes of PWE
and PLM models: PLM models use the configuration of PWE models at S2. Those
degraded PLM models adopted low pg configurations (e.g., pg = 0.078). Because
DPTB has less discontinuity and overall F1 scores is used for model evaluation, high
variability in discontinuous F1 scores become more common without several BO tri-
als, which are also reflected by Table 4.10. DB lacks explicit discontinuity and the
selection of hyperparameter seems to be necessary on DPTB.

5.1.2 CB & DB Orientation: Branching Tendency

On one hand, I show orientation in binarized PTB for English, CTB for Chinese,
and KTB for Japanese to present the syntactic branching tendencies in Table 5.2. As

5.1. Feature of NCCP Family 57

»)) Dev F1

Probability density function (PDF) — 895

— 894

Best: Beta(8.4, 10.9) 89.3
/ o, o >1

\ Both

)

\ — Left
A —— “ — Right
0.00 0.25 0.50 0.75 1.00 None

FIGURE 5.2: Beta distribution visualization for TIGER DB at S2. The line thickness

corresponds to the development F1 score. See their other hyperparameters in Figure
5.6.

English is a right-branching language, its majority orientation is to the right. Even
left-factoring cannot reverse the trend, but it should create a greater balance. The re-
verse tendency emerges in the KTB corpus as Japanese is a left-branching language.
For Chinese, CTB does not exhibit a clear branching tendency.

As a result, both CB and DB are affected by the innate biases in the corpora. For
CB, Bernoulli interpolation with two CNF-factored datasets is effective for the three
languages studied, as shown in Figure 4.2. Dynamic sampling allows the model to
cover a wider range of composed vectors to improve its robustness to ambiguous
orientations. Furthermore, it seems counterintuitive for human learners to obtain
the best model using left-biased interpolation for a right-branching language or vice
versa. However, for a neural model, balancing the frequency seems to be the key
factor for improving performance (Sennrich, Haddow, and Birch, 2016b; Zhao et al.,
2018). The fact that the L50R50 dataset yielded the worst models also suggests that
the balance should be based on a default orientation tendency:.

Similarly, DB’s S2 observes slightly leftward exploration with the beta distri-
bution, as shown in Figure 5.2. DPTB has a similar situation. Yet, the optimized
distributions are relatively uniform and symmetric, which qualifies my uniform ran-
domness with pB at S1 and indicates a desired property for future language-agnostic
practice.

5.1.3 CM & DM Unsupervised Weight: Headedness

On the other hand, the multi-branching models dynamically place close attention on
what the syntactic head is supposed to be. Table 5.3 provides more statistical sup-
port. In the noun phrases, determiners receive the highest weight averages, and the
nouns obtain the second. This phenomenon suggests that an English noun phrase’s
syntactic role is mainly projected from the determiners, as discussed by Zwicky
(1985). CM selects DT as an NP head if it is available; otherwise, nouns and adjectives
are prominent heads. Chinese and Japanese parsers work similarly for their head-
edness. Some multi-branching parsing instances with the weights are exhibited in
Section 5.4.

DB’s medoid pM = uhead further stably benefits the parsing accuracy, as shown
in Table 4.12. In other words, the place of a (discontinuous) phrase in a ply matters
to some extends. I suppose that the reason lies in that BiLSTM,;, can better encode
the information for nodes in the ply. A head child that has a significant place can
better inform other siblings or other relevant nodes.

58 Chapter 5. Discussion

Parent (#) Head child by maximum weight

NP (14.4K) DT (4.5K); *NP (4.3K); *NNP (1.6K); *JJ (922); *NN (751); *NNS (616);
etc. (1.6K; 38 of 50 types with “*”)

VP (6.8K) VBD (1.5K); VB (1.4K); VBZ (1.0K); VBN (954); VBP (705); MD (523); VBG
(387); VP (169); TO (81); etc.

PP (5.5K) 1IN (5.0K); TO (397); etc.

S (3.8K) VP (3.4K); S (194); NP (90); etc.

SBAR (1.2K) 1IN (649); WHNP (395); WHPP (19); WHADVP (121); SBAR (15); etc.

ADVP (278) RB (181); IN (30); RBR (25); etc.

QP (198) CD (67); IN (65); RB (29); JJR (16);

TABLE 5.3: English headedness selection with my multi-branching model CM on PTB

"

test set. DM also provide very similar statistics. “*” marks the absence of a DT child
for its NP sisters. For quantifier phrases (QP), some non-quantifiers are more likely to
be heads if they appear; e.g., adverbs (RB; e.g., “approximately”), prepositions (IN; e.g.,
“about”), and relative adjectives (JJR; e.g., “more than”).

5.1.4 Multilingualism

As shown in Tables 4.13 & 4.14, training multilingual parsers slightly affects the
performances comparing to their monolingual versions. The effect is not a global
decrease across all F1 scores. It is observed that CM benefits from multilingualism
and word segmentation extension on KTB. However, CTB does not enjoy multilin-
gualism and word segmenation. I guess that the word segmentation and syntactic
annotation schemes are quite different on CTB and KTB. Although CTB have fewer
training samples than KTB, the shared parameters does not works the best for Chi-
nese word segmentation and constituency parsing.

Both DB and DM benefits from multilingualism on DPTB instead of TIGER. It
seems that, by sharing model parameters, the performance of DPTB borrowed some-
thing from TIGER, especially the discontinuous accuracy. As DPTB has less discon-
tinuity than TIGER does, the multilingual DB and DM “average” the performances
of individual corpora.

I further check the relationship between different FFNNS , | vector pairs with k e
{PTB,CTB,KTB} for the continuous multilingual parser or k ¢ {DPTB, TIGER} for
the discontinuous multilingual parser. I use each parameter vector for label I in the
final layer FFNN;‘ab o4 Of k to calculate Euclidean distance,

: klhs:lrhs _ klhs _ krhs
dIStancek]hs:lrhs - FFNNIﬂbEI:]lhs FFNNl”bel:lrhs

For example, the distance of two NPs in PTB and CTB is HFFNN};TEEL wp — FFNNCTB
Then, I sort the the labels in treebank k,;s to a label I, in treebank kj;,s and create
Table 5.4.

As can be seen, two treebanks works well for pairs PTB x CTB and TIGER x
DPTB. KTB labels do not align well with the other treebanks probably because of
its annotation scheme or linguistic category. Furthermore, Japanese is a head-final
agglutinative language, different from other language we used. Meanwhile, English
and German are inflectional languages and share a part of vocabulary and gram-
mars. Although Chinese is an isolating language, CTB’s annotating scheme is very
similar to PTB's.

CTB and KTB do not have an S symbol. Instead they have an IP (inflectional
phrase) for a complete sentence. I can find IP and IP+VP in CTB are close to S and

5.1. Feature of NCCP Family 59

kins * ks Lins Ly (sorted by increasing distance from left to right.)
NP NP, NP+CP+IP, PP+NP, VP+LCP, NP+CP+IP+VP, NP+QP,
VP VP, VP+NP, VP+LCP, VP+VNV, PRN+IP+VP, VP+ADJP,
PTB x CTB PP PP, IP+VP+PP, PRN+VP, NP+CP+IP+VP, IP+VP+NP,
S IP, NP+CP+IP, CP+IP, PRN+IP, IP+VP+NP, VP+IP,
S+VP IP+VP NP+CP+IP+VP CP+IP+VP IP+VP+VSB PRN+VP,
NP PRN+IP, PNLP, PP+NP+NUMCLP, LST+NUMCLP, FRAG+ADVP,
VP PP+NP, IP+NP+NUMCLP, CONJP+NP+NUMCLP, PRN+IP,
PTB x KTB PP NP+PP, CONJP+CP, PP+NP+NUMCLP, IP+PP, P,
ADVP NP+PP, IP+NP+NUMCLP, PP+NP+NUMCLP, CONJP+CP,
S PP+NP, CP+IP, NP+IP, IP+NP+NUMCLP, PRN+IP, FRAG+IP
NP FRAG+ADVP, PRN+IP, FS+NP+NUMCLP, PP+NP+NUMCLP,
VP IP+NP+NUMCLP, CONJP+NP+NUMCLP, PRN+IP,
CTB x KTB ADVP CONJP+CP, FS+NP+NUMCLP, CP+INTJP, FRAG+ADVP,

IP CP+IP, FRAG+IP, NP+IP, PRN+IP, multi-sentence,
PP CONJP+CP, FS+NP, IP+CP, META, FS+IP, FS+NUMCLP,

NP NP, S+ADVP, X+NP, VP+ADVP, NP+S+VP, NP+ADJP,
PP PP, X, FRAG+PP, S+UCP, S+PP, PP+PP, X+NP,
TIGER x DPTB S S, FRAG, RRC, FRAG+ADJP, S+PP, FRAG+ADVP, FRAG+S,
VP RRC, FRAG+PP, S+ADVP, LST, S+UCP, PRN+S, VP+ADVP,
VROOT FRAG, FRAG+NP, FRAG+ADJP, SBARQ, FRAG+ADVP, S+UCP,

TABLE 5.4: Similar labels in different treebanks by their Euclidean distances in multi-
lingual parsers’ FFNN;‘ub ol

S+VP in PTB. Further, KTB does not have a VP symbol (Hinds, 1973) and I did not
observe strong alignment with labels in other treebanks.

TIGER'’s VP is close to PTB’s RRC (reduced relative clause) and FRAG+PP (fragment
which yields a preposition phrase). According to the PTB’s guidelines (Bies et al.,
1995), the RRC label is used only in cases where there is no VP and an extra level is needed
for proper attachment. TIGER’s VROOT is a dummy root label which can include in-
complete fragments. In these subtle senses, TIGER and PTB’s labels are aligned.

5.1.5 Beyond Constituency Parsing

Beside multilingual constituency parsing, I exhibited the versatility of NCCP through
sentiment analysis by utilizing its neural combinator. There are three observations:
1) NCCP can be a strong model for semantic tasks. Its performance is near state-
of-the-art. The speed advantage is still a bright side. However, 2) imposing the
syntactic loss decreases the semantic performance. 3) joint training with syntactic
treebank also leads to degraded semantic performance.

In fact, I also tested NCCP to another task: named entity recognition. However,
unlike the competitive results on SST, the results fell far behind the state-of-the-art
models on CoNLL 2003 English NER. Specifically, I used an 1-ply CM as a shallow
parsing chunker with FFNN,,,; for NER labels and the F1 score was around 83 with
PWE. Recent NER models” performance frequently show F1 scores above 92.

For these results, I suppose two reasons account the gap: 1) different syntactic
annotation schemes and 2) the natural difference between syntactic and semantic
tasks. To be concrete, the syntactic structures in SST annotated automatically by
a syntactic parser and are imposed in a binary tree format. (See the example in
Section 5.4.3.) On the other hand, CoNLL provides both NER chunks and syntactic

60 Chapter 5. Discussion

CNF Left (0) nCNF Mid (0.5) CNF Right (1) Multi. 55 Linear Coeff.
2K- lg7x+r0008n?] [eox+too0eox?] [B7x+00045%2] |5.3x-0.0041¢ ' T
1.5K- - s e
1K - ~ 50-
500 i /
8 o- 45-
B 2K- [gox¥o0078x] |Bléx+00066x)] |5I0x+00088%2 |4.4x-0.0003%% . A
Z 1.5K- o 0 >,
5 IK- & : _
e w :
3 500- / Quadratic Coeff
g 0O 0.04 - —
2 7K |88x+0.0306¢) [55x+0.0087%¢) [7.5x+00109] [5.0x+0.0084%]
1.5K- L 003 e &
1K- ® 002-
500- ' g
0-, | | ! ; ; | | ; | | | 0.01- eqq A DM
0 100 200 O 100 200 O 100 200 O 100 200 s ’
Sentence Length for CB and CM DPTB Tiger

FIGURE 5.3: Empirical complexities of NCCP parsers for each corpus with linear
regressions (LR) are shown on a light blue background when the quadratic terms
are negative for CB and CM (left) or direct linear and quadratic coefficient scatter
for DB and DM (right). For DPTB and TIGER, pB € {0,0.25,0.5,0.75,1} and pM €
{continuous, head, random, leftmost, rightmost} are used for the scatter. Cubic LR gives all
negative cubic terms highly close to zero.

Number of Gold Trees in PTB Test Set
224 725 795 465 162 35 9
96-

N
— 90- — CcB --- CM

LL J
88 o XLNet A fastText+BiLSTM
0-9 10-19 20-29 30-39 40-49 50-59 60-69
Sentence Length Bins

FIGURE 5.4: XLNet provides an overall improvement for CB and CM on length bins.
All models find it challenging to handle long sentences.

spans. However, NER chunks and phrase spans are not always in relations of either
containing or being contained, creating some ambiguities.

5.2 Empirical Complexity and Speed

Extreme cases indicates that NCCP’s theoretical complexities are either O(n?) or
O(n3). Specifically, CB and CM is bounded by DB and DM because swap and biaffine
attention create additional computation. However, NCCP has an empirical O(n?)
complexity with strong linearity, as shown in Figure 5.3. DB has higher linear co-
efficients because of its slow binary combination. Meanwhile, DM shows stronger
quadratic tendency because of biaffine attention. On the flip side, CM has some nega-
tive quadratic coefficients for PTB and CTB. Yet, their coefficient magnitudes are on
par with one another.

5.3. Accuracy and Robustness 61

Number of Gold Trees in Development Sets Number of Gold Trees in Test Sets
30270 445 0 6000 18257 4861 1210 276 78 25 3 43667 730 1 9073 26338 7009 1490 344 96 32 12
F1' Fan-out (k) Multi-branching Arity (m-ary) b Fan-out (k) Multi-branching Arity (m-ary)
A

90 \ o 75- o

80- T 50- \ T
= =

70- i = d PLM Model —- DB —- DM @

31376 1488 162482 1349611685 5062 1774 415 98 10 36317 1963 194470 1537913497 6166 2202 602 130 20

R R N e
60 - 50-
40- 25-

1 2 31 2 3 4 5 6 71 8 1 2 31 2 3 4 5 6 71 8

19611
18611

FIGURE 5.5: DB and DM’s discontinuity and multi-branching performances. DM keeps
some points ahead in terms of F1 scores on TIGER richer in discontinuity.

Prop. Gold PWE 0z =0 Pz >0 PLM Pz =0 0z >0
M-ary Tree|] CB CM | DB DM | DB DM | CB CM | DB DM | DB DM
1 9,073 | 9225 92.02| 91.43 91.35| 91.68 91.53 | 93.80 94.33| 93.36 93.41|93.91 93.82
2 26,338| 90.41 89.94| 89.87 89.68| 89.95 90.02 | 94.41 94.33| 93.47 93.65|93.77 93.92
3 7,009 | 84.17 83.56| 83.50 83.34| 83.60 83.79 | 90.27 89.81 | 88.31 88.60 | 83.57 88.87
4 1,490 | 77.87 78.95| 78.19 79.82| 78.50 78.86| 87.42 86.51| 83.98 86.50 | 83.88 85.90
5 344 | 7419 77.29| 76.14 78.46| 7497 78.87 | 81.42 84.06 | 78.61 85.15|81.38 83.17
6 96| 70.05 78.35| 72.90 80.63| 77.39 76.29 | 78.64 80.00 | 79.23 83.50 |79.02 76.44
7 32| 64.71 86.15| 73.53 87.10| 76.47 71.43| 76.47 70.18| 75.76 77.42|80.60 54.90
8 12| 64.00 72.73| 81.82 85.71| 75.00 80.00| 78.26 86.96 | 78.57 83.33|91.67 63.16
9 31100.00 75.00 | 100.00 75.00 | 100.00 50.00 | 100.00 75.00 | 100.00 85.71 | 85.71 100.00
k>1 731 - -| 7395 77.60| 75.68 78.94 - -| 78.62 83.04|78.65 82.71
All 44,397 | 92.54 92.08| 91.99 92.02| 92.00 92.00| 95.71 95.44| 94.70 94.79 |95.08 95.09

TABLE 5.5: Multi-branching and discontinuous F1 scores of DB and DM on (D)PTB test
sets. We grouped k > 1 because only one tree has fan-out k = 2 in the test set. The scores
of CB and CM are from Chen et al. (2021).

5.3 Accuracy and Robustness

5.3.1 Contextualization and Length

For the continuous models CB & CM, better contextualization with PLM offers great
improvement for most sentences, especially for longer sentences, as suggested in
Figure 5.4. BiLSTM.y; also plays an important role for increasing my PWE parsers’
accuracy as demonstrated in 4.3. Beside the contextualization for the input termi-
nals, contextualization for the iterative plies are also crucial.

In Table 4.4, I examined that using the performance of FFNN;,, is significantly in-
ferior to that of its RNN counterparts, suggesting that some information might not
be encoded locally. Thus, the COMPOSE function should remain somehow in a con-
textualized form to collaboratively leverage the whole ply. However, using BIRNN
(e.g., BiQRNN,;, and BiLSTM,;,) might still be a bottleneck for long-range dependency
in a ply.

DB & DM show similar trends for the relationship between sentence length and
parsing accuracy. In the next subsection, I show other perspectives of DB & DM’s
accuracies.

62 Chapter 5. Discussion

Prop. Gold PWE p;=0 Pz >0 PLM pz=0 Pz >0
Me-ary Tree DB DM DB DM DB DM DB DM
1 470 | 4537 49.14 | 51.64 5532 | 5516 56.84 | 5445 57.48
2 15379 | 81.83 8257 | 8225 8336 | 8591 86.34 | 8650 87.31
3 13,497 | 80.58 8041 | 8095 81.05 | 8596 8535 | 86.93 86.89
4 6,166 | 7343 7334 | 7404 7436 | 80.71 7993 | 8176 81.92
5 2,202 | 63.66 6414 | 6427 6515 | 71.09 7240 | 7337 73.88
6 602 | 50.72 52.85 | 51.62 5513 | 59.30 63.61 | 6132 64.79
7 130 | 36.25 43.38 | 4053 44.91 | 4551 55.02 | 4359 50.37
8 20 | 1124 2439 | 1644 1951 | 2432 2424 | 16.67 20.00
9 6 | 1290 66.60 | 21.43 2857 | 16.67 33.33 | 1290 54.55
k=1 36,317 | 8595 8592 | 86.41 8639 | 89.85 89.75 | 90.69 90.66
k=2 1,963 | 59.88 59.64 | 5995 62.05 | 7115 6753 | 69.78 70.85
k=3 194 | 5746 59.83 | 5889 60.61 | 68.23 6391 | 69.21 68.95
All 38,474 | 84.56 8450 | 8499 85.08 | 88.82 8857 | 89.55 89.58

TABLE 5.6: Multi-branching and discontinuous test F1 scores of DB and DM on TIGER.
Fan-out is detailed in k.

5.3.2 Multi-branching Arity and Fan-out Degree

I present the F1 scores by discontinuity and multi-branching arity in Figure 5.5. Like
sentence length, discontinuity and multi-branching arity generally create more dif-
ficulties for constituency parsing. Both DB and DM exhibit declining trends of F1
scores with the increasement of the two aspects.

DM exhibits persistent advantages over DB when these properties are frequent. I
further examined that CM has the same gains over CB starting identically from 4-ary
nodes with minor score differences on (D)PTB under the same pg = 0 condition, as
shown in Table 5.5. The result supports the argument of Xin, Li, and Tan (2021) that
n-ary constituency parsing without binarization preserves some natural advantages,
e.g., predicate-argument structure. Specifically, pz > 0 shifts DM’s multi-branching
advantage to frequent low-arity trees, favoring the overall scores on DPTB, while it
enhances both discontinuity and multi-branching advantages on TIGER, as shown
in Table 5.6, in agreement with Table 4.11.

5.3.3 Hyperparameter Tuning and Robustness

On one hand, CB and CM have fewer hyperparameters and the optimal loss weights
can be obtained with grid search, as demonstrated in Figure 4.1. The result show
putting more weight on the structural orientation part brings more marginal accu-
racy gain.

One the other hand, DB and DM has more hyperparameters which necessitate
the automatic BO hyperparameter tuning process. Likewise, I can obtain some in-

terpretation from Figure 5.6. For example, on TIGER, higher ocziryj ,Bc, and Bx are
preferable.

From Figure 5.5 and Table 4.10, we learnt that TIGER is more challenging in dis-
continuity. Bad discontinuity prediction seems to cascade to multi-branching predic-
tion, resulting in degradation of both properties. Meanwhile, DPTB is largely trans-
formed from PTB by typed traces and automatic rules, where the multi-branching

accuracy stays more stable. Higher ocz}rlfl ,Bc, and Bx help DB and DM achieve better
robustness for discontinuity.

63

5.3. Accuracy and Robustness

‘e10d105 9A109dsa1 uo JuaIayyIp are saduLIajard Ay ‘(FG° 0 ey sso axe sured Jre “-3-9) s1ajewreredrad Ay 03 aAnyISUDS JOU AT

S[@pow 3} SIYAA 'TS UI S3I00S JO a3uel e JJIM SpUa pue (W030q puada] Yoea Je J0P [[eWsS € “3°T) S3I0S [AP IS YIIM siaeys ssavord Og ayJ, :9°'G TINOI

1168 -«
6,68
2868
v8'68 |

19611 | T4
INQ [9POIN

91’26
€6
0€C6
L£26

gldal T4
INQ 18poN

A

-<l>o«uul!ﬂ!%diﬂﬁ°°

*d

|:

|

40T

NS
-,.0T
-OOH

60T
50T
o1
o1
,.0T
H-S
-OOH

od x4 >4 9

® . ® -0
-

_ w . -

& %

6 ',

osipg E_u loqelqy msm_
1 1 1 1

_H_Q ou ow_uu E_u _mnm_u mmd
1 1 1 “ " “ ' _ o
® - . i .
8 R -t
é : -
-«
. $] -%
¢ ¢ -H

A
)
)

- ge 0T

©..01

Wby el
1 1

, - 0T

-,0T
WJ -,.0T
™ . o1

-(0T

1o wl
0d wusP® pusP wopy iy jegey Bery

) 1 1 1 1 1 1
A A~ 6 @ --o 8268 o
lw_”

g8e'68 O
1 ﬂ .z, 6768
: 0 ® 6568
. -
& 1861 | T4
c @ v » -T gq |apon
DQ c_r__mc __”_:m._c R O S
PS m YA -0 2.T6 e
| ||
_v;, 0616 O
. .
5 .., loze
H = 62’26
’ (] . -
- 8 didal T4
-1 dd IsponN

64 Chapter 5. Discussion

4 Test set DPTB TIGER

(Forced root=) 3 Total trees 2416 4998

l L(stopjlte:lgatlorll) J....l,“: DB’s ill-formed parses 1 2

H NP NP i DM'’sill-formed parses 15 47
: H p

R — O VO [—— : Biaffine attention matrices 594 7,278

NP NP 0 = 0.5 solutions 587 7,114

Average of tries if 6 # 0.5 124 42.9

JJ NN VBD IN DT NN JJ .

** Margin debt was at a record high . FAIL + identity matrices 0+4 0+81
FIGURE 5.7: Failed parse from the
multi-branching model. The model TABLE 5.7: Errors in discontinuous NCCP
stops parsing and saves compu- PLM models with pz > 0. A FAIL causes a
tations when it repeats the same matrix of ones, whereas a close to one gives
chunking positions. an identity matrix — an expensive null ac-
tion.
DPTB Tiger
150~
©
100' °® |
1
50- ° . LI a o
0-@e « & o o ot od oot
1) L
.© 300- o
= .
:‘:t L]
200~ . B
°Se %
Lo o
100 - ..
] ° °® o.. §
0- °® o 8 MRS AE S *é.“qu
05 07 09 FAL 01 03 05 07 09 FAIL
Threshold

FIGURE 5.8: The numbers of tries to decompose biaffine attention matrices. FAILs are
marked with “a”.

5.3.4 Inference Error Rate

As greedy parsers allow ill-formed outputs without a single root, especially in case
of single-model inference, the rate of an invalid parse is a focused topic for my
greedy parsers. During the training process, fatal errors, such as frame-breaking
orientations, appear at an early stage of training. However, the late 90% training
time contains very few errors. CB on PTB is free from invalid parsing on the test set.
For CM, it is observed that 11 out of 2,416 test parses are forests rather than parse
trees when they are trained with fastText. However, the multi-branching parser with
fine-tuned XLNet reduces the error count on the test set to 1.

I present a failed CM parse, as shown in Figure 5.7. The postnominal adjective
“high” is uncommon for English. Because the model did not group it with the ad-
jacent “a record” to form an NP, the error propagated to higher layers (e.g., no PP as
an adjunct to form a VP), causing the bad parse. It implies that the multi-branching
models require an appropriate predict-argument configuration to chunk.

In the same vein, discontinuous models DB & DM yielded a few invalid parses,
as demonstrated in Table 5.7. DM models produce more errors. However, unsuc-
cessful decomposition of biaffine attention matrices might not be the direct cause,
as also shown in Figure 5.8. pg > 0 variants cleared the matrices which cannot be

5.4. Sample Analysis 65

SBARQ SBARQ
T T
S SQ(34%)
1
VP (27%)
VP PP(39%)
PP SBAR(39%)
SBAR S(38%)
S VP (60%)
VP NP (26%) PP(36%)
l_;l I_L|
NP PP 35% 47% 57% 43% 61% 61% 62% 40% 64% 663 34332
—— —— WHADVP| | | | | WHADVP NP N
WHADVP | | | | wHADVP NP | | NP WRB VBD DT NN VBN TO WRB PRP VBD IN NN .
WRB VBD DT NN VBN TO WRB PRP VBD IN NN . How was that practice referred to when I was in school ?

How was that practice referred to when I was in school ?

. SBARQ seaRg

s $0(423%) 6=0.5 009
VB < NP (23%) VP (32%) (3 tries)

1
BAR+ =)
S s ‘ SBAR+S (20%)

VP (55%)

-
I

‘ | PP(31%)

N -5
- PP
NP ,,Lj ,—t—‘ 24% 45% 51% 49% 34% 22% 32% 45% 37% 55% 45%58%
WHADVP — (PP WHADVP - NP WHADVP| | | | PP WHADVP NP | | NP |

WRB VBD DT NN VBN TO WRB VBD IN NN . WRB VBD DT NN VBN TO WRB PRP VBD IN NN .
How was that practice referred to when I was in school ? How was that practice referred to when I was in school ?

FIGURE 5.9: An exact matched DPTB sample from PLM DB and DM models versus
CB and CM on PTB. The parse contains complex nested clauses which CM must fail
to capture, and it becomes ungrammatical in the continuous scenario. DB’s outputs
include orientations depicted as arrows and their traveling traces colored for groups.
Meanwhile, DM produces two biaffine attention matrices, one of which has a highly
biased but correct threshold 6 = 0.99. Bar heights indicate values in matrices and their
colors indicate the relationship to 6.

decomposed with any 6 (FAIL). Similar to CM, this genre suffers from more fail-
ures. Specifically, the ply size cannot be reduced to one during the iteration. Greedy
parsers must suffer the defect because of their simplicity. However, invalid parses
can contribute positive F1 scores and global parsers can yield inaccurate parses.

I applied methods such as Boolean matrix factorization and singular value de-
composition. However, they did not show any improvement but significantly slowed
down the speed. This is because 6 # 0.5 cases are few. My sequential tries to decom-
pose might be naive, but it is effective. In Figure 5.8, the number of tries does not
significantly increase under 6 < 0.9 within 50 tries. For 6 > 0.9, although some tries
are expensive, I will see that they are worthy in the next section. The imbalanced sig-
nals from both datasets account for the bias of 0 — more than 92% biaffine attention
signals are ones, as shown in Figure 5.1.

5.4 Sample Analysis

5.4.1 Continuous vs. Discontinuous Parsing

Figure 5.9 highlights the value of discontinuous parsing by demonstrating the re-
spective CM parse. Conspicuously, the branching tendency of the continuous parse
is to the right, while it is not obvious for the discontinuous parsing. Meanwhile, I
observed instances of similar unsupervised headedness weights. This sample is not
trivial, which challenges both PLM DB and DM models.

In Figure 5.9, DB shows sinuous travel traces of “1”, “was”, and larger @-subtree
nodes which involve the turning of orientations. The varying context leads them to

66 Chapter 5. Discussion

VROOT (Gold)
T
cs
1

)
S
i
T
NP
AP s
I —l_%
| | vP NP
—L—

VAFIN $ ADV § ADV CARD NN $, PDS VAFIN CARD NN $.
sind Y nur '' etwa 5000 Arbeitslose , das sind 2,8 Prozent .
(Currently are indeed ~~ only '' about 5000 unemployed registered , those are 2.8 percent .)

VROOT (Predicted in Exact Match)

T
Cs
1

AP

> — | 1
| %) % NP
“« | — r 1 [1
VAFIN $(ADV §$(ADV CARD NN $, PDS VAFIN CARD NN $.
sind Y nur '' etwa 5000 Arbeitslose , das sind 2,8 Prozent

VROOT (Predicted with Disc. Failure)

T
CS(26%)
S(54%)
T
0 =0.5 NP (22%)
Ba_|| ar(3iz) I)
| %
_ | | (23%) NP (30%)
| | —
27% 27% 47% 18% 51% 16% 34% 49% 32% 53% 16% 37% 33% 53% 47% 23
ADJD VAFIN $(ADV $(ADV CARD NN $, PDS VAFIN CARD NN S.
Gegenwdrtig sind Y nur etwa 5000 Arbeitslose , das sind 2,8 Prozent

FIGURE 5.10: A TIGER parse. DB natively with @-subtrees achieved the exact match
but DM erred with pg = 0.

SBAR+S
NP (44%) VP (56%)
(48%) 52%

WHADVP 4%% 27% 313 anJe
WRB DT 33 NNS VBD JJ
when the financial reports were due
FIGURE 5.11: A semantic @-subtree by DM with pg > 0. Copula “were” has less affinity
than “when” and “due”.

achieve complex movement. DB also created some grammatical substructures for
“How”, “referred”, “to”, “was”, “in”, and “school”.

Meanwhile, the DM parse is more dramatic. The formation of the lower dis-
continuous VP involves five nodes, two of which are irrelevant words “How” and
“referred” triggered by wrong discontinuity signals. They are discontinuous but for
higher VP. The two nodes create a noisy biaffine attention matrix because their gram-
matical roles are compatible with the lower VP. Trained for extra robustness, the
matrix decomposition with 5 tries found the right 6 to identify the correct VP mem-
bers excluding “How” and “referred”. The interply loss and the decoding process
gave this parse a chance for perfection.

In Figure 5.10 for German, DB achieved a long distant constituent in a more sub-
tle way. The word “zwar” joins “registriert” as an @-subtree when the formation of
intermediate NP shortens their distance instead of a travel through. “Gegenwartig”
follows and forms a VP. However, DM failed.

The pgz > 0 matters. The above failure explains why DM is inferior to DB with
pz = 0. DB’s orientation system allows some free travel before joining with cor-
rect mates. The constituent formation through steps of accumulation creates a more

5.4. Sample Analysis 67

r IP]
343 VP (38%) 29
T 1
57% IP(43%)
4}% VP (59%)
I T 1
I 42% 25% NP(33%)
T T 1
I 3?% 293 NP (36%)

T T 1

NP | 32% NP (22%) 46%

——— | | T Ly 1 |

DNP(49%) 51% | | 29% NP(27%) 44% |

—— | | | | —— | |

NP(46%) 543% | | | | NP(51%)49% | |

—— | | | | | — | | |

51% 49% | | | | | 523 48% | | |

| | | | | | | | | | | |

NT m|> m|= I ml: ml: m|> m|= AD.|IP ml: m|> NT NT
NR BA NR NN DEG NN VV AS NN PU NN JJ NN NN NN NR PU

NE £ B KA M HE 8L T HK . ?ER%‘M%T;‘EA FE E Rl EE 8 .

Translation: Kano awarded (#245/ 1) the Japanese delegation's flag to the head of the delegation ([4]
K) and director (F2/F) of the Tokyo Comprehensive Sports Center for the Disabled, Toshihiko Ban.

r T T —IP T T T T T T T 1
1?% ila% PP(12%) 9? 9? 5? s%i 6? 8? 6? 8? 14T

| | NP (44%) 56% ip | | | [|

| | —— | T | | | [|

| | PP (48%) 52% | PP(33%) 25% 423 | | | |1 | |

| | — | | —4 | | | | | | |

NP | 429 58% | | 46% 543 | | | . | [|
—— | | | | | | | | | | | [|
46% 54% | NP | | | ~p | | | | | | [|
| || | | | | | | | | | | [|
D NP PU NP PP PP NP PP VB PP VB PP VB2 AXD FN AX VB2 PU
o e . B o ?HEWLB X EF %2 B BH5 B> T & £ @O T Hd .

Translation: For this reason, the Tang dynasty’s (D) ancestors ({[1ffi 7z %/l&-subject) have come to
realize (]) it through struggles (75°[#]/ % -object).

FIGURE 5.12: Chinese (top) and Japanese (bottom) parses from CM model.

stable context. However, DM’s group action happens all at once. A wrong compo-
sition might create a quite different context, which leads to unseen reaction chains.
The strange unsupervised headedness weights reflect the issue. On the other side,
with pz > 0, DM can also gradually build and discover some semantic substructures,
as shown in Figure 5.11. In contrast, DB is not sensitive to py because of its nature,
in agreement with Table 4.11.

5.4.2 Unsupervised Headedness in Japanese and Chinese

Figure 5.12 presents two non-English parses from the CM model. Both the Chinese
and Japanese languages possess functional markers that receive high attention (per-
centage and words in red), such as the second character tagged with BA in Chinese,
and Japanese case markers tagged with PP. Interestingly, the Chinese verb (i.e., the
word meaning “awarded”) received the highest attention, whereas Japanese verbs
(i.e., two sub-words tagged with VB) did not. I supposed the reason behind this is
that Japanese sentences drop the VBs and other heads more often than Chinese. The
coordinated NPs in the Chinese parse (i.e., two words meaning “head” and “direc-
tor”) received equal attention weights. Moreover, two trees show their branching
tendencies: Chinese is middle-factoring-alike; Japanese is a left-branching language,
and KTB has a large flat structure on the right.

5.4.3 Structured Sentiment Analysis

As shown in Figure 5.13, sample (a) has an obscurely hard-to-capture label 3 for “is a
gem”. The model failed to label it with 3 but “is a gem .”. This sample is not a rare case

68

Chapter 5. Discussion

(a) , ' ,
4
T |
2 2 2 2 2 2 2
J1r1 Hubac 's script is a gem Light , cute and forgettable
43%10 2?04
1 T
23140 4210 21?04
23140 43210 2104
23140 43210 21:]%04 2410
I_J_| T 1
21340 23140 23140 23140 23140 23104 43210 23104 21304 23104 4210 23104 01234 23104
Jiri Hubac 's script is a gem Light , cute and forgettable
© 2
T
(@
2 2 2 2 2
Both awful and appealing against progress Frenetic but not really funny
3%04 21304 2?34
r
2304 21304 23140 0234
against progress
1024 0234
0234 21304 4210
23140 01234 23140 4210 23104 2140 23104 10234 23410 4210 23104
Both awful and appealing Frenetic but not really funny

FIGURE 5.13: Samples from SST (upper parts) and its PWECB prediction (bottom parts).
Sentiment labels are color in red for positive and blue for negative. Each CB prediction
is a string of five labels sorted by their scores and the leftmost label is the result.

for the obscurity in SST, which makes the task challenging. Samples (b) and (c) are
binarized coordination where CB also failed due to the semantic reasons. Sample
(b) relays the right-hand side sentiment but (c) relays the left-hand side. Sample
(d) contains a semantic negation “against” that reverts the polarity of progress. CB
capture all labels as neutral. Finally, sample (e) has an common negation “not” which
CB managed to predict. However, the reinforcement from “really” to “funny” is not

captured.

69

Chapter 6

DAG Conversion for PTB and CTB

Natural languages contain complicated structures beyond tree structures, as intro-
duced in Section 1.2.2. PTB and CTB as two of the most frequently studied large-
scale annotated phrase structure corpora has co-indexing systems (Bies et al., 1995;
Xue et al., 2000) to recover discontinuity and multi-attachment for DAG structure.

The recovery of discontinuity is pioneered by Evang (2011), which then facilitates
the research of discontinuous constituency parsing in the recent decade. Itis done by
looking for each pseudo-attachment with a co-indexing number to its true syntactic
parent. The pseudo-attachment is a phrase marked by an identity index (i.e., an
unique integer suffixed with the constituency label) and the other null element(s),
which are one or more terminal(s) marked by a corresponding reference index (i.e.,
co-indexing). The pseudo-attachment is detached from its original parent in the
continuous bracketing format and is reattached to a phrase with a corresponding
reference index to replace its null element. The recovery by Evang (2011) considered
only one null elements and such detach-reattach operations create the discontinuity
within the tree structure.

However, there are cases where multiple co-indexing null elements exist, which
means the pseudo-attachment should be shared by multiple phrases with the iden-
tical indices. Multi-attachment leads to the DAG structure. Evang (2011) avoided
multi-attachment by resolving a closest phrase for reattachment, while discarding
other phrases and creating ungrammatical structures. Instead, I provide method
with manual check for the full reattachment in this thesis. Moreover, I also address
and include intra-sentential gapping previously avoided by him. (PTB co-indexing
does not support inter-sentential phenomena.) I also investigate CTB which has a
close annotation scheme to PTB. I provide sample analysis and statistics after con-
version. Please find my code more details.

Most research for constituency parsing is supervised, where parsers follow the
annotation schemes of corpora. Many other constituency corpora, such as KTB,
NINJAL Parsed Corpus of Modern Japanese (NPCM]) Japanese Language and Lin-
guistics (2016) and shared task SPMRL 2013 Seddah et al. (2013), are annotated in
bracketing format that limits the parsing structure to continuous trees. Those tree-
banks require special knowledge for their respective DAG conversion. Finally, I
think providing a highly specialized parser only for constituency parsing has some-
how very limited range of usage. Thus, I discuss a new pair of NCCP parser for the
DAG structure, which potentially be applied beyond constituency parsing.

70 Chapter 6. DAG Conversion for PTB and CTB

Algorithm 5: DAG conversion with null element.
1 T < {*T*,*ICH*, *EXP*,*RNR*, *};
2 foreach sentence s do
foreach node ¢ from s co-indexed with null elements N of types in T do
foreach nin N do
attach c to the grandparent of n (i.e., destination d);
if c properly dominates d then
find the node labeled with PRN on the path from c to 4, call it e;
detach e from its current parent;
if c is not the root of s then
10 ‘ attach e to the parent of c;

© ® N9 & Ul R W

11 if none of N belongs to type * then

12 ‘ detach c from its original parent;

13 | go to Algorithm 6 for intra-sentential gapping;
14 | delete all null elements;

15 | delete all non-terminals without children;

16 | remove all remaining indices from node labels;

6.1 Conversion with Co-indexing

6.1.1 Trace with Null Element

Following Evang (2011), I consider five types of null elements for reattachment in
PTB. For types already exploited by Evang (2011) to create discontinuous trees or
not, I use ¢ for his fully exploitation, A for partially exploitation, and X for no ex-
ploitation.

v *T* A-bar movement.

v *ICH* Interpret constituent here.

v *EXP* Expletive.

A *RNR* Right node raising. (Evang (2011) picks the closest reattachment.)

X * A-movement.

Among those types, types *RNR* and * are special because they lead to the DAG
structure with a fully exploitation in Algorithm 5, The loop in line 4 enables multi-
attachment. Specifically, type *RNR* and type * are different. Type *RNR* requires
detachment from the pseudo-attachment, while type * keep the original parent at-
tached during reattachment. The reason for detachment is that their parent is a
pseudo-attachment that does not have any syntactic role. In contrast, non-* nodes
do have (Marcus et al., 1994). Besides the above differences, The improvement also
includes lines 11-13 for gapping.

An instance in Figure 6.1 exemplifies Algorithm 5. The A-movement of programs
like this has two parents and two roles for them; One is as the original subject for SQ
and the other is as an unlabeled object for VP of the verb eliminated. Because two roles
are grammatical for their parents, there is no need to remove the original attachen-
ment like why originally at SBARQ. Noticeably, my conversion keeps the function tags
for grammatical roles as Evang (2011) does, such as -SBJ and -PRP.

There are a few cases where different trace types share the same reference index,
where I need to decide whether to detach the subtree with the identity index. I will
cover those minority in Section 6.2.

6.1. Conversion with Co-indexing 71

1
NP ADVP-PRP

WHATVP NT NT | |
IN DT RB VBN -NONE- -NONE-

WRB VBP NNS
Why are programs like this *-2 ol ?

not eliminated

SB?RQ
sQ
l Il
[sB3] |
“ VP
I |
[PRP] |
NP
PP
WH?DVP TP TP
WRB VBP NNS IN DT RB VBN .
l')

Why are programs like this not eliminated

FIGURE 6.1: DAG conversion with both A-movement (*) and A-bar movement (*T%).

6.1.2 Intra-sentential Gapping

]
S
|

1
S

NP-SBJ ADVPTTMP NP-2 NP—STJ NP=2 NP—S?J NT:Z
[1 [1
NNP b NN CC NNP NNP CD NN

NNP NNP RB VBZ CD NN ,
Dean Witter now recommends 85 % , Goldman 65 % and Merrill Lynch 50 %

S
]
|
S
I 1
[SB]]
— l
S
(—'— —
[SBJ]
I
S
! I
5831 [THP] |
l 1
ADVP NP NP NP
I_L| [I 1 [I 1
NNP NNP RB VBZ CD NN , NNP CD NN cC NNP NNP CD NN
Goldman 65 9% and Merrill Lynch 50 %

Dean Witter now recommends 85 % |,

FIGURE 6.2: DAG conversion with gapping coindexing marks.

PTB co-indexes each coordination with either “-” for a complete phrase (i.e., a
template usually at the initial place) or “=" for one or more incomplete phrases (i.e.,

72 Chapter 6. DAG Conversion for PTB and CTB

Algorithm 6: DAG conversion with intrasentential gapping.
Function SHARE-COMPLEMENT (template phrase t, gapped phrase g):

1
2 foreach not co-indexed direct child 7 of t do
3 if r is a complement of t and 7 is not a child of g then
4 ‘ attachr to g;
5 Function IMITATE (template phrase t, gapped phrase g):
6 SHARE-COMPLEMENT (f, ¢);
7 foreach common co-index ¢ do
8 ¢ co-indexes (i, j)-th descendants (', ¢') of (t,g);
9 if i = j then
10 ifi=j=1then
11 ‘ continue;
12 else
13 | IMITATE(H, g");
14 else
15 create a new child ¢ for ¢ with the label of t!;
16 remove ¢' from g and attach g' to g;
17 IMITATE(t!, §);
18 if the only template phrase t in sentence s exists then
19 foreach corresponding gapping phrase g in s do
20| | IMITATE(Y, g);

gapping with remnant components) to imitate the template. The template and gap-
ping phrases are commonly conjunct in no more than one coordination structure in
a sentence.

Algorithm 6 has a recursive IMITATE function making each gapping phrase re-
semble its template. In PTB, gapping phrases must have incomplete structures of
small heights. Each IMITATE entrance lets a gapping phrase regain one level of miss-
ing complements from the template via the SHARE function. The missing structures
are recovered by lines 15 & 16 by forcing co-indexed nodes to grow to the same
height with the same structure.

I exemplify the process in Figure 6.2. At first, S for Dean Writer new recommends
80 % is found to be the template t with S for Goldman 65 % being an imitator phrase.
The modifier ADVP is not shared to the imitator because it is not a complement for the
formation of S. Then, a new substructure VP (in yellow) is created by lines 14 & 15
and the second IMITATE entrance creates two VPs in two respective S nodes. In con-
trast, VBZ is shared by VPs because it is the complement for them. The process works
in a top-down style for every substructure paired with the template and gapping
phrases.

6.2 Exception and Error Correction

The annotation of PTB involved a large amount of human labor. Thus, a few errors
and exceptions are inevitable. Evang (2011) adjusted annotation for 26 sentences in
DPTB via my implementation to recover the exact DPTB corpus. In addition, I find
10 sentences during my conversion.

6.2. Exception and Error Correction 73

N%—PRD
NP NP PP
I 1 1
NP-SBJ-1 NP-SBJ NP PP NP PP NP
NNP NNP , VBD VBN -NONE- NN —NO&E— cC NN JJ NN —NO&E— IN NNP NNP

William ... Bank , was named *-1 president *RNR*-2 and chief executive officer *ICH*-2 of Citadel ... Bank .

(a) Wrong trace type of *ICH*.

S
1

S—T%C
v
NP PRD
SBAR
NP-SBJ NP WHNP NP- SBJ 1 NP- SBJ ADVP MNR
NN NN VBZ NN —NONE— PRP VBP —NONE— T0 —NONE— .
Index-arbitrage trading is * something 0 we want ¥-1 to watch FTH-1 closely , "

(b) Wrong trace type of *T* and missing index of null complementizer.

FIGURE 6.3: Two annotating errors in PTB causing the same index for different trace
types. Top: *ICH* is supposed to be *RNR*. Bottom: *T*-1 should be a null element for
null complementizer 0 instead of I.

6.2.1 Wrong Trace Type

I show annotating errors in PTB which causes the same index for different trace
types in Figure 6.3. The top example (a) does not trigger an error in Algorithm 5
because the algorithm is not sensitive to the difference between *RNR* and *ICH*.
The result of the conversion is a DAG with the two different reattachment and the
detachment of PP-2 from NP-PRD.

Meanwhile, the bottom example (b) triggers the an error because *T* requires
detaching I from S but * does not. My reannotation is to put a suffix -2 to WHNP
and replace *T*-1 with *T*-2. The total samples of wrong trace type is four, two of
which are already addressed by Evang (2011).

6.2.2 Circle in Gapping

Although there seems no limitation that the syntactic can go beyond DAG for cyclic
graph, cyclic graph is the very minority which makes parsing very difficult to han-
dle. To my best knowledge, no parser support cyclic graph. In case of my NCCP
parsers, they cannot make a decision to change the structure it already produced,
even for the concept for DAG parsers that will be discussed in Section 7.4.

Figure 6.4 shows (c) a sample that contain mutual referred indices that create
cyclic graph. There are only a few such samples and I manually reduce the cyclic
graphs back into DAGs by removing some indices. In the case of (c), I discard
ICH-2 because A-movement is more common in statistics. (However, I provide

74 Chapter 6. DAG Conversion for PTB and CTB

an option in implementation that allows the alternatives.) Some other A-movements
refer to its descendants and I also discard such indices.

6.2.3 Ill-formed Coordination

My DAG conversion features in intrasentential gapping from coordination. How-
ever, some of them are ill-formed that lack basic structures that makes them sym-
metric to the template phrase. Figure 6.4 (d) shows such a case. Those sample are
very easy to detect because the labels of the gapped phrases are not the same with
the label of the template phrase and the tree heights are not matched. Manual rean-
notation ensures the samples are regular coordintation. There is only one exception
sample that the gapped phrase is not in the coordination. I manually indicate the
roots of template phrase and the gapped phrase for Algorithm 6.

6.2.4 Involving External Phrase

Algorithm 6 executes after Algorithm 5 so that gapped phrase can immitate the
structure in the trace-modified template prhase. However, there are three sam-
ples with both expletive (*EXP*) and coordination, which the gapped phrase can-
not catch the structure removed by *EXP*. Besides, the label of coordination is not
grammatical after the process.

Thus, I manually changed the coordination label and the structure to fit it into
my algorithms. Figure 6.4 (e) shows such a case.

6.2.5 Difference of PTB and CTB

CTB uses similar annotation guildlines to PTB. However, there are some certain dif-
ferences:

¢ Fewer trace type with coindexing: *T*, *RNR*, and *.

¢ The coordination template phrase is also marked with =.

Thus, Algorithm 5 is applicable for CTB but Algorithm 6 needs to first decide which
phrase is the template. The decision is the phrase that contains the most unindexed
descendant phrases because some templates are the last phrase of the coordination.

6.3 Summary and Discussion

6.3.1 Data Statistics

As a new feature of DAG corpora, I show the statistics of number of parents and
their conversion types in Tables 6.1 & 6.2. DPTB can be seen as a subset which only
has the 1-ary column of each table. For both DAG conversions of PTB and CTB, *
and *T* are the major sources of reattachment, while *, gapping, and *RNR* are
the top three DAG provider. However, both reattachment and DAG are very sparse,
especially for CTB, which makes the task very challenging.

6.3.2 Comparison with Combinatory Categorical Grammar

As a parsing formalism, CCG also addressed gapping phenomena in coordination
(Little, 2010). The solution of CCG is through compound lexical tags (i.e., supertag-
ging) operated by combinatory rules, whereas ours is not a parsing formalism but a
graphbank in DAG with each node being an atomic constituency label.

6.3. Summary and Discussion 75

Phrase Level: Number of Parents Sentence Level

Type l-ary 2-ary 3-ary 4-ary 5-ary 6-ary | Reatt. DAG
T 15,837 71 3 - - - | 13,584 82
T-PRN 840 2 - - - - 842 4
ICH 1,265 2 - - - -1 1,239 3
RNR 2 203 5 1 - - 209 210
EXP 657 1 - - - - 651 1
* 13 15,590 1,906 217 22 8 | 15992 17,756
Gapping 372 457 36 8 - 4 311 534
Total ‘ 55,226 reatt. of 918,730 ‘ 26,164 16,324

TABLE 6.1: Statistics of PTB after my DAG conversion. PTB (2.0) has 49,208 sentences.

Phrase Level: Number of Parents Sentence Level

Type l-ary 2-ary 3-ary 4-ary b5-ary 6-ary 12-ary | Reatt. DAG
T 3,214 36 6 - - - - 3132 43
ICH 26 - - - - - - 24 0
RNR 999 48 7 - - 1 - 989 58
* 2 2971 55 4 1 - -| 2,877 3,031
Gapping - 16 7 1 - - 1 25 25
Total | 10,426 reatt. of 2,476,071 | 6,883 2,992

TABLE 6.2: Statistics of CTB after my DAG conversion. CTB (9.0) has 132,080 sentences.

Specifically, CCG assigns each word with a string of constituency labels and op-
erating slashes that define how the word combines with adjacent words to form a
parse. Apart from CCG’s ability for gapping, its parsing formalism is context-free
by assuming that necessary contextual information is locally encoded into each lexi-
cal string. Our graphbank simply provides the DAG structure without assumption.
Moreover, operating slashes can only handle binary combinatory operations, in con-
trast to our conversion’s flexible number of child phrases.

76 Chapter 6. DAG Conversion for PTB and CTB

S
L T
VP
L 1
S-2
L 1
VP
1 1
NP-SBJ-1 VP
T
| PP ’ PP-LOC-CLR PP-LGS
ADVP-LOC NP NP S NP NP-SBJ NP NP
| —— —— | | | — T ——
RB , CD NNS IN DT NN -NONE- VBP IN NNS , -NONE- VBG PRP$ NNS CC NNS VBN IN NN NNS .
Nearby , five ... residents of the ... shelter *ICH*-2 sit on stools , *-1 having their necks and backs kneaded by volunteer masseuses .
(c) Circle that beyond the capacity of DAG structure
S
: 1
VP
1 1
PP-LOC
—_—
S-NOM
VP
NP
VP SBAR
NP-PRD-2 S
PP-LOC PP-LOC-PRD=2 VP
NP-SBJ NP NT NP NP—TBJ NP WHI\IIP—l NP-SBJ NP
PRP VBZ DT NN NN IN NNS , CC RB DT NNP IN -NONE- VBG DT NNS WDT ~ -NONE- VBP DT NNS .

It 's a world leader in semiconductors , but behind the U.S. in * making the computers that *T*-1 use those chips .

(d) Lacking a coordinated VP phrase to dominate PP-LOC—PRD=2 and PP-LOC on its right-hand side.

S
:]
VP
. 1
VP
1
1
VP
S=1
VF" VP
1
S-1 VP
VP NP
NP-SBJ 3 PP
1
NP S NP-TMP=2 NP-SBJ NP NP-TMP=2 NP-SBJ NP NP
| | —— | —— —— | | ——
PRP -NONE- D VB 1] NNS -NONE- TO VB DT NN , CC 1] NNS -NONE- TO VB DT IN DT (D NNS
It *EXP*-1 will take several weeks * to repair the bridge , and several months * to repair some of the 101 connections .
T
S
VI‘2 [SBJ]
I 1
VP
M I I
[TMP] NI"
1
[sBJ]
Nll’ Vi
1
T VP
_I—\
VIT VP NP
1
VP VP PP
I‘
[TMP]
NI NP NP Ni NP NP
—— —— | —
PRP D VB 1] NNS TO VB DT NN ’ cc 3] NNS TO VB DT IN DT (D NNS

It will take several weeks to repair the bridge , and several months to repair some of the 101 connections

(e) Coordination gapping that involves expletive.

FIGURE 6.4: Another three annotating error or exceptions in PTB. Top (c): the original
annotation leads to a directed cyclic graph instead of DAG. This is a rare case in PTB
and I choose to reduce it to DAG by manually removing one or more paths. Middle
(d): some samples do not follow PTB guidelines and miss some phrases structure for
coordination. I manually add such phrases by referring to the template phrase. Bottom
(e): three samples involve both expletive (*EXP*) and coordination, which make Algo-
rithms 5 & 6 miss key components. I manually change the coordination of VP into S and
the construction for grammatical and symmetric coordination.

77

Chapter 7

Conclusion

7.1 Conclusion Remarks

In this thesis, I proposed a neural combinatory constituency parsing family or NCCP
that utilizes neural combinators for fast accurate constituency parsing and versa-
tile non-parsing tasks. I generalize NCCP models into that transition-based genre,
which share common features, such as state and iterative ply of finite automata
and chunker-based parsers. NCCP is also grammar-less but reflects linguistic phe-
nomenon such as branching tendency and headedness.

Iimplemented four parsers, CB, CM, DB, and DM, from the combination of {con-
tinuous, discontinuous} tree-based constituency parsing in {binary, multi-branching}
styles. The orientation-based binary parsers CB and DB are the special cases of
the multi-branching CM and DM that utilize chunking function. Specifically, the
discontinuous models DB and DM are extension of the continuous models. For
discontinuity, I equip DB with a swap operation and generalize DM’s continuous
chunking function into discontinuous affinity. To further expand NCCP family, I pro-
vide two conceptual DAG parsers: GB and DM (See Section 7.4). As a continuous
work, NCCP family cover different grammar levels and parsing complexities in the
Chomsky Hierarchy: context-free continuous tree (type-2, e.g., CFG), mildly context-
sensitive discontinuous tree (type-1, e.g., LCFRS), and DAG from unrestricted level
(type-0).

Through experiments, new state-of-the-art parsing speeds on all five corpora are
oberserved, which exhibit significant margins over recent approaches. Meanwhile,
accuracy of NCCP parsers is close to the best models. There are still rooms for fur-
ther accuracy improvements, given my parsers are greedy single models without
decoding enhancement such as beam search. New state-of-the art discontinuous
F1 scores are observed for my discontinuous parsers, suggesting that NCCP parsers
can be good at handling new features if the models are well designed. The models
achieved a nice balance among efficiency, effectiveness, and reflection of interesting
linguistic phenomena.

Specifically, the lineup of binary combinators are CB, DB, and conceptional GB.
CB and DB reflect the branching tendency of a given language during training,
which is driven by signal bias in the corpus. Even though language-specific fea-
tures can add extra human labor to the training process, the effects of which are
relatively minor and knowledge about a language can guide our practice to counter-
act the effects. Finally, GB has an explicit replicate function to create DAG structure.
Although there can be better solution, I expect the implemented GB model still be
fast and influenced by the orientation and duplicate bias in a given corpus.

Meanwhile, the lineup of multi-branching combinators CM, DM, and concep-
tional GM exhibit different characteristics. CM and DM show multi-branching
parsing advantage over the binary parsing, which support the observation of Xin,

78 Chapter 7. Conclusion

Li, and Tan (2021), and the models provide statistically meaningful unsupervised
headedness as a grammatical reflection and a useful by-product. CM needs one
few hyperparameter (i.e., binarization) than its binary counterpart, whereas adding
extra substructures as data augmentation do improve its accuracy. DM has an ad-
ditional hyperparameter (i.e., medoid) but the unsupervised headedness can be a
good choice for medoid. Finally, GM leverages biaffine attention for DAG and adds
a new component for standalone medoids. Again, I expect the implemented GM
model to reflect more grammatical headedness and to continue the advantage over
its binary counterpart.

7.2 Potential Social Impact

The interaction between human and machine is a central topic since the born of
ideas for automatic computation. Accurately interpreting the surface syntactic and
deep semantic structures embedded in natural languages are important milestones
toward the goal of human-machine interaction. Syntactic and semantic parsers are
the efforts as those important milestones.

The trade-off between computational cost and performance is an unavoidable is-
sues for parsing. NCCP family offers the fastest solutions (i.e., the advantage of lin-
ear empirical complexity and small memory footprint) to the community of parsing
or human-machine interaction research with sufficient accuracy. As a prospective
application, NCCP parsers can be transplanted onto portable devices for semantic
parsing jobs, which are an essential part of intelligent virtual assistant (IVA) or in-
telligent personal assistant (IPA), such as Google Assistant, Amazon’s Alexa, and
Apple’s Siri.

Beside IVA or IPA, some NLP applications involve hierarchical structures, such
as event detection of information extraction. One of current efficient solution utilizes
beam search with a transition-based parser for DAG in the domain of biomedical
instruction (Espinosa, Miwa, and Ananiadou, 2019). Although this solution has low
complexity of transition-based parsing, the beam search linearly slows down the
parsing speed. In contrast, my future DAG parsers are expected to offer the results
in one forward pass without beam search. For the overwhelming document being
produced every day from different domains, an efficient solution can speed up many
potential research of fundamental science.

7.3 Weakness and Limitation

A well-defined grammar is the standard to qualify whether a given sentence is gram-
matical or not. A generative parser can generate a correct sentence from scratch in
a top-down style. Being grammar-less (i.e., not being generative), NCCP as well as
many neural supervised discriminative parsers can neither generate sentences nor
grammatically discern correct sentences from incorrect ones. However, sometimes
a line between grammatical or ungrammatical is obscure, especially for nature lan-
guages. And the capacity of discerning incorrect sentence can be indirectly induced
by introducing extra training processes or modeling uncertainty at inference.

While the multi-branching NCCP models show their natural intimacy with head-
edness, they do not support other properties as with HPSG AVM representation,
which involves very detailed lexical and phrasal information. Even though one can
assume that such information exists in embedding vector, the extraction can be very
challenging, especially when supervision is lacking.

7.4. Future Work 79

Action joint: Joint Joint Joint
I !
i i i
right left replicable
Action joint-replicate:
Jjoint-replicate joint Jjoint joint-replicate Jjoint-replicate

I I ! ! 1 !

Action swap: swap swap swap

! I |
FIGURE 7.1: GB action cases.

Moreover, constituency is only one facet of syntactic parsing or general parsing.
Lexical dependency and semantics should be included to make NCCP truly versa-
tile. However, based on our current observation of joint training with sentiment
analysis, it seems that syntactic and semantic tasks are not very compatible within
NCCP. Further investigation is necessary to understand why such conflict occurs in
terms of mechanism or nature of different tasks.

7.4 Future Work

DAG Parser in Concept I provide suggestions and naive ideas for future DAG
NCCP extension. It may still come with two variants: binary (GB) and multi-
branching (GM). In the same vein, they build DAGs based on a bottom-up com-
binatory ply with respective atomic action sets. Because the major difference of dis-
continuous tree and DAG parsing lies in the multi-attachment capacity, the capacity
to replicate the ply nodes could lead to those DAG models.

7.4.1 GB: Replicate Node

Current DB has a set of two signals {orientation, joint}. Each of them is a binary signal
and the combination gives two types of actions: a joint action by joint signal on a
pair of agreeing orientations and a swap action by swap signal on a pair of agreeing
orientations. Could the remaining cases of combination be leveraged to house the
capacity of replicating nodes?

Unfortunately, the remaining three pairs of disagreeing orientations (i.e., {(left,
left), (left, right), (right, right)}) combined with the interstice joint (i.e., {joit, swap})
may have been intervened with other agreeing orientation pairs. Even it is possible
to include replication, it makes the system hard to interpret.

80 Chapter 7. Conclusion

I suggest to expand both orientation and joint-swap action for GB. Specifically,
orientation function becomes

ori(x;) € {-1,0,1}, (7.1)

where {-1, 0, 1} stands for left, replicable, and right. Thus, the agreeing orientation pair
must be expressed as
ori(x;) —ori(x;) > 0. (7.2)

The corresponding action conditioned on Formula 7.2 gets expanded to

action(x; ® xj,1) € {joint, swap, joint-replicate}
joint :(xj, xj11) — compose(x;, Xiy1)
joint-replicate :(x;, xj;1) — (compose(x;, Xis1),X;) if ori(x;) =0 and ori(x;,1) # 0
(xi, xiy1) = (xi41, compose(x;, xiy1)) ifori(x;) # 0 and ori(x;,1) =0
(x5, xiy1) = (X141, compose(x;, xiy1), X;) if ori(x;) = ori(xj41) =0
swap :(x;, Xiv1) = (Xiv1, Xi).
(7.3)

Formula 7.3 keeps the DB basic orientation and joint-swap actions. It features
in an additional joint-replicate action specialized for multi-attachment in DAG. Note
that joint-replicate cooperates with the replicable orientation (0).

A node in GB can be bidirectional and duplicate split itself with the old swap
action. When it needs to both joint and replicate, it first signals replicable and gets
captured by replicable orientation at the interstice action. It can also create two joints
at once by signaling replicable through the old joint action.

7.4.2 GM: Multi-medoid Biaffine Attention

To allow component-sharing in biaffine attention of affinity, I reduce the constrained
on the matrix to be

* B symmetric and

* B-I=1I,where I is the identity matrix,

so that the following matrices can contain shared nodes for different groups:

11100
1 10 11110
11 1]and |1 1 1 1 1].
011 01111
00111

The first matrix indicates that the second node is shared by two groups, where as the
second matrix indicates the third node is shared by three groups.

The extension for GM need no extra signal except for a function to judge whether
a non-context-free node is standalone or not. As shown in Formula 7.4, I change the
action of DM from {continuous, discontinuous} into {context-free, non-context-free} in
order to indicate the different processing subjects.

7.4. Future Work 81

action(x;) € {context-free, non-context-free}
context-free :
G={xj|Ib<i<rb, Ib<j<rb, and affinity(x;, xj.1) =1(j ¢ {Ib, rb})}
compose(G) — Xjps1
non-context-free :
K < an empty set {}
For j in {j | affinity(x;, x;) = 1} : (7.4)
append min({k | affinity(xy,x;) =1}) to K
For k in sorted K by ascending order:
G < {x;j| affinity(xg, x;) }
medoid € {j|x;e G}
compose(G) = Xedoid
add any standalone x; € G to the ply.

The context-free part remains exactly the same as those of CM and DM, which
is the continuous chunking process. Meanwhile, from the line of “non-context-free:”
to the last second line, the identification proceeds for each group G what may share
nodes with other groups. The different groups are identified by the index of the left-
most node. The last line is also special to GM. It keeps copies of some components
for their siblings in higher plies.

7.4.3 Prospects of NCCP family.

From the viewpoint of generative parsing, NCCP lacks the capability to generate and
rank sentences. Moreover, parsing annotation is quite expensive and exhausting.
New improvements may considering make the models generative or unsupervised.
Comparing to information-rich HPSG constituency, the implemented NCCP mod-
els are very basic constituency parsers. To fully leverage the common information in
current treebanks to be a useful parsing toolbox, NCCP need to create more wiring
for semantic frames (e.g., predicate-argument structure). Both PTB-style and TIGER-
style treebanks provide such information. Beyond tree-based constituency, I aim to
implement the DAG parsers (i.e., GB and GM) for more parsing tasks. Finally, gen-
eralizing the models could be an interest research direction.

83

Bibliography

Akiba, Takuya et al. (2019). “Optuna: A Next-generation Hyperparameter Optimiza-
tion Framework”. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 2623-2631. DOI: 10 . 1145/3292500 .
3330701. URL: https://doi.org/10.1145/3292500.3330701.

Backus, John W. (1959). “The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM Conference”. In: Information Pro-
cessing, Proceedings of the 1st International Conference on Information Processing, UN-
ESCO, Paris 15-20 June 1959. UNESCO (Paris), pp. 125-131.

Baker, James K (1979). “Trainable Grammars for Speech Recognition”. In: The Journal
of the Acoustical Society of America 65.51, S132-5132.

Baldridge, Jason and Geert-Jan M. Kruijff (2002). “Coupling CCG and Hybrid Logic
Dependency Semantics”. In: Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 319-326. DOI: 10.3115/1073083.1073137.
URL: https://aclanthology.org/P02-1041/.

Barnes, Jeremy, Roman Klinger, and Sabine Schulte im Walde (2017). “Assessing
State-of-the-Art Sentiment Models on State-of-the-Art Sentiment Datasets”. In:
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pp. 2-12. DOI: 10 . 18653 /v1/w17-5202. URL:
https://doi.org/10.18653/v1/w17-5202.

Bies, Ann et al. (1995). “Bracketing guidelines for Treebank II style Penn Treebank
project”. In: University of Pennsylvania 97, p. 100.

Bojanowski, Piotr et al. (2017). “Enriching Word Vectors with Subword Information”.
In: Transactions of the Association for Computational Linguistics 5, pp. 135-146. URL:
https://transacl.org/ojs/index.php/tacl/article/view/999.

Bradbury, James et al. (2017). “Quasi-Recurrent Neural Networks”. In: Proceedings of
the 5th International Conference on Learning Representations. URL: https://openreview.
net/forum?id=H1zJ-v5x1.

Brants, Sabine et al. (2004). “TIGER: Linguistic Interpretation of a German Corpus”.
In: Research on language and computation 2.4, pp. 597-620.

Carl Pollard, Ivan A. Sag (1988). Information-Based Syntax and Semantics. Vol. Volume
1: Fundamentals. Stanford: Center for the Study of Language and Information
Publications.

Carpenter, Brian E. and Robert W. Doran (1977). “The Other Turing Machine”. In:
The Computer Journal 20.3, pp. 269-279. DOI: 10.1093/comjnl/20.3.269. URL:
https://doi.org/10.1093/comjnl/20.3.269.

Charniak, Eugene and Mark Johnson (2005). “Coarse-to-Fine n-Best Parsing and
MaxEnt Discriminative Reranking”. In: Proceedings of the Conference of the 43rd
Annual Meeting of the Association for Computational Linguistics, pp. 173-180. URL:
https://www.aclweb.org/anthology/P05-1022/.

Chen, Zhousi et al. (2021). “Neural Combinatory Constituency Parsing”. In: Findings
of the Association for Computational Linguistics: ACL/I[CNLP, pp. 2199-2213. DOI:
10.18653/v1/2021.findings-acl.194. URL: https://doi.org/10.18653/v1/
2021.findings-acl.194.

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.3115/1073083.1073137
https://aclanthology.org/P02-1041/
https://doi.org/10.18653/v1/w17-5202
https://doi.org/10.18653/v1/w17-5202
https://transacl.org/ojs/index.php/tacl/article/view/999
https://openreview.net/forum?id=H1zJ-v5xl
https://openreview.net/forum?id=H1zJ-v5xl
https://doi.org/10.1093/comjnl/20.3.269
https://doi.org/10.1093/comjnl/20.3.269
https://www.aclweb.org/anthology/P05-1022/
https://doi.org/10.18653/v1/2021.findings-acl.194
https://doi.org/10.18653/v1/2021.findings-acl.194
https://doi.org/10.18653/v1/2021.findings-acl.194

84 Bibliography

Chomsky, Noam (1956). “Three models for the description of language”. In: IRE
Transactions on Information Theory 2.3, pp. 113-124. DOI: 10 . 1109 /TIT . 1956 .
1056813. URL: https://doi.org/10.1109/TIT.1956.1056813.

Coavoux, Maximin and Shay B. Cohen (2019). “Discontinuous Constituency Parsing
with a Stack-Free Transition System and a Dynamic Oracle”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 204-217. DOI: 10.18653/v1/n19-
1018. URL: https://doi.org/10.18653/v1/n19-1018.

Coavoux, Maximin, Benoit Crabbé, and Shay B. Cohen (2019). “Unlexicalized Transition-
based Discontinuous Constituency Parsing”. In: Transactions of the Association for
Computational Linguistics 7, pp. 73—-89. URL: https://transacl.org/ojs/index.
php/tacl/article/view/1544.

Cocke, John (1969). Programming Languages and Their Compilers: Preliminary Notes.
New York University.

Collobert, Ronan (2011). “Deep Learning for Efficient Discriminative Parsing”. In:
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. Vol. 15. JMLR Proceedings, pp. 224-232. URL: http://proceedings .
mlr.press/vi5/collobertlila/collobertlla.pdf.

Corro, Caio (2020). “Span-based discontinuous constituency parsing: a family of ex-
act chart-based algorithms with time complexities from O(n\"6) down to O(n\"3)”.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2753-2764. DOI: 10.18653/v1/2020 . emnlp-main.219. URL: https:
//doi.org/10.18653/v1/2020.emnlp-main.219.

Cross, James and Liang Huang (2016). “Span-Based Constituency Parsing with a
Structure-Label System and Provably Optimal Dynamic Oracles”. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1-
11. URL: http://aclweb.org/anthology/D/D16/D16-1001. pdf.

David E. Rumelhart, Geoffrey E. Hinton and Ronald]. Williams (1986). “Learning
Representations by Back-propagating Errors”. In: nature 323.6088, pp. 533-536.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171-4186. URL: https://aclweb.org/anthology/papers/N/
N19/N19-1423/.

Dozat, Timothy and Christopher D. Manning (2017). “Deep Biaffine Attention for
Neural Dependency Parsing”. In: 5th International Conference on Learning Repre-
sentations. URL: https://openreview.net/forum?id=Hk95PK91le.

Drozdov, Andrew et al. (2019). “Unsupervised Labeled Parsing with Deep Inside-
Outside Recursive Autoencoders”. In: Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, pp. 1507-1512. DOI: 10.18653/v1/D19-1161. URL:
https://doi.org/10.18653/v1/D19-1161.

Durrett, Greg and Dan Klein (2015). “Neural CRF Parsing”. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing, pp. 302-312. DOIL: 10.3115/v1/p15-1030. URL:
https://doi.org/10.3115/v1/p15-1030.

Dyer, Chris et al. (2016). “Recurrent Neural Network Grammars”. In: The 2016 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 199-209. DOI: 10 . 18653/v1/n16-1024. URL:
https://doi.org/10.18653/v1/n16-1024.

https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.18653/v1/n19-1018
https://doi.org/10.18653/v1/n19-1018
https://doi.org/10.18653/v1/n19-1018
https://transacl.org/ojs/index.php/tacl/article/view/1544
https://transacl.org/ojs/index.php/tacl/article/view/1544
http://proceedings.mlr.press/v15/collobert11a/collobert11a.pdf
http://proceedings.mlr.press/v15/collobert11a/collobert11a.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
http://aclweb.org/anthology/D/D16/D16-1001.pdf
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.3115/v1/p15-1030
https://doi.org/10.3115/v1/p15-1030
https://doi.org/10.18653/v1/n16-1024
https://doi.org/10.18653/v1/n16-1024

Bibliography 85

Earley, Jay (1970). “An Efficient Context-Free Parsing Algorithm”. In: Commun. ACM
13.2, pp. 94-102. DOI: 10 .1145/362007 . 362035. URL: https://doi.org/10.
1145/362007 .362035.

Espinosa, Kurt J. P. et al. (2022). “Comparing neural models for nested and overlap-
ping biomedical event detection”. In: BMC Bioinform. 23.1, p. 211. DOI: 10.1186/
512859-022-04746-3. URL: https://doi.org/10.1186/s12859-022-04746-3.

Espinosa, Kurt Junshean, Makoto Miwa, and Sophia Ananiadou (2019). “A Search-
based Neural Model for Biomedical Nested and Overlapping Event Detection”.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing,
pp- 3677-3684. DOI: 10.18653/v1/D19-1381. URL: https://doi.org/10.18653/
v1/D19-1381.

Evang, Kilian (2011). “Parsing Discontinuous Constituents in English”. In: Mémoire
de master, University of Tiibingen.

Evang, Kilian and Laura Kallmeyer (2011). “PLCFRS Parsing of English Discontin-
uous Constituents”. In: Proceedings of the 12th International Conference on Parsing
Technologies, pp. 104-116. URL: https : //www . aclweb . org/anthology /Wil -
2913/.

Fancellu, Federico et al. (2019). “Semantic graph parsing with recurrent neural net-
work DAG grammars”. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, pp. 2769-2778. DOI: 10.18653/v1/D19-1278. URL: https:
//doi.org/10.18653/v1/D19-1278.

Fancellu, Federico et al. (2020). “Accurate Polyglot Semantic Parsing With DAG
Grammars”. In: Findings of the Association for Computational Linguistics: EMINLP.
Vol. EMNLP 2020. Findings of ACL, pp. 3567-3580. DOI: 10 . 18653/v1/2020 .
findings-emnlp.320. URL: https://doi.org/10.18653/v1/2020.findings-
emnlp.320.

Ferndndez-Gonzalez, Daniel and Carlos Gomez-Rodriguez (2019). “Faster shift-reduce
constituent parsing with a non-binary, bottom-up strategy”. In: Artificial Intelli-
gence 275, pp. 559-574. DOI: 10.1016/j . artint . 2019 .07 . 006. URL: https :
//doi.org/10.1016/j.artint.2019.07.006.

— (2021). “Reducing Discontinuous to Continuous Parsing with Pointer Network
Reordering”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 10570-10578. DOI: 10.18653/v1/2021.emnlp-main. 825.
URL: https://doi.org/10.18653/v1/2021.emnlp-main.825.

— (2022). “Multitask Pointer Network for multi-representational parsing”. In: Knowledge-
Based Systems 236, p. 107760. DOI: 10.1016/j .knosys.2021.107760. URL: https:
//doi.org/10.1016/j.knosys.2021.107760.

Ficler, Jessica and Yoav Goldberg (2016). “Improved Parsing for Argument-Clusters
Coordination”. In: Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics. DOI: 10.18653/v1/p16-2012. URL: https://doi.org/10.
18653/v1/p16-2012.

Goldberg, Yoav and Michael Elhadad (2010). “An Efficient Algorithm for Easy-First
Non-Directional Dependency Parsing”. In: Human Language Technologies: Confer-
ence of the North American Chapter of the Association of Computational Linguistics,
pp- 742-750. URL: https://aclanthology.org/N10-1115/.

Goémez-Rodriguez, Carlos and David Vilares (2018). “Constituent Parsing as Se-
quence Labeling”. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 1314-1324. DOI: 10.18653/v1/d18-1162. URL:
https://doi.org/10.18653/v1/d18-1162.

https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1186/s12859-022-04746-3
https://doi.org/10.1186/s12859-022-04746-3
https://doi.org/10.1186/s12859-022-04746-3
https://doi.org/10.18653/v1/D19-1381
https://doi.org/10.18653/v1/D19-1381
https://doi.org/10.18653/v1/D19-1381
https://www.aclweb.org/anthology/W11-2913/
https://www.aclweb.org/anthology/W11-2913/
https://doi.org/10.18653/v1/D19-1278
https://doi.org/10.18653/v1/D19-1278
https://doi.org/10.18653/v1/D19-1278
https://doi.org/10.18653/v1/2020.findings-emnlp.320
https://doi.org/10.18653/v1/2020.findings-emnlp.320
https://doi.org/10.18653/v1/2020.findings-emnlp.320
https://doi.org/10.18653/v1/2020.findings-emnlp.320
https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/10.18653/v1/2021.emnlp-main.825
https://doi.org/10.18653/v1/2021.emnlp-main.825
https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/10.18653/v1/p16-2012
https://doi.org/10.18653/v1/p16-2012
https://doi.org/10.18653/v1/p16-2012
https://aclanthology.org/N10-1115/
https://doi.org/10.18653/v1/d18-1162
https://doi.org/10.18653/v1/d18-1162

86 Bibliography

Hershcovich, Daniel, Omri Abend, and Ari Rappoport (2017). “A Transition-Based
Directed Acyclic Graph Parser for UCCA”. In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, pp. 1127-1138. DOI: 10. 18653/
v1/P17-1104. URL: https://doi.org/10.18653/v1/P17-1104.

Hinds, John V (1973). “On the Status of the VP Node in Japanese”. In: XX XX

Htut, Phu Mon, Kyunghyun Cho, and Samuel R. Bowman (2018). “Grammar In-
duction with Neural Language Models: An Unusual Replication”. In: Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, pp. 4998-5003. URL: https://
aclanthology.org/D18-1544/.

Hudson, Richard (2021). “Word Grammar”. In: The Routledge Handbook of Cognitive
Linguistics. Routledge, pp. 111-126.

Japanese Language, National Institute for and Linguistics (2016). NINJAL Parsed Cor-
pus of Modern Japanese. http://npcmj.ninjal.ac. jp/.

Joshi, Aravind K. (1983). “Factoring Recursion and Dependencies: an Aspect of Tree
Adjoining Grammars (Tag) and a Comparison of Some Formal Properties of
Tags, GPSGs, Plgs, and LPGS”. In: 21st Annual Meeting of the Association for Com-
putational Linguistics, pp. 7-15. DOI: 10.3115/981311 . 981314. URL: https://
aclanthology.org/P83-1002/.

Kamimura, Tsutomu and Giora Slutzki (1979). “DAGs and Chomsky Hierarchy (Ex-
tended Abstract)”. In: Automata, Languages and Programming, 6th Colloquium. Vol. 71.
Lecture Notes in Computer Science. Springer, pp. 331-337. DOI: 10.1007/3-540-
09510-1_26. URL: https://doi.org/10.1007/3-540-09510-1_26.

Kasami, Tadao (1966). “An Efficient Recognition and Syntax-Analysis Algorithm for
Context-Free Languages”. In: Coordinated Science Laboratory Report no. R-257.
Keung, Phillip et al. (2020). “The Multilingual Amazon Reviews Corpus”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, pp. 4563-4568. DOI: 10 . 18653/v1/
2020 . emnlp-main . 369. URL: https://doi.org/10.18653/v1/2020 . emnlp-

main.369.

Kim, Yoon et al. (2019). “Unsupervised Recurrent Neural Network Grammars”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1105-1117. DOL:
10.18653/v1/n19-1114. URL: https://doi.org/10.18653/v1/n19-1114.

Kitaev, Nikita, Steven Cao, and Dan Klein (2019). “Multilingual Constituency Pars-
ing with Self-Attention and Pre-Training”. In: Proceedings of the 57th Conference of
the Association for Computational Linguistics, pp. 3499-3505. DOI: 10 . 18653/ v1/
p19-1340. URL: https://doi.org/10.18653/v1/p19-1340.

Kitaev, Nikita and Dan Klein (2018). “Constituency Parsing with a Self-Attentive
Encoder”. In: Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 2676-2686. DOI: 10 . 18653 /v1/P18-1249. URL: https :
//www.aclweb.org/anthology/P18-1249/.

— (2020). “Tetra-Tagging: Word-Synchronous Parsing with Linear-Time Inference”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pp. 6255-6261. URL: https://www.aclweb.org/anthology/2020.acl-
main.557/.

Klein, Dan and Christopher D. Manning (2003). “Accurate Unlexicalized Parsing”.
In: Proceedings of the 41st Annual Meeting of the Association for Computational Lin-
guistics, 7-12 July 2003, Sapporo Convention Center, Sapporo, Japan, pp. 423—430. DOTI:
10.3115/1075096.1075150. URL: https://aclanthology.org/P03-1054/.

https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
https://aclanthology.org/D18-1544/
https://aclanthology.org/D18-1544/
http://npcmj.ninjal.ac.jp/
https://doi.org/10.3115/981311.981314
https://aclanthology.org/P83-1002/
https://aclanthology.org/P83-1002/
https://doi.org/10.1007/3-540-09510-1_26
https://doi.org/10.1007/3-540-09510-1_26
https://doi.org/10.1007/3-540-09510-1_26
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/n19-1114
https://doi.org/10.18653/v1/n19-1114
https://doi.org/10.18653/v1/p19-1340
https://doi.org/10.18653/v1/p19-1340
https://doi.org/10.18653/v1/p19-1340
https://doi.org/10.18653/v1/P18-1249
https://www.aclweb.org/anthology/P18-1249/
https://www.aclweb.org/anthology/P18-1249/
https://www.aclweb.org/anthology/2020.acl-main.557/
https://www.aclweb.org/anthology/2020.acl-main.557/
https://doi.org/10.3115/1075096.1075150
https://aclanthology.org/P03-1054/

Bibliography 87

Knuth, Donald and Luis Trabb Pardo (1980). “The Early Development of Program-
ming Languages”. In: A History of Computing in the Twentieth Century, pp. 197-
273.

Knuth, Donald E. (1965). “On the Translation of Languages from Left to Right”. In:
Information and Control 8.6, pp. 607-639. DOI: 10.1016/50019-9958 (65) 90426-2.
URL: https://doi.org/10.1016/S0019-9958(65) 90426-2.

Lewis, Philip M and Richard Edwin Stearns (1968). “Syntax-directed Transduction”.
In: Journal of the ACM (JACM) 15.3, pp. 465-488.

Li, Jun et al. (2020). “An Empirical Comparison of Unsupervised Constituency Pars-
ing Methods”. In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 3278-3283. DOI: 10 . 18653/v1/2020 . acl-main . 300.
URL: https://doi.org/10.18653/v1/2020.acl-main. 300.

Ling, Wang et al. (2015). “Two/Too Simple Adaptations of Word2Vec for Syntax
Problems”. In: The 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1299-1304. DOI:
10.3115/v1/n15-1142. URL: https://doi.org/10.3115/v1/n15-1142.

Little, Nathaniel (2010). “Reevaluating Gapping in CCG: Evidence from English &
Chinese”. In: Proceedings of the 10th International Workshop on Tree Adjoining Gram-
mar and Related Frameworks, pp. 25-34. URL: https://aclanthology.org/W10-
4404/.

Liu, Jiangming and Yue Zhang (2017). “Shift-Reduce Constituent Parsing with Neu-
ral Lookahead Features”. In: Transactions of the Association for Computational Lin-
guistics 5, pp. 45-58. URL: https : //transacl . org/ojs/index . php/tacl/
article/view/927.

Lucas, Peter (1978). “On the Formalization of Programming Languages: Early His-
tory and Main Approaches”. In: The Vienna Development Method: The Meta-Language.
Vol. 61. Lecture Notes in Computer Science. Springer, pp. 1-23. DOI: 10.1007/3-
540-08766-4_8. URL: https://doi.org/10.1007/3-540-08766-4_8.

Marcus, Mitchell P, Beatrice Santorini, and Mary Ann Marcinkiewicz (1993). “Build-
ing a Large Annotated Corpus of English: The Penn Treebank”. In: Computational
Linguistics 19.2, pp. 313-330.

Marcus, Mitchell P. et al. (1994). “The Penn Treebank: Annotating Predicate Argu-
ment Structure”. In: Human Language Technology, Proceedings of a Workshop. Mor-
gan Kaufmann, pp. 114 - 119. URL: https://aclanthology.org/H94-1020/.

Markov, Andrey Andreyevich (1906). “Rasprostranenie zakona bol’ shih chisel na
velichiny, zavisyaschie drug ot druga”. In: Izvestiya Fiziko-matematicheskogo ob-
schestva pri Kazanskom universitete 15.135-156, p. 18.

— (1913). “Primer statisticheskogo issledovaniya nad tekstom “Evgeniya Onegina”,
illyustriruyuschij svyaz’ ispytanij v cep’ ”. In: Izvestiya Akademii Nauk 7, p. 153.

McDonald, Ryan T. et al. (2005). “Non-Projective Dependency Parsing using Span-
ning Tree Algorithms”. In: Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing, Proceedings of the Conference,
pp- 523-530. URL: https://aclanthology.org/H05-1066/.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases
and their Compositionality”. In: Advances in Neural Information Processing Systems
26, pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases—and-their-compositionality.

Moore, Andrew and Jeremy Barnes (2021). “Multi-task Learning of Negation and
Speculation for Targeted Sentiment Classification”. In: Proceedings of the 2021

https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.18653/v1/2020.acl-main.300
https://doi.org/10.18653/v1/2020.acl-main.300
https://doi.org/10.3115/v1/n15-1142
https://doi.org/10.3115/v1/n15-1142
https://aclanthology.org/W10-4404/
https://aclanthology.org/W10-4404/
https://transacl.org/ojs/index.php/tacl/article/view/927
https://transacl.org/ojs/index.php/tacl/article/view/927
https://doi.org/10.1007/3-540-08766-4_8
https://doi.org/10.1007/3-540-08766-4_8
https://doi.org/10.1007/3-540-08766-4_8
https://aclanthology.org/H94-1020/
https://aclanthology.org/H05-1066/
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

88 Bibliography

Conference of the North American Chapter of the Association for Computational Lin-
guistics, pp. 2838-2869. DOI: 10.18653/v1/2021 .naacl-main.227. URL: https:
//doi.org/10.18653/v1/2021 .naacl-main.227.

Mrini, Khalil et al. (2020). “Rethinking Self-Attention: Towards Interpretability in
Neural Parsing”. In: Findings of the Association for Computational Linguistics: EMINLP,
pp- 731-742. DOI: 10.18653/v1/2020.findings-emnlp.65. URL: https://doi.
org/10.18653/v1/2020.findings-emnlp.65.

Munikar, Manish, Sushil Shakya, and Aakash Shrestha (2019). “Fine-grained Senti-
ment Classification using BERT”. In: CoRR abs/1910.03474. arXiv: 1910 . 03474.
URL: http://arxiv.org/abs/1910.03474.

Nguyen, Thanh-Tung et al. (2020). “Efficient Constituency Parsing by Pointing”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pp. 3284-3294. DOI: 10.18653/v1/2020.acl-main.301. URL: https://doi.
org/10.18653/v1/2020.acl-main.301.

Nivre, Joakim, Marco Kuhlmann, and Johan Hall (2009). “An Improved Oracle for
Dependency Parsing with Online Reordering”. In: Proceedings of the 11th Interna-
tional Workshop on Parsing Technologies, pp. 73—76. URL: https://aclanthology.
org/W09-3811/.

Oettinger, Anthony (1961). Automatic Syntactic Analysis and the Pushdown Store. Amer-
ican Mathematical Society.

Pak, Alexander and Patrick Paroubek (2010). “Twitter as a Corpus for Sentiment
Analysis and Opinion Mining”. In: Proceedings of the International Conference on
Language Resources and Evaluation. European Language Resources Association.
URL: http://www.lrec-conf .org/proceedings/1lrec2010/summaries/385.
html.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe:
Global Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, pp. 1532-1543. DOI: 10.3115/
v1/d14-1162. URL: https://doi.org/10.3115/v1/d14-1162.

Pullum, Geoffrey K. and Gerald Gazdar (1982). “Natural Languages and Context-
Free Languages”. In: Linguistics and Philosophy 4.4, pp. 471-504. 1SSN: 01650157,
15730549. URL: http://www. jstor.org/stable/25001071 (visited on 10/27/2022).

Pustejovsky, James (1998). The Generative Lexicon. MIT Press. ISBN: 978-0-262-66140-9.
URL: http://mitpress.mit.edu/books/generative-lexicon.

Pyysalo, Sampo et al. (2015). “Overview of the cancer genetics and pathway curation
tasks of bionlp shared task 2013”. In: BMC bioinformatics 16.10, pp. 1-19.

Ratnaparkhi, Adwait (1997). “A Linear Observed Time Statistical Parser Based on
Maximum Entropy Models”. In: Second Conference on Empirical Methods in Natural
Language Processing. URL: https://aclanthology.org/W97-0301/.

Ruprecht, Thomas and Richard Morbitz (2021). “Supertagging-based Parsing with
Linear Context-free Rewriting Systems”. In: Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 2923-2935. DOI: 10.18653/v1/2021 .naacl-main.232.
URL: https://doi.org/10.18653/v1/2021 .naacl-main.232.

Sagae, Kenji and Jun’ichi Tsujii (2008). “Shift-Reduce Dependency DAG Parsing”. In:
COLING 2008, 22nd International Conference on Computational Linguistics, Proceed-
ings of the Conference, pp. 753-760. URL: https://aclanthology.org/C08-1095/.

Sakai, Itiroo (1961). “Syntax in Universal Translation”. In: Proceedings of the Interna-
tional Conference on Machine Translation and Applied Language Analysis.

https://doi.org/10.18653/v1/2021.naacl-main.227
https://doi.org/10.18653/v1/2021.naacl-main.227
https://doi.org/10.18653/v1/2021.naacl-main.227
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://arxiv.org/abs/1910.03474
http://arxiv.org/abs/1910.03474
https://doi.org/10.18653/v1/2020.acl-main.301
https://doi.org/10.18653/v1/2020.acl-main.301
https://doi.org/10.18653/v1/2020.acl-main.301
https://aclanthology.org/W09-3811/
https://aclanthology.org/W09-3811/
http://www.lrec-conf.org/proceedings/lrec2010/summaries/385.html
http://www.lrec-conf.org/proceedings/lrec2010/summaries/385.html
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
http://www.jstor.org/stable/25001071
http://mitpress.mit.edu/books/generative-lexicon
https://aclanthology.org/W97-0301/
https://doi.org/10.18653/v1/2021.naacl-main.232
https://doi.org/10.18653/v1/2021.naacl-main.232
https://aclanthology.org/C08-1095/

Bibliography 89

Seddah, Djamé et al. (2013). “Overview of the SPMRL 2013 Shared Task: A Cross-
Framework Evaluation of Parsing Morphologically Rich Languages”. In: Pro-
ceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Lan-
guages. Association for Computational Linguistics, pp. 146-182. URL: https://
aclanthology.org/W13-4917/.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016a). “Improving Neural
Machine Translation Models with Monolingual Data”. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics. DOI: 10.18653/v1/
p16-1009. URL: https://doi.org/10.18653/v1/p16-1009.

— (2016b). “Neural Machine Translation of Rare Words with Subword Units”. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics, pp. 1715 —1725. URL: https://www.aclweb.org/anthology/P16-1162/.

Shannon, Claude E. (1948). “A Mathematical Theory of Communication”. In: The
Bell System Technical Journal 27.3, pp. 379-423. DOI: 10.1002/j.1538-7305.1948.
tb01338.x. URL: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Shen, Yikang et al. (2018a). “Neural Language Modeling by Jointly Learning Syn-
tax and Lexicon”. In: 6th International Conference on Learning Representations. URL:
https://openreview.net/forum?id=rkg0Lb-0W.

Shen, Yikang et al. (2018b). “Straight to the Tree: Constituency Parsing with Neural
Syntactic Distance”. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, pp. 1171-1180. DOI: 10.18653/v1/P18-1108. URL:
https://www.aclweb.org/anthology/P18-1108/.

Shen, Yikang et al. (2019). “Ordered Neurons: Integrating Tree Structures into Recur-
rent Neural Networks”. In: 7th International Conference on Learning Representations.
URL: https://openreview.net/forum?id=B116qiR5F7.

Socher, Richard et al. (2013a). “Parsing with Compositional Vector Grammars”. In:
Proceedings of the 51st Annual Meeting of the Association for Computational Linguis-
tics, pp. 455—465. URL: https://www.aclweb.org/anthology/P13-1045/.

Socher, Richard et al. (2013b). “Recursive Deep Models for Semantic Composition-
ality Over a Sentiment Treebank”. In: Proceedings of the 2013 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1631-1642. URL: https: //www .
aclweb.org/anthology/D13-1170/.

Stanojevic, Milos and Mark Steedman (2020). “Span-Based LCFRS-2 Parsing”. In:
Proceedings of the 16th International Conference on Parsing Technologies and the INPT
2020 Shared Task on Parsing into Enhanced Universal Dependencies, pp. 111-121.
URL: https://www.aclweb.org/anthology/2020.iwpt-1.12/.

Steedman, Mark (1997). Surface Structure and Interpretation. Vol. 30. Linguistic in-
quiry. MIT Press. ISBN: 978-0-262-69193-2.

— (2004). The Syntactic Process. Language, speech, and communication. MIT Press.
ISBN: 978-0-262-69268-7.

Stern, Mitchell, Jacob Andreas, and Dan Klein (2017). “A Minimal Span-Based Neu-
ral Constituency Parser”. In: Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 818-827. DOI: 10.18653/v1/P17-1076. URL:
https://doi.org/10.18653/v1/P17-1076.

Sun, Zijun et al. (2020). “Self-Explaining Structures Improve NLP Models”. In: CoRR
abs/2012.01786. arXiv: 2012.01786. URL: https://arxiv.org/abs/2012.01786.

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning (2015). “Improved Se-
mantic Representations From Tree-Structured Long Short-Term Memory Net-
works”. In: Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language

https://aclanthology.org/W13-4917/
https://aclanthology.org/W13-4917/
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://www.aclweb.org/anthology/P16-1162/
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://openreview.net/forum?id=rkgOLb-0W
https://doi.org/10.18653/v1/P18-1108
https://www.aclweb.org/anthology/P18-1108/
https://openreview.net/forum?id=B1l6qiR5F7
https://www.aclweb.org/anthology/P13-1045/
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/2020.iwpt-1.12/
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://arxiv.org/abs/2012.01786
https://arxiv.org/abs/2012.01786

90 Bibliography

Processing of the Asian Federation of Natural Language Processing, pp. 1556-1566.
URL: https://www.aclweb.org/anthology/P15-1150/.

Tesniére, Lucien (1959). “Elements of Structural Syntax (Eléments de syntaxe struc-
tural), Klincksieck, Paris. Préface by Jean Fourquet, professeur a la Sorbonne.
reviewed and corrected. ISBN 2-252-02620-0. Re-edition of: Tesniere”. In.

Tokgoz, Alper and Giilsen Eryigit (2015). “Transition-based Dependency DAG Pars-
ing Using Dynamic Oracles”. In: Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing of the Asian Federation of Natural Language Processing,
pp- 22-27. DOI: 10.3115/v1/p15-3004. URL: https://doi.org/10.3115/v1/
p15-3004.

Versley, Yannick (2014). “Incorporating Semi-supervised Features into Discontinu-
ous Easy-First Constituent Parsing”. In: CoRR abs/1409.3813. arXiv: 1409.3813.
URL: http://arxiv.org/abs/1409.3813.

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi (1987). “Characterizing Struc-
tural Descriptions produced by Various Grammatical Formalisms”. In: 25th An-
nual Meeting of the Association for Computational Linguistics, pp. 104-111. DOTI: 10.
3115/981175.981190. URL: https://aclanthology.org/P87-1015/.

Vilares, David and Carlos Gémez-Rodriguez (2020). “Discontinuous Constituent Pars-
ing as Sequence Labeling”. In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2771-2785. DOI: 10 . 18653 /v1 /2020 .
emnlp-main.221. URL: https://doi.org/10.18653/v1/2020.emnlp-main.221.

Watanabe, Taro and Eiichiro Sumita (2015). “Transition-based Neural Constituent
Parsing”. In: Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language Processing, pp. 1169-1179.
URL: https://www.aclweb.org/anthology/P15-1113/.

Wei, Yang, Yuanbin Wu, and Man Lan (2020). “A Span-based Linearization for Con-
stituent Trees”. In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 3267-3277. DOI: 10 .18653/v1/2020.acl-main . 299.
URL: https://doi.org/10.18653/v1/2020.acl-main.299.

Weir, David Jeremy (1988). Characterizing Mildly Context-sensitive Grammar Formalisms.
University of Pennsylvania.

Xin, Xin, Jinlong Li, and Zeqi Tan (2021). “N-ary Constituent Tree Parsing with Re-
cursive Semi-Markov Model”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing, pp. 2631-2642. DOI: 10 . 18653 /v1/2021.acl-
long.205. URL: https://doi.org/10.18653/v1/2021.acl-1long.205.

Xue, Nianwen et al. (2000). “The bracketing guidelines for the Penn Chinese Tree-
bank (3.0)”. In: IRCS Technical Reports Series, p. 39.

Yang, Kaiyu and Jia Deng (2020). “Strongly Incremental Constituency Parsing with
Graph Neural Networks”. In: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020. URL: https:
//proceedings.neurips.cc/paper/2020/hash/f7177163c833dff4b38fc8d2872f1lec6-
Abstract.html.

Yang, Zhilin et al. (2019). “XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding”. In: CoRR abs/1906.08237. URL: http://arxiv.org/abs/
1906.08237.

Younger, Daniel H. (1967). “Recognition and Parsing of Context-Free Languages in
Time n"3”. In: Information and control 10.2, pp. 189-208. DOI: 10 . 1016 /50019~
9958(67)80007-X. URL: https://doi.org/10.1016/50019-9958(67)80007-X.

https://www.aclweb.org/anthology/P15-1150/
https://doi.org/10.3115/v1/p15-3004
https://doi.org/10.3115/v1/p15-3004
https://doi.org/10.3115/v1/p15-3004
https://arxiv.org/abs/1409.3813
http://arxiv.org/abs/1409.3813
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://aclanthology.org/P87-1015/
https://doi.org/10.18653/v1/2020.emnlp-main.221
https://doi.org/10.18653/v1/2020.emnlp-main.221
https://doi.org/10.18653/v1/2020.emnlp-main.221
https://www.aclweb.org/anthology/P15-1113/
https://doi.org/10.18653/v1/2020.acl-main.299
https://doi.org/10.18653/v1/2020.acl-main.299
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://proceedings.neurips.cc/paper/2020/hash/f7177163c833dff4b38fc8d2872f1ec6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7177163c833dff4b38fc8d2872f1ec6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7177163c833dff4b38fc8d2872f1ec6-Abstract.html
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/10.1016/S0019-9958(67)80007-X

Bibliography 91

Zhang, Yu, Houquan Zhou, and Zhenghua Li (2020). “Fast and Accurate Neural
CRF Constituency Parsing”. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, pp. 4046—4053. DOI: 10.24963/1ijcai . 2020/
560. URL: https://doi.org/10.24963/ijcai.2020/560.

Zhao, Yang et al. (2018). “Addressing Troublesome Words in Neural Machine Trans-
lation”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 391-400. URL: https://aclanthology.info/papers/D18-
1036/d18-1036.

Zhou, Junru and Hai Zhao (2019). “Head-Driven Phrase Structure Grammar Pars-
ing on Penn Treebank”. In: Proceedings of the 57th Conference of the Association
for Computational Linguistics, pp. 2396—2408. URL: https : //www . aclweb . org/
anthology/P19-1230/.

Zwicky, Arnold M. (1985). “Heads”. In: Journal of Linguistics 21.1, pp. 1 - 29. DOL
10.1017/50022226700010008.

https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://aclanthology.info/papers/D18-1036/d18-1036
https://aclanthology.info/papers/D18-1036/d18-1036
https://www.aclweb.org/anthology/P19-1230/
https://www.aclweb.org/anthology/P19-1230/
https://doi.org/10.1017/S0022226700010008

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Early Facts of Constituency Parsing
	Constituency Parsing
	Tree Structure
	Continuous Tree by Context-Free Grammar
	Discontinuous Tree by Linear Context-Free Rewriting System

	DAG Structure
	Headedness and Lexicalization
	Head-driven Phrase Structure Grammar
	Dependency Parsing: Non-projectivity vs. Discontinuity
	Combinatory Categorical Grammar

	Related Task
	Chunking: Word Segmentation and Shallow Parsing
	Structured Semantic Task: Sentiment Analysis
	Task for DAG structure

	Thesis Structure
	Contribution

	Constituency Parser
	Transition-based Parser
	Finite Automata
	Parsing with Sequence Labeling: Tree Linearization
	Parsing with Iterative Chunking
	Summary

	Chart-based Parser
	Binary Chart Parser: from CKY Algorithm
	N-ary Chart-based Parser: from Earley Algorithm

	Joint and Unsupervised Task
	Joint Constituency and Dependency Parsing
	Unsupervised Constituency Parsing

	Neural Combinatory Constituency Parsing
	Continuous Ply
	CB: Orientation
	CM: Chunking

	Discontinuous Ply
	DB: Swap and Joint
	DB: Medoid and Affinity Biaffine Attention

	Data and Augmentation
	Empty node and unary branch
	Binarization for CB and DB
	Medoid for DM
	Oracle

	Model Implementation
	Neural Component
	Pre-trained Word Embedding and Language Model
	Overall Architecture
	CB & DB: Binary Implementation
	CM & DM: Multi-branching Implementation
	Multilingualism and Structured Sentiment Analysis

	Model Robustness
	Additional Substructure with Empty Node
	Basic Loss Item
	DB Robustness Loss Item: Ply Shuffle
	DM Robustness Loss Item: Intra- and Interply

	Experiments
	General Setting
	Continuous Parser
	Constituency Parsing
	Overall Results
	Ablation Study
	Tree-Binarization Strategy
	Complexity and Speed

	Structured Sentiment Analysis
	Single Task Result
	Joint Task Result

	Discontinuous Constituency Parsing
	Overall Results
	Ablation Study
	Inference with Unsupervised Headedness

	Multilingualism and Word Segmentation for Chinese and Japanese

	Discussion
	Feature of NCCP Family
	Compact Neural Combinator
	CB & DB Orientation: Branching Tendency
	CM & DM Unsupervised Weight: Headedness
	Multilingualism
	Beyond Constituency Parsing

	Empirical Complexity and Speed
	Accuracy and Robustness
	Contextualization and Length
	Multi-branching Arity and Fan-out Degree
	Hyperparameter Tuning and Robustness
	Inference Error Rate

	Sample Analysis
	Continuous vs. Discontinuous Parsing
	Unsupervised Headedness in Japanese and Chinese
	Structured Sentiment Analysis

	DAG Conversion for PTB and CTB
	Conversion with Co-indexing
	Trace with Null Element
	Intra-sentential Gapping

	Exception and Error Correction
	Wrong Trace Type
	Circle in Gapping
	Ill-formed Coordination
	Involving External Phrase
	Difference of PTB and CTB

	Summary and Discussion
	Data Statistics
	Comparison with Combinatory Categorical Grammar

	Conclusion
	Conclusion Remarks
	Potential Social Impact
	Weakness and Limitation
	Future Work
	GB: Replicate Node
	GM: Multi-medoid Biaffine Attention
	Prospects of NCCP family.

	Bibliography

