
Doctoral Thesis

Multimodal Neural Machine Translation based on
Image-Text Semantic Correspondence

Yuting Zhao

March, 2023

Tokyo Metropolitan University
Graduate School of Systems Design

Department of Computer Science



A Doctoral Thesis
submitted to Graduate School of Systems Design,

Tokyo Metropolitan University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Yuting Zhao

Thesis Committee:
Mamoru Komachi (Professor, Tokyo Metropolitan University)
Yasufumi Takama (Professor, Tokyo Metropolitan University)
Eri Shimokawara (Associate Professor, Tokyo Metropolitan University)
Takashi Ninomiya (Professor, Ehime University)



Acknowledgements

First of all, I am immensely grateful to my supervisor Professor Mamoru Komachi for
his lead, guidance, and support from my master’s course until my Ph.D. course. I will
always be grateful to him for welcoming me into the Komachi laboratory, letting me
find my research interests in the NLP field, and making me who I am today. Without
him, it is not possible for me to start my Ph.D. journey and my research career. His
wisdom and sense of responsibility will always influence me in every aspect of my
research career and will always be a role model for me to learn from.

I am very grateful to Dr. Chenhui Chu. Thanks for giving me guidance, support, and
encouragement in many aspects of my research career. His knowledge and attitude to
research will always influence me in my future study and career.

I am very grateful to Dr. Tomoyuki Kajiwara for his kind guidance and suggestion
during our collaborative research. I will always keep every moment that he supports
me and encourages me in mind.

I am very grateful to my mentor Ioan Calapodescu and Professor Laurent Besacier
during my internship at NAVER LABS. I am very grateful to you for welcoming me
to join the NLP team. Thank you for your professional guidance and kind support.
I would also like to thank all the scientists in the NLP group, especially the STAG
project, I thoroughly enjoyed our time working together and learned so much.

I sincerely thank my master’s thesis committee members: Professor Toru Yamaguchi
and Professor Yasufumi Takama and my doctoral thesis committee members: Profes-
sors Yasufumi Takama, Takashi Ninomiya, and Associate Professor Eri Shimokawara.
I was able to complete this thesis thanks to your insightful advice and comments.

Many thanks to the seniors who have graduated and classmates from the Komachi
laboratory for mentoring me, helping me, and supporting me during these five years.

Last but not least, thanks to all my friends. Most importantly, great thanks to my
parents and my family.

i



Publication List

Journal Papers
1. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. Word-

Region Alignment-Guided Multimodal Neural Machine Translation. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, Volume 30, Pages 244-259, Jan
2022.

2. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. Region-
Attentive Multimodal Neural Machine Translation. Neurocomputing, Volume 476,
Pages 1-13, Mar 2022.

International Conference Papers
1. Yuting Zhao, Ioan Calapodescu. Multimodal Robustness for Neural Machine

Translation. Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 8505-8516, 2022.

2. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. Double At-
tention-based Multimodal Neural Machine Translation with Semantic Image Regions.
Proceedings of the 22nd Annual Conference of the European Association for Machine
Translation, pp. 105-114, 2020.

3. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. TMEKU
System for the WAT 2021 Multimodal Translation Task System. Proceedings of the
8th Workshop on Asian Translation, pp. 174-180, 2021.

4. Longtu Zhang, Yuting Zhao, Mamoru Komachi. TMU Japanese-Chinese Un-
supervised NMT System for WAT 2018 Translation Task. Proceedings of the 32nd
Pacific Asia Conference on Language, Information and Computation: 5th Workshop
on Asian Translation, pp. 981-987, 2018.

Domestic Conference Papers
1. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. Neural

Machine Translation with Semantically Relevant Image Regions. In the 27th Annual
Meeting of the Language Processing Society of Japan, Vol. 2, pp. c3, 2021.

ii



2. Yuting Zhao, Longtu Zhang, Mamoru Komachi. Application of Unsupervised
NMT Technique to Japanese-Chinese Machine Translation. In The 33rd Annual Con-
ference of the Japanese Society for Artificial Intelligence, pp. 3B4E204–3B4E204,
2019.

3. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. Double At-
tention-based Multimodal Neural Machine Translation with Semantic Image Regions.
In The 241st Meeting of Special Interest Group of Information Processing Society of
Japan Natural Language Processing, Vol.2019–NL–241, 2019.

4. Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu. Double At-
tention-based Multimodal Neural Machine Translation with Semantic Image Regions.
In The 14th Symposium of Young Researcher Association for NLP Studies, 2019.

iii



Multimodal Neural Machine Translation based on
Image-Text Semantic Correspondence*

Yuting Zhao

Abstract

Multimodal neural machine translation (MNMT) extends the conventional text-to-
text neural machine translation (NMT) by exploiting an auxiliary source modality,
specifically images, to translate source sentences paired with images into a target lan-
guage. The main motivation behind this is that the translation is expected to be more
accurate than textual translation because there are numerous situations in which textual
context alone is insufficient for correct translation such as for ambiguous words and
grammatical gender.

Recently, researchers in this field have established a shared task called multimodal
neural machine translation (MNMT), which consists of translating a target sentence
from a source language description into another language using information from the
image described by the source sentence. The training resource for MNMT is called
Multi30K, which is a triple dataset containing images, image descriptions, and multi-
lingual translations. The research topic of this work focuses on exploiting the effective
integration of image information based on image-text semantic correspondence to im-
prove the translation performance of MNMT.

In this study, I propose two methods of the MNMT task to enhance the transla-
tion of the text by leveraging image-text semantic correspondence to the images ef-
fectively: one is named region–attentive MNMT model and the other is named word–
region alignment–guided MNMT model. These two methods have been implemented
on two mainstream architectures of NMT: the recurrent neural network (RNN) and the

*Doctoral Thesis, Department of Computer Science, Graduate School of Systems Design,
Tokyo Metropolitan University, March, 2023.
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Transformer. Experimental results on English–German and English–French transla-
tion tasks using the public Multi30k dataset prove that my methods can achieve signif-
icant improvement with respect to their competitive baselines and outperform most of
the existing MNMT methods across BLEU and METEOR evaluation metrics. Further
analysis corresponding to each method demonstrates that the proposed methods can
achieve better translation performance because of their better image information use,
respectively.

This thesis is organized as follows:

• Chapter 1 introduces the background and overview of this work.

• Chapter 2 describes existing works of the MNMT task.

• Chapter 3 details the proposed method of the region–attentive MNMT model.

• Chapter 4 details the proposed method of the word–region alignment–guided
MNMT model.

• Chapter 5 makes a conclusion of this thesis and describes future directions.

• Chapter 6 introduces the social impacts of this work.

Keywords:

Neural machine translation (NMT), Multimodal neural machine translation (MNMT),
Multi30k, Semantic correspondence.
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1 Introduction

Machine translation (MT) is a task to automatically translate text from one language
to another. Neural machine translation (NMT) is a prominent approach to MT in
the field both actively researched and also deployed in many online translation ser-
vices such as Google Translator. NMT has achieved state-of-the-art translation per-
formance [Sutskever et al., 2014, Cho et al., 2014b, Bahdanau et al., 2015, Vaswani
et al., 2017]. The strength of NMT lies in its ability to learn directly, in an end-to-end
fashion, mapping from the input text to the associated output text. Computational lan-
guage semantic understanding is at the heart of NMT, which requires representing the
meaning of a source sentence in one language and predicting that to a target sentence
in another language by training with large amounts of parallel sentences.

In contrast, humans are able to handle semantic tasks by making use of complex
combinations of linguistic, visual, and auditory multimodalities simultaneously to im-
prove the quality of perception and understanding. From a computational perspective,
NMT also can benefit from incorporating auxiliary modalities, too, in order to ap-
proach human-level understanding in various aspects. As a consequence, multimodal
NMT is a better reflection of how humans acquire and process language, with many
theoretical advantages in language grounding and understanding over text-based NMT
in the presence of multimodal content.

Multimodal neural machine translation (MNMT) extends the conventional text-to-
text NMT [Sutskever et al., 2014, Bahdanau et al., 2015] by exploiting an auxiliary
source modality, specifically images, to translate source sentences paired with im-
ages into a target language. The main motivation behind this is that the translation
is expected to be more accurate than textual translation because there are numerous
situations in which textual context alone is insufficient for correct translation such as
for ambiguous words and grammatical gender. Therefore, many studies have focused
on incorporating image modality to aid the interpretation of language for improving
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translation performance [Specia et al., 2016, Elliott et al., 2017, Barrault et al., 2018].
The study of the potential for improving translation quality using images was pio-

neered by [Elliott et al., 2015]. Subsequent studies have integrated image information
using a single global visual feature vector extracted by convolutional neural networks
(CNNs). For example, some models use the global visual feature in the following
ways: initializing the encoder/decoder hidden states [Elliott et al., 2015, Huang et al.,
2016,Calixto and Liu, 2017]; performing element-wise multiplication with target word
embeddings [Caglayan et al., 2017a]; impacting the text encoder by learning an image
representation jointly [Elliott and Kádár, 2017, Helcl et al., 2018]. In addition, some
models use the global visual feature to interact between the sources through a latent
variable [Calixto et al., 2019], a shared space [Zhou et al., 2018], or a universal repre-
sentation [Zhang et al., 2020]. Although they aim to combine text and image sources
to generate a good translation, the effect of the image cannot be fully exerted because
the single global visual features of an entire image are complex.

To effectively utilize an image, other studies represent image information with a
sequence of equally sized grid local visual feature vectors extracted by CNN. These
grid features are used to preserve the spatial correspondence with the input image. For
example, a joint representation is generated by combining visual and textual represen-
tations [Fukui et al., 2016], compute a multimodal context vector using a multimodal or
filtered attention mechanism [Caglayan et al., 2016b, Caglayan et al., 2016a, Caglayan
et al., 2018], and focus on textual and visual annotations independently by different
strategies on attention mechanisms [Calixto et al., 2016,Calixto et al., 2017,Libovický
and Helcl, 2017, Delbrouck and Dupont, 2017]. As these equally sized grid-based
local visual features do not convey specific semantics, the role of visual features is
dispensable in translation.

To overcome the above difficulties, current studies attempt to represent an image
using multiple object-level regional features [Tan and Bansal, 2019,Zhao et al., 2020].
[Huang et al., 2016], for example, integrated regional features followed by the text
sequence. [Toyama et al., 2016] proposed a transformation to mix global visual fea-
tures and regional features. [Grönroos et al., 2018] and [Ive et al., 2019] generated a
single representation of regional features to initialize the encoder or target word em-
beddings. Furthermore, [Yang et al., 2020] proposed a multi-head co-attention upon
regional features. [Yin et al., 2020] used a unified multimodal graph to capture seman-
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tic relationships between words and objects. As proved in [Caglayan et al., 2019],
MNMT models disregard visual features because the quality of the image features or
the manner in which they are integrated into the model is not satisfactory. Sequentially,
some recent works tried to explore the correlations within visual and textual modali-
ties [Zhao et al., 2021a, Zhao et al., 2021b]. Thus far, a significant challenge in the
MNMT task is how to enhance the translation of the text by leveraging their semantic
correspondence to the images.

In this work, two methods are proposed to cope with this significant challenge of
the MNMT task. One is named region-attentive MNMT and the other is named word-
region alignment-guided MNMT (WRA-guided MNMT). The main contributions of
this work are as follows:

For the region-attentive MNMT method, I propose to utilize semantic image regions
extracted by object detection for MNMT and integrate visual and textual features us-
ing two modality-dependent attention mechanisms. The main motivation behind this
method is to exploit the effect of semantic information captured inside the visual fea-
tures. The proposed method was implemented and verified on two neural architec-
tures of NMT: recurrent neural network (RNN) and Transformer. Experimental results
on English–German and English–French translation tasks using the Multi30k dataset
show that the proposed method improves over baselines and outperforms most of the
existing MNMT methods. Further analysis demonstrates that the proposed method can
achieve better translation performance because of its better visual information use.

For the WRA-guided MNMT method, I propose a novel facility named word-region
alignment (WRA) for linking the semantic correlation between text and image modal-
ities in MNMT as a bridge. The main motivation behind this method is to leverage
the semantic relevance between the two modalities for improving translation with im-
age guidance. The proposed method also has been implemented on two mainstream
architectures of NMT: the RNN and the Transformer. Experimental results on English–
German and English–French translation tasks using the Multi30k dataset prove that the
proposed method has a significant improvement with respect to the competitive base-
lines and outperforms most of the existing MNMT methods. Further analysis demon-
strates that this model can achieve better translation performance by integrating WRA,
leading to better visual information use.

The remainder of this thesis is organized as follows:

4



• Chapter 2 describes existing works of the MNMT task.

• Chapter 3 details the proposed method of the region-attentive MNMT model.

• Chapter 4 details the proposed method of the word-region alignment-guided
MNMT model.

• Chapter 5 makes a conclusion of this thesis and describes future directions.

• Chapter 6 introduces the social impacts of this work.
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2 Existing Works

2.1 How to integrate image modality?

Early MNMT models integrated visual information using a single global visual fea-
ture extracted by a convolutional neural network (CNN). They used the global visual
feature to contextualize textual representations in the following ways: (1) appending
them at the head/tail to the original textual sequence [Huang et al., 2016]; (2) initializ-
ing the textual encoder and/or decoder RNN hidden states with them [Calixto and Liu,
2017]; (3) interacting with them elementwise using textual annotations or target word
embeddings [Caglayan et al., 2017a]; and (4) influencing the textual encoder by learn-
ing the visual representation alongside them [Elliott and Kádár, 2017]. Although these
models were designed to enrich the textual context using sufficient visual information
to improve the translation, it is difficult to summarize all the semantic information of
an entire image into a single global visual feature.

To address this issue, subsequent researchers represented visual information using
a set of convolutional local features that are equally sized grid local features. These
features were used to preserve spatial correspondence with the image. The follow-
ing integration methods were investigated: (1) computing a multimodal context using
a multimodal attention mechanism that simultaneously focuses on an image and its
source description [Caglayan et al., 2016b, Caglayan et al., 2016a]; (2) conjecturing
a learnable masking operation over the convolutional feature maps to help the atten-
tion mechanism filter out local features that are irrelevant to translation and focus on
the most important part of the visual inputs [Caglayan et al., 2018]; (3) focusing on
textual and visual features independently using different attention strategies [Calixto
et al., 2017, Libovický and Helcl, 2017, Delbrouck and Dupont, 2017]; (4) attending
to local features by setting an additional attention sublayer after self-attention [Helcl
et al., 2018, Libovický et al., 2018]. However, in the aforementioned approaches, the
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attention mechanism cannot easily distinguish equally sized local features. As proved
in [Elliott, 2018], attending to specific regions of the image is crucial to improving the
translation.

Consequently, in recent studies, images are represented using multiple object-level
regional features to solve the aforementioned limitations by attempting the following
integration strategies: [Huang et al., 2016] integrates regional features followed by the
text sequence. [Toyama et al., 2016] proposes a transformation to mix global visual
features and regional features. [Grönroos et al., 2018] and [Ive et al., 2019] generate
a single representation of regional features to initialize the encoder or target word em-
beddings. Furthermore, [Yang et al., 2020] proposed a multi-head co-attention upon
regional features. [Yin et al., 2020] used a unified multimodal graph to capture seman-
tic relationships between words and objects. So far, how to effectively integrate image
information for the MNMT model still remains an open question.

2.2 How to correlate text and image modalities?

Although regional features aid object localization or semantic information presentation
[Zhao et al., 2020], the manner in which they are integrated into the model still needs
to be improved. Based on [Caglayan et al., 2019], if the textual modality is sufficient
to accomplish the translation task, the visual modality should be integrated to play a
complementary role rather than a redundant role.

Toward this end, an emerging trend of exploiting correlations between modalities
has been considered promising. Some strategies have been developed: (1) jointly learn-
ing a shared vision-language embedding space and a translator [Zhou et al., 2018]; (2)
modeling the interaction between visual and textual features using a latent variable
model alongside a translation model [Calixto et al., 2019]; (3) training multi-head
co-attention to capture the interaction between visual and textual features in multi-
ple subspaces [Yang et al., 2020]; (4) learning a universal visual representation by
retrieving associated images for words in a source sentence [Zhang et al., 2020]; (5)
utilizing manually annotated datasets to train supervised visual attention [Nishihara
et al., 2020]; (6) integrating multimodal graph neural networks [Yin et al., 2020] and
dynamic context-guided capsule networks [Lin et al., 2020] into the MNMT. Although
these researchers successfully prove the effectiveness of relating textual and visual in-
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formation for MNMT, there are lingering concerns. First, jointly learning visual and
textual representations with latent space requires large-scale training data that MNMT
lacks. Second, in multimodal tasks, different modalities do not usually have equal
importance. It is suggested that texts are obviously more important than images [Yao
and Wan, 2020]. Likewise, the impact of textual predominance has been revealed
by [Chowdhury and Elliott, 2019]. Therefore, how to effectively correlate multimodal
inputs is a lingering challenge for MNMT.

Meanwhile, some methods have been developed for correlating modalities in other
multimodal tasks that focus on image-to-text one-way operation: (1) Correlating tex-
tual and visual modalities by a multimodal embedding space [Karpathy and Li, 2015,
Gupta et al., 2017]. Rather than learning a joint space, a pre-processed facility WRA
using visual concepts as an intermediary to build semantic relevance between words
and regions is proposed in this paper. (2) Aligning textual and visual features by dif-
ferent attention mechanisms, such as a mutual attention mechanism [Liu et al., 2019],
a stack of co-attention layers [Nguyen and Okatani, 2018], and self-attention [Huang
et al., 2020]. In contrast, in my study, double attention is collocated for learning align-
ment between source words and target words and between image regions and target
words. (3) Jointly training visual and textual attention mechanisms [Nam et al., 2017]
or jointly learning word-tag-region triple embeddings [Li et al., 2020] to find shared
semantics between images and sentences. Although previous efforts have explored
different strategies to mix vision and language, the efficient integration of multimodal
information still remains a challenging task though.
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3 Region-Attentive MNMT

3.1 Introduction

In this proposed method, as shown in Figure 3.1, I attempt to combine object detection
with an additional region-dependent attention mechanism for fully exploiting semantic
image region features upon NMT architectures, which is called region-attentive multi-
modal neural machine translation (RA-NMT). In RA-NMT, it is possible to focus on
different parts of the source sentence and different object-level regions of the image at
the same time. The main motivation behind this is that I expect the proposed method
to take advantage of useful visual information by attending to specific regions of the
image to assist in translating source words.

O
bj

ec
t d

et
ec

tio
n

Src: man in red shirt watches dog on an agility course.

Trg: un homme en polo
rouge regarde son chien
sur un parcours d'gilité.

Image-attention

Text-attention

Figure 3.1: Overview of region-attentive multimodal neural machine translation (RA-
NMT).

Technically, rather than equally sized grid local visual features, I present that seman-
tic image region features containing object attributes and relationships are essential
to MNMT. Furthermore, inspired by previous studies [Caglayan et al., 2016b, Cal-
ixto et al., 2017, Libovický and Helcl, 2017, Delbrouck and Dupont, 2017] on the
investigation of the attention mechanism for multi-source learning, I introduce that a
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region-dependent attention mechanism is a promising way to make MNMT attend to
the salient regions of an image. Therefore, instead of utilizing regional features to
initialize/contextualize language representations [Huang et al., 2016, Ive et al., 2019],
I propose integrating semantic image region features into MNMT with two modality-
dependent attention mechanisms, one for text and the other for the semantic image
regions, which is significantly different from the previous studies.

In this study, I implemented and verified the proposed method on not only the
RNN-based architecture but also Transformer-based architecture, which are called the
region-attentive multimodal RNN (RA-RNN) method and region-attentive multimodal
transformer (RA-TRANS) method, respectively. Experimental results on different lan-
guage pairs of the Multi30k dataset show that my proposed method improves over
baselines and outperforms most of the state-of-the-art MNMT methods. Further anal-
ysis demonstrates that the proposed method can achieve better translation performance
because of its better visual feature use.

The main contributions are as follows:

• I propose a multimodal method that combines object detection with an addi-
tional region-dependent attention mechanism to fully exploit semantic image re-
gion features on NMT architectures, which is called RA-NMT. This proposal is
implemented and verified on two types of NMT architectures: RNN and Trans-
former.

• Extensive experimental results show that my proposed method improves over
baselines on both RNN and Transformer architectures. The further experimental
comparison shows that my proposed method outperforms most existing MNMT
methods.

• Further analysis demonstrates that the proposed method can make better use
of visual information by attending to specific semantic image regions with an
additional region-dependent attention mechanism.
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3.2 Methodology

3.2.1 RA-RNN: Region-Attentive Multimodal RNN

As shown in Figure 3.2, the proposed RA-RNN, based on [Calixto et al., 2017], com-
prises three parts: sentence encoder, image encoder, and decoder.

st-1 st

homme en chemise rouge <eos>
yt-1 yt

Decoder

r1 r2 r3 rp rm

Faster R-CNN

h1 h2 hi h4 hn

Man   in   red  shirt    <eos>

ztct

ResNet101

Se
nt

en
ce

 e
nc
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er Im

age encoder

xi

Figure 3.2: RA-RNN: Region-Attentive Multimodal RNN.

I integrate the visual features using an additional attention mechanism. From the
source sentence X = (x1, x2, x3, · · ·, xn) to the target sentence Y = (y1, y2, y3, · · ·,
yg), the image attention mechanism focuses on all semantic image region features to
calculate the image context vector zt, whereas the text-attention mechanism computes
the text context vector ct. The decoder is an RNN with a conditional gated recurrent
unit (cGRU) to generate the current hidden state st and target word yt on two attention
mechanisms.

At time step t, a hidden state proposal ŝt is initially computed in cGRU, and then
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the image context vector zt and text context vector ct are calculated.

ξ̂t = σ(WξEY [yt−1] + Uξst−1)
γ̂t = σ(WγEY [yt−1] + Uγst−1)
ṡt = tanh (WEY [yt−1] + γ̂t � (Ust−1))
ŝt = (1− ξ̂t)� ṡt + ξ̂t � st−1

where Wξ, Uξ, Wγ , Uγ , W , and U are trainable parameters; EY is the target word
vector.

Sentence Encoder

The sentence encoder is a bi-directional RNN with GRU [Cho et al., 2014a]. Given a
sentence X = (x1, x2, x3, · · ·, xn), the encoder updates the forward hidden states with
annotation vectors (

−→
h1,
−→
h2,
−→
h3, · · ·,

−→
hn), and updates the backward with annotation

vectors (
←−
h1,
←−
h2,
←−
h3, · · ·,

←−
hn). By concatenating the forward and backward vectors hi

= [−→hi ;
←−
hi ], each hi encodes the entire sentence while focusing on the xi word, and all

words in a sentence are denoted as C = (h1, h2, · · ·, hn).

Image Encoder

The image encoder is an object-detection-based approach following [Anderson et al.,
2018], acting as a feature extractor in the object-level image region.

As shown in Figure 3.2, when given an input image, the image encoder first employs
an object detection method, which is Faster R-CNN [Ren et al., 2015] pre-trained on
Visual Genome [Krishna et al., 2017], to propose m object-level image regions from
each image. Then, based on the detected object-level image regions, a ResNet101
[He et al., 2016] pre-trained on ImageNet [Russakovsky et al., 2015] is utilized to
extract semantic image region features. Finally, each semantic image region feature is
represented as a vector r with dimensions dr, and all of these features in each image
are denoted as R = (r1, r2, r3, · · ·, rm).

Decoder

The decoder comprises three parts: the text-attention mechanism, the image-attention
mechanism, and generation.
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Text-attention mechanism. At time step t, the text context vector ct is generated as
follows:

etext
t,i = (V text)Ttanh(U textŝt + W texthi)

αtext
t,i = softmax(etext

t,i )

ct =
n∑

i=1
αtext

t,i hi

where V text, U text, and W text are trainable parameters; etext
t,i is the attention energy;

αtext
t,i is the attention weight matrix of the source sentence.

Image-attention mechanism. At time step t, the image-attention mechanism fo-
cuses on the m semantic image region features and computes the image context vector
zt.

I initially calculate the attention energy eimg
t,p , which scores the degree of output

matching between the inputs around position p and the output at position t, as follows:

eimg
t,p = (V img)Ttanh(U imgŝt + W imgrp)

where V img, U img, and W img are trainable parameters.
Then, the weight matrix αimg

t,p of each rp is computed as follows:

αimg
t,p = softmax(eimg

t,p )

At time step t, the image-attention mechanism dynamically focuses on the m seman-
tic image region feature vectors and computes the image context vector zt, as follows:

zt = βt

m∑
p=1

αimg
t,p rp

For zt, at each decoding time step t, a gating scalar βt ∈ [0, 1] [Xu et al., 2015] was
used to adjust the proportion of the image context vector according to the previous
hidden state st−1.

βt = σ(Wβst−1 + bβ)

where Wβ and bβ are trainable parameters.
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Generation. At time step t of the decoder, the new hidden state st is generated in the
cGRU, as follows:

ξt = σ(W text
ξ ct + W img

ξ zt + Ūξŝt)
γt = σ(W text

γ ct + W img
γ zt + Ūγ ŝt)

s̄t = tanh (W textct + W imgzt + γt � (Ū ŝt))
st = (1− ξt)� s̄t + ξt � ŝt

where W text
ξ , W img

ξ , Ūξ, W text
γ , W img

γ , Ūγ , W text, W img, and Ū are model parameters;
ξt and γt are the output of the update/reset gates; s̄t is the proposed updated hidden
state.

Finally, the output probability is computed as follows:

softmax(Lotanh(Lsst + Lcct + Lzzt + LwEY [yt−1]))

where Lo, Ls, Lc, Lz, and Lw are trainable parameters.

3.2.2 RA-TRANS: Region-Attentive Multimodal Transformer

As shown in Figure 3.3, RA-TRANS comprises three parts: encoder, decoder, and im-
age encoder. I propose RA-TRANS based on Transformer architecture [Vaswani et al.,
2017]. In the decoder, I implement two modality-dependent cross-attention mecha-
nisms over the multi-source (image, text). The image encoder follows the method
described in Section 3.2.1.

Encoder

To represent source sentences, an input embedding layer acts as a lookup table to map
each word to a vector representation. Because the encoder in the transformer has no
recurrence like that in RNN, it is necessary to inject positional information into the
input embeddings, which is done using positional encoding.

The encoder comprises a stack of N identical layers. Each layer has self-attention
and feed-forward sublayers. The self-attention sub-layer is a multi-head attention
mechanism that allows the model to jointly attend to information from different repre-
sentation subspaces. The feed-forward sub-layer is a basic, position-wise, fully con-
nected feed-forward network, which is applied to each position separately and identi-
cally.
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Figure 3.3: RA-TRANS: Region-Attentive Multimodal Transformer.
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In addition to the two sub-layers described above, the residual connection [He et al.,
2016] and layer normalization [Ba et al., 2016] are also key components of the trans-
former. There is a residual connection around every one of the two sublayers and a
layer normalization inside the residual connection in my model. Therefore, the output
of each sublayer is defined as (x+Sublayer(LayerNorm(x))), where Sublayer() is the
function implemented by the sublayer itself. To encourage these residual connections,
all sublayers and embedding layers produce outputs of dimension dmodel.

Decoder

The decoder comprises a stack of N identical layers. In addition to the two sub-layers
similar to the encoder, the decoder inserts two cross-attention mechanisms between
them. One is text cross-attention, which performs multi-head attention on encoder out-
put features. The other is image cross-attention, which performs multi-head attention
over semantic image region features. There is also a residual connection around ev-
ery sublayer and a layer normalization inside the residual connection, similar to the
encoder.

When generating a target word at a time step t, the attention from one of the sources
may be strong or weak from the other, and thus, summing two cross-attention outputs
would help learn the better translation. Therefore, the summarized output from two
cross-attentions is fed into the feed-forward network sub-layer, which consists of two
linear transformations with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2

While the linear transformations are the same across different positions, they use dif-
ferent parameters from layer to layer, where W1, W2, b1, and b2 are trainable parame-
ters. In this equation, the dimensions of the input and output are dmodel, and the inner
feed-forward neural network layer has dimensions dff . Finally, the decoder is capped
off with a linear layer that acts as a classifier and a softmax layer to obtain the target
word probabilities.

Double Cross-Attentions

As illustrated on the left of Figures 3.4 and 3.5, conventional cross-attention in the
transformer acts as a query mapping of key-value sets to an output, which is multi-head
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attention that performs the attention function on the encoder output features using H

heads in parallel. Each scaled dot-product attention process is called one head. Each
head produces an output vector that is concatenated into a single vector before passing
through the final linear layer.

The input involves queries and keys of dimension dk and values of dimension dv.
Each query is multiplied with all keys by dot product multiplication and scaled by√

dk; then, there is an src_padding on padding source text input into the maximum
length. Finally, the softmax function is applied to obtain the weights of the values.
The final output of the scaled dot-product attention is computed as the weighted sum
of the values. The weight assigned to each value is calculated using the compatibility
function of the query with the corresponding key.

The cross-attention is simultaneously calculated on a set of queries, keys, and values
and packed together into a matrix Q, Kt, Vt. The output matrix is computed as follows:

Attention(Q, Kt, Vt) = softmax(QKT
t√

dk
)Vt

MultiHead(Q, Kt, Vt) = Concat(head1
t , . . . , headH

t )W O

where headi∈[1,H]
t = Attention(QW Q

i , KtW
K
i , VtW

V
i ).

The projections are parameter matrices:

W Q
i ∈ Rdmodel×dk

W K
i ∈ Rdmodel×dk

W V
i ∈ Rdmodel×dv

W O ∈ RHdv×dmodel

In the proposed RA-TRANS, I use the conventional cross-attention in the trans-
former as the text cross-attention mechanism. I implemented an additional image
cross-attention mechanism, which is multi-head attention, that performs the attention
function on m semantic image region features using H heads in parallel.

The image cross-attention mechanism is illustrated on the right side of Figures 3.4
and 3.5. Unlike text-scaled dot-product attention, image-scaled dot-product attention
has no source input padding because the number of semantic image regions is fixed.

18



The image cross-attention mechanism is defined as:

Attention(Q, Kr, Vr) = softmax(QKT
r√

dk
)Vr

MultiHead(Q, Kr, Vr) = Concat(head1
r, . . . , headH

r )W o

where headi∈[1,H]
r = Attention(QW q

i , KrW
k
i , VrW

v
i ).

The projections are parameter matrices:

W q
i ∈ Rdmodel×dk

W k
i ∈ Rdmodel×dk

W v
i ∈ Rdmodel×dv

W o ∈ RHdv×dmodel

3.3 Experiments

3.3.1 Dataset

I experimented on English→German (En→De) and English→French (En→Fr) tasks
of the Multi30k dataset [Elliott et al., 2016]. The dataset contained 29k training images
and 1,014 validation images. For testing, I used the 2016 test set, which included
1,000 images. Each image was paired with its English descriptions as well as human
translations of German and French. I used Moses [Koehn et al., 2007] toolkit* to
normalize and tokenize all sentences. Then, I converted the space-separated tokens
into sub-word units using the byte pair encoding (BPE) model [Sennrich et al., 2016].†

With 10k merge operations, the resulting vocabulary sizes of each language pair were
5,202→7,065 tokens for En→De and 5,833→6,575 tokens for En→Fr. The number of
tokens in the sentence was limited to a maximum of 100. I trained models to translate
from English to German/French and report the evaluation of cased, tokenized sentences
with punctuation.

*https://github.com/moses-smt/mosesdecoder
†https://github.com/rsennrich/subword-nmt
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3.3.2 Evaluation Metrics

I evaluated the quality of translation according to the token-level BLEU [Papineni
et al., 2002] and METEOR [Denkowski and Lavie, 2014] metrics.

I trained all models three times and calculated the BLEU and METEOR scores.
Finally, I reported the average over three runs. Moreover, I reported the statistical
significance of BLEU using bootstrap resampling [Koehn, 2004] over a merger of three
test translation results. I defined the statistical significance test threshold as 0.05, and
reported only when the p-value was less than the threshold.

3.3.3 Baselines

RNN.

I trained a text-only RNN model using the OpenNMT [Klein et al., 2017] toolkit‡ as
a baseline. The RNN was trained on En→De and En→Fr, wherein only the textual
part of Multi30k was used. This architecture comprises a 2-layer bidirectional GRU
encoder and a 2-layer cGRU decoder with an attention mechanism.

Grid-Attentive Multimodal RNN (GA-RNN).

I trained a GA-RNN [Calixto et al., 2017] model§ as another baseline, which was
extended from OpenNMT. This architecture comprises a 2-layer bidirectional GRU
encoder and a 2-layer cGRU decoder with two attention mechanisms. I trained this
model with 7 × 7 equally sized grid local visual features from each image extracted
by a ResNet101 pre-trained on ImageNet. Each grid-based local visual feature was
represented as a 2,048-dimension vector.

TRANS.

I trained a text-only Transformer model using the transformer’s settings in the Open-
NMT toolkit as a baseline. The TRANS was also trained on only the textual part of
Multi30k on En→De and En→Fr tasks.

‡https://github.com/OpenNMT/OpenNMT-py
§https://github.com/iacercalixto/MultimodalNMT
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Grid-Attentive Multimodal Transformer (GA-TRANS).

I trained a GA-TRANS model based on the GA-RNN model by modifying the trans-
former’s settings in the OpenNMT toolkit as another baseline. An image cross-attention
mechanism was implemented on the grid-based local visual features in the transformer’s
settings. This architecture was also trained with 7× 7 grid-based local visual features
from each image extracted by a ResNet101 pre-trained on ImageNet, and each feature
was represented as a 2,048-dimension vector.

3.3.4 Setup

I implemented my proposed RA-RNN and RA-TRANS based on GA-RNN and GA-
TRANS baselines, respectively, by modifying the image attention mechanism to focus
on m semantic image region feature vectors generated from the image encoder. For the
image encoder in both the RA-RNN and RA-TRANS methods, the number of semantic
image region features was set to m = 100 and the dimension of regional feature vectors
was set to dr = 2, 048.

Settings of the RNN-Based Models

I set the hidden state dimension of the bi-directional GRU encoder and cGRU decoder
to 500, source word embedding dimension to 500, sentence-minibatches to 40, beam
size to 5, text dropout to 0.3, and image region dropout to 0.5. I trained the model
using stochastic gradient descent with ADAM [Kingma and Ba, 2015] and a learning
rate of 0.002 for 25 epochs. Finally, after both the validation perplexity and accuracy
converged, the model with the highest BLEU score of the validation set was selected
to evaluate the test set.

Settings of the Transformer-Based Models

I set N = 6 layers for the encoder and decoder. The number of dimensions of all
the input and output layers was set to dmodel = 512. The inner feed-forward neural
network layer was set to dff = 2, 048. The heads of all the multi-head modules were
set to H = 8 in both the encoder and decoder layers. I applied linear projection on
visual features to reduce the dimensions from 2,048 to 512 to have the same size as
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word embeddings. I applied a dropout of 0.3 on linear projection. During training, the
sentence-minibatches were set to 40, the value of label smoothing was set to 0.1, and
the attention dropout and residual dropout were 0.3. An Adam optimizer was used to
tune the model parameters. The learning rate was set to two with a warm-up step of
8,000. I trained the model up to 100 epochs, and the model with the highest BLEU
score of the validation set was selected to evaluate the test set.

3.4 Results

3.4.1 Results within RNN-Based Models

Table 3.1 presents the experimental results of RNN-based architectures, showing that
the proposed RA-RNN achieves better performance than both the text-only RNN base-
line and the GA-RNN baseline in all translation tasks. In particular, the results of
the RA-RNN are significantly better than those of the text-only RNN baseline with a
p-value of < 0.05 on both language pairs. This illustrates that integrating semantic
image region visual features is capable of promoting translation performance, and my
proposed method can make better use of visual information.

Methods
En→De En→Fr

BLEU METEOR BLEU METEOR

RNN 34.8 53.4 56.5 71.9

GA-RNN 36.5 54.8 57.8 72.8

RA-RNN 36.9† 55.5 58.1† 73.2
v.s. RNN (↑ 2.1) (↑ 2.1) (↑ 1.6) (↑ 1.3)
v.s. GA-RNN (↑ 0.4) (↑ 0.7) (↑ 0.3) (↑ 0.4)

Table 3.1: The experimental results of RNN-based architectures. The best performance
is highlighted in bold. † indicates that the result is significantly better than
the text-only RNN baseline at a p-value of < 0.05.
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3.4.2 Results within Transformer-Based Models

Table 3.2 presents the experimental results of the Transformer-based architectures,
showing that the proposed RA-TRANS outperforms the baselines on both the En→De
and En→Fr tasks.

Methods
En→De En→Fr

BLEU METEOR BLEU METEOR

TRANS 35.4 52.8 57.4 72.2

GA-TRANS 37.5 55.6 59.5 74.4

RA-TRANS 38.0†‡ 56.0 60.1†‡ 74.8
v.s. TRANS (↑ 2.6) (↑ 3.2) (↑ 2.7) (↑ 2.6)
v.s. GA-TRANS (↑ 0.5) (↑ 0.4) (↑ 0.6) (↑ 0.4)

Table 3.2: The experimental results of Transformer-based architectures. The best per-
formance is highlighted in bold. † and ‡ indicate that the result is signif-
icantly better than the text-only TRANS and GA-TRANS baselines at p-
value < 0.05, respectively.

It is worth noting that my RA-TRANS results are significantly better than not only
the text-only TRANS baseline but also the GA-TRANS baseline with a p-value of <

0.05 on both tasks. This demonstrates that the proposed method is universal, which
can result in consistent improvements in performance on different NMT architectures.
Thus, I confirm the effectiveness and generality of the proposed method.

3.4.3 Comparison of Proposed Model and Existing Ones

To further verify the merit of the proposed method, I also implemented the proposed
method on the state-of-the-art text-only NMT baseline mentioned in [Calixto et al.,
2019] and the state-of-the-art transformer baseline mentioned in [Yin et al., 2020],
respectively. Furthermore, I compared the experimental results of my proposed method
with the following state-of-the-art MNMT methods:

Parallel RCNNs [Huang et al., 2016]: The encoder of RNN is composed of multi-
ple encoding threads. In each thread, a regional visual feature is followed by a text
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sequence.
NMTSRC+IMG [Calixto et al., 2017]: Integrates two separate attention mechanisms

over the source words and conventional grid local visual features in a cGRU decoder.
IMGD [Calixto and Liu, 2017]: Integrates global visual features as additional data

to initialize the decoder’s hidden state.
Imagination [Elliott and Kádár, 2017]: Jointly learns a translation model and visu-

ally grounded representations.
{Soft, Stochastic} Attention + Grounded Image (GI) [Delbrouck and Dupont, 2017]:

Employs two kinds of attention mechanisms, which are superimposed by an additional
grounding attention method, for considering visual annotations of image feature maps
to generate context vectors.

VMMTF [Calixto et al., 2019]: An MNMT model that incorporates image context
through a latent variable model.

Del+Obj [Ive et al., 2019]: A transformer-based deliberation model enriched with
object-level features.

MTF [Yao and Wan, 2020]: A transformer-based NMT model with multimodal self-
attention to integrate text and image features.

GMFE-NMT [Yin et al., 2020]: A transformer-based NMT model integrated with a
multimodal graph neural network (GNN) encoder on the grounding-based correspon-
dences between phrase-level words and regions.

ImagiT [Long et al., 2021]: An MNMT method via visual imagination.
As shown in Table 3.3, all the existing methods are divided into two groups: RNN-

based methods and Transformer-based methods. Then, I display the experimental re-
sults of the proposed method and the state-of-the-art methods’ results for the respective
group. Note that previous methods mainly report the results on the En→De language
pair of the Multi30k 2016 test set, and hence, the existing results on the En→Fr task
are fewer than those of the En→De task.

¶The results of my proposal reported here are implemented on the state-of-the-art text-only NMT baseline
mentioned in [Calixto et al., 2019] using the OpenNMT toolkit. The experimental settings are consistent
with the setup described in Section 3.3.4.

||The results of my proposal reported here are implemented on the state-of-the-art transformer baseline
mentioned in [Yin et al., 2020] using the Nmtpytorch toolkit [Caglayan et al., 2017b]. The experimental
settings are consistent with the setup in Section 3.3.4, except that the learning rate was tuned to 0.03 and
the model was trained up to 300 epochs.
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Methods
En→De En→Fr

BLEU METEOR BLEU METEOR

RNN-Based Methods

Text-only NMT 35.0 54.9 56.5 71.9

Parallel RCNNs 36.5 54.1 N/A N/A
NMTSRC+IMG 36.5 55.0 57.8 72.8
IMGD 37.3 55.1 N/A N/A
Imagination 36.8 55.8 N/A N/A
Soft Attention + GI 37.6 55.3 N/A N/A
Stochastic Attention + GI 38.2 55.4 N/A N/A
VMMTF 37.7 56.0 N/A N/A

Proposed Method(OpenNMT)
¶ 36.9 55.5 58.1 73.2

Transformer-Based Methods

Text-only transformer 38.4 56.5 59.5 73.7

Del+Obj 38.0 55.6 59.8 74.4
MTF 38.7 55.7 N/A N/A
GMFE-NMT 39.8 57.6 60.9 74.9
ImagiT 38.5 55.7 59.7 74.0

Proposed Method(Nmtpytorch)
|| 38.6 57.7 60.1 75.0

Table 3.3: Comparison with existing methods. Among all the results, I highlight the
best performance in bold. All the experimental results of my proposal are
the average scores over three runs.
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By comparing the performance of the proposed method with the state-of-the-art
methods, I draw two conclusions as follows:

First, the proposed method outperforms the state-of-the-art text-only baselines on
different basic neural architectures. For instance, the proposed method in the respective
group outperforms the text-only NMT baseline and the transformer baseline by 1.6
and 0.6 BLEU scores, respectively, on the En→Fr task. Therefore, I can confirm the
effectiveness and generality of the proposed method.

Second, the evaluation results of the proposed method outperform most of the exist-
ing MNMT methods. Among the Transformer-based methods, my proposed method
achieves the best performance evaluated by the METEOR score on both language
pairs; furthermore, the results of the proposed method outperform most of the ME-
TEOR scores in the existing RNN-based methods on different language pairs as well.
This demonstrates that my proposed method is competitive among all the state-of-the-
art MNMT methods.

3.5 Analyses

3.5.1 Pairwise Evaluation

To further analyze the translation performance of my proposed method, I performed a
pairwise evaluation and statistical analysis. The results of the pairwise evaluation of
the En→Fr language pair are summarized in Table 3.4.

Based on two kinds of NMT architectures, I conducted three groups of compar-
isons. Specifically, I compared the proposed RA-RNN/RA-TRANS translations with
their corresponding baselines’ translations to identify improvement or deterioration of
translation performance, and I compared the translations of RA-RNN and RA-TRANS
to identify which architecture can achieve better translation performance. For each
group, I randomly selected 50 examples for evaluation and categorized 50 investigated
examples into various categories by counting the number and proportion.

After statistical analysis, I find that almost half of the investigated examples show
that my RA-RNN performs better than at least one baseline model. Similarly, half of
the investigated examples show that my RA-TRANS outperforms at least one base-
line model. It further verified the effectiveness and generality of my proposed method.
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RA-RNN v.s. RNN-based baselines

Better than both baselines 8 (16%)
Better than GA-RNN baseline 6 (12%)
Better than RNN baseline 10 (20%)
No change 24 (48%)
Deteriorated 2 (4%)

RA-TRANS v.s. Transformer-based baselines

Better than both baselines 10 (20%)
Better than GA-TRANS baseline 4 (8%)
Better than TRANS baseline 11 (22%)
No change 24 (48%)
Deteriorated 1 (2%)

RA-TRANS v.s. RA-RNN

RA-TRANS is better than RA-RNN 8 (16%)
RA-RNN is better than RA-TRANS 2 (4%)
No change 40 (80%)

Table 3.4: Pairwise evaluation. I counted the number and proportion of various cate-
gories among 50 random examples.
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Moreover, the number of examples in which my RA-TRANS is better than both base-
lines is slightly improved compared with a similar case of the RA-RNN. By comparing
the translation performance of my RA-TRANS and RA-RNN, I find that the number
of examples where RA-TRANS is better than RA-RNN is four times larger than the
opposite cases. This illustrates that my RA-TRANS can achieve a better translation
performance compared with RA-RNN.

3.5.2 Qualitative Analysis

For qualitative analysis, I analyze translation performance by comparing the translation
results of the proposed method and its baselines, along with visualizing the semantic
image regions that are attended by the image-attention mechanism at every time step.

According to the attention weight assigned to each region, the semantic image re-
gions are shown with deep or shallow transparency in the image at every time step.
As the weight increases, the image region becomes more transparent. Considering the
number of 100 bounding boxes in one image and the overlapping areas, I visualized
the top five weighted semantic image regions. In the image, a blue bounding box in-
dicates the most weighted image region, and the red text along with the bounding box
shows the target word generated at that time step. Then, I analyze whether the seman-
tic image regions have a positive or negative effect at the time step when a target word
is generated.

To distinguish the translation quality, I highlight the better translation with blue and
the worse translation with red.

Visualization within RNN-Based Models

In Figure 3.6, I present two examples to analyze the effect of semantic image regions
on translation quality within RNN-based models. The first is an example of a positive
effect, whereas the second is the opposite.

For the first example, it illustrates that the semantic image regions of the proposed
method can play a positive role in providing object attributes.

In detail, by comparing the translation result of my RA-RNN and its baselines, I
find that the RA-RNN translates “striped beach chairs” better, which is a phrase made
up of an adjective and a noun. From the visualization of the most weighted semantic
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deux	personnes	sont	assises	dans	des	fauteuils	de	plage	rayés	,	
pêchant	dans	une	étendue	d's	eau	.	

Src (En)

Ref (Fr)

RNN

GA-RNN

RA-RNN

deux	personnes	sont	assises	sur	une	structure	de	plage	rayée
(a	striped	beach	structure)	dans	un	plan	d's	eau	.	

two	people	are	sitting	fishing	on
striped	beach	chairs	in	a	body	of	water	.

des hommes jouant au volleyball , avec un joueur ratant le 
ballon mais avec les mains toujours en l's air .

Src (En)

Ref (Fr)

RNN

GA-RNN

RA-RNN

des hommes jouant au volleyball , un joueur à l's attraper , 
mais les autres mains ayant toujours dans les airs (in the air) .
 .des hommes jouant au volley-ball , avec un joueur 
qui le regarde dans les airs (in the air) .
des hommes jouant au volleyball , avec un joueur qui passer
le ballon mais les mains du vol (of the flight).

men playing volleyball , with one player missing the ball 
but hands still in the air .du vol

chaises rayées

deux	personnes	sont	assises	,	pêchent	sur	
une	plage	de	sable	(a	sandy	beach)	dans	un	plan	d's	eau	.
deux	personnes	sont	assises	à	pêcher	sur	
des	chaises	rayées	(striped	chairs)	dans	un	plan	d's	eau	.	

Figure 3.6: Examples for text-only RNN, grid-attentive multimodal RNN (GA-RNN),
and region-attentive multimodal RNN (RA-RNN). Red and blue words in-
dicate incorrect and correct, respectively.

image region, I can identify the semantics of “chairs” and “striped,” respectively.
For the second example, it presents that attending to the semantic image regions that

are not related to the text’s semantics is not helpful for translation performance.
As shown in the example, “air” is correctly translated by baselines. However, the

RA-RNN translates “in the air” into “du vol (of the flight).” I observe that the trans-
parent semantic image regions with the top five weights in the image are scattered and
unconnected. I can not understand any semantic information in the visualized image
regions. I speculate that the word “air” is challenging to interpret depending on visual
features. Furthermore, the proposed method translates it into “vol (flight),” which is
close to another meaning of the polysemous “air,” not completely different from the
original meaning.

Visualization within Transformer-Based Models

In Figure 3.7, I present two examples to analyze the effect of semantic image regions
on translation quality within Transformer-based models. The first is an example of a
positive effect, whereas the second is the opposite.
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la femme en bleu manipule un appareil photo devant deux autres femmes .
Src (En)
Ref (Fr)
TRANS
GA-TRANS
RA-TRANS

la femme en bleu manie (wields) une caméra en face de deux autres femmes .
la femme en bleu fait fonctionner (function) un appareil photo devant deux autres femmes .
la femme en bleu manipule (manipulate) un appareil photo devant deux autres femmes .

the woman in blue is operating a camera in front of two other women .

deux femmes portant des débardeurs regardent l's objectif .
Src (En)
Ref (Fr)
TRANS
GA-TRANS
RA-TRANS

deux femmes vêtues (wearing) de débardeurs regardent l's objectif .
deux femmes portant (wearing) des débardeurs regardent l's objectif . 
deux femmes en (in) débardeurs regardent l's objectif .

two women wearing tank tops are looking at the camera .

manipule

en

Figure 3.7: Examples for text-only Transformer (TRANS), grid-attentive multimodal
Transformer (GA-TRANS), and region-attentive multimodal Transformer
(RA-TRANS). Red and blue words indicate incorrect and correct, respec-
tively.

For the first example, it shows that the semantic image regions of the proposed
method can play a positive role in providing verb attributes.

In this example, compared with baselines’ translations, the RA-TRANS translates
“operating” better, which is a verb. By visualizing the most weighted semantic image
region, I can identify the semantics of “operate.”

For the second example, I find that the semantic image regions of the proposed
method have no effect on distinguishing synonyms.

As illustrated in the example, “wearing” is correctly translated by baselines. How-
ever, the RA-RNN translates the verb into “in,” which is a preposition. Although I can
identify the semantic of “wearing” from the most weighted semantic image region, it
can also be understood as “in.”

Visualization between RA-RNN and RA-TRANS

In Figure 3.8, I present two examples to analyze the effect of semantic image regions
on translation quality between RA-RNN and RA-TRANS architectures. The first is an
example of a case where RA-TRANS is better than RA-RNN, whereas the second is
the opposite case.

For the first example, it reflects that the performance of the image attention mech-
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engin

un ouvrier du bâtiment conduit un gros engin sur un chantier .
Src (En)

Ref (Fr)

RA-RNN

RA-TRANS

un ouvrier du bâtiment conduit un gros plan (plan) d's chantier .

un ouvrier du bâtiment conduit un gros engin (machine) sur un chantier . 

a construction worker is driving heavy equipment at a work site .

une figure paternelle et deux enfants devant leur maison , faisant des 
activités de jardinage comme utiliser une binette dans l's herbe et planter un arbre . 

Src (En)

Ref (Fr)

RA-RNN

RA-TRANS

un prêtre et deux enfants à l's extérieur de chez leur maison , faisant du 
jardinage (gardening) tandis qu's ils utilisent une binette sur l's herbe et plantant un arbre .
un mannequin et deux enfants devant leur maison , faisant des travaux (work) 
de travail en utilisant une binette tandis qu's ils utilisant une binette et un arbre .

a father-figure and two children outside their home doing yard work 
such as using a hoe on the grass and planting a tree .

plan

jardinage travaux 

Figure 3.8: Examples for region-attentive multimodal RNN (RA-RNN) and region-
attentive multimodal Transformer (RA-TRANS). Red and blue words indi-
cate incorrect and correct, respectively. In each example, left/right figures
correspond to the visualization of RA-RNN/RA-TRANS.

anism is also crucial to the translation quality of the proposed method. In another
word, the semantic image region features and the effectiveness of the image attention
mechanism are indispensable.

As shown in this example, the RA-TRANS translates “equipment” better than RA-
RNN. From the top five weighted semantic image regions, I can identify the semantics
of “equipment,” either in RA-RNN or RA-TRANS. However, as the most weighted
semantic image region by the image attention mechanism in RA-RNN does not provide
any relevant semantic information to the text’s semantics, it eventually leads to worse
translation.

For the second example, it demonstrates that the improvement in translation perfor-
mance benefits from attending to the specific semantic image region features.

As shown in this example, the RA-RNN translates “yard work” better than RA-
TRANS. I find that the RA-RNN focuses on a potted plant in a small garden from the
most weighted semantic image region, however, the RA-TRANS focuses on a boy’s
work activities. Moreover, I observe that the top five weighted semantic image regions
on which the two architectures focus are quite different. The RA-RNN mainly focuses
on the garden, whereas the RA-TRANS focuses on the action.
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3.6 Summary

In this proposal, I proposed a multimodal NMT method, namely, RA-NMT, with se-
mantic image regions. The proposed method was implemented on two types of NMT
architectures: RNN and Transformer. Experimental results showed that the proposed
method achieved a significant improvement above the text-only NMT baseline and
grid-attentive multimodal NMT baseline based on either of the two neural architec-
tures. In addition, the proposed method implemented on the state-of-the-art NMT
baselines can not only achieve better performance than the baselines but can also out-
perform most of the existing MNMT methods, which verifies its effectiveness and
competitiveness. Further analysis demonstrated that the proposed method effectively
improves translation performance, and the improvement benefits from attending to spe-
cific semantic image region features, leading to better use of visual information.
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4 WRA-Guided MNMT

4.1 Introduction

An overview of my proposal is shown in Figure 4.1. This study proposes a novel
facility named word-region alignment (WRA) that explicitly correlates source words
with image regions as an additional input in the proposed MNMT model.

Unlike existing MNMT models, I design the WRA as an intermediate component to
bridge multimodal inputs. Specifically, as visual concepts can summarize the seman-
tics of image regions, I utilize these visual concepts as a medium to pre-process the
semantic relevance between source words and image regions. In terms of architecture,
I propose a novel integration strategy word-to-region (W2R) that leverages the WRA,
facilitating the interaction between semantically relevant textual and visual features.
Under the integration strategy W2R, the pre-processed WRA is leveraged as a bridge
to link textual and visual inputs, acting as an auxiliary cue to guide textual features to
interact with semantically relevant regional visual features.

Additionally, two modality-dependent attention mechanisms are utilized to generate
textual and visual contexts for decoding target words. By advancing the correlation be-
tween textual and visual modalities by integrating WRA, the textual and visual context
can provide semantically relevant information to generate accurate translations.

Overall, the main contributions are as follows:

• I proposed WRA, an intermediate component as an additional input to bridge
multimodal inputs based on semantic relevance.

• I proposed a novel integration strategy W2R of the MNMT model that leverages
the WRA to guide the model to translate certain source words into target words
while attending to semantically relevant image regions.
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• I implemented my proposal on both RNN-based and Transformer-based archi-
tectures and evaluated it on English–German and English–French tasks using
the Multi30k dataset [Elliott et al., 2016]. Extensive experiments validated the
consistent efficacy of the proposed method and revealed that it significantly im-
proved baselines based on different evaluation metrics and outperformed most
of the existing methods.

• I conducted detailed analyses to prove the effectiveness of the proposed method
and demonstrate that my method can lead to better visual information use.

Trg: un homme en polo rouge regarde son chien 
        sur un parcours d'gilité .

man in red sh
irt

watc
he

s
do

g on an
ag

ility
co

urs
e .

Src: [man] in [red shirt] 
watches [dog] on 
an agility course .

att: 0.7 att: 0.8

NMT

WRA: word-region alignment
 [man] 
[red shirt]
[dog]

Figure 4.1: Example of WRA-guided MNMT. The WRA builds semantic relevance
between the vision and language. Specifically, each region-level visual fea-
ture is annotated using a visual concept that is used to create a relationship
with every source word. When generating the “rouge,” similar attention
weights (“att” in the figure) are assigned to both the corresponding source
word “red” and image region “red shirt.”
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4.2 Methodology

In this section, I describe my methodology as follows: (1) I introduce the proposed
WRA in Section 4.2.1, according to Figure 4.2; (2) The details of the integration of
WRA into the RNN-based MNMT model shown in Figure 4.3 and the Transformer-
based MNMT model shown in Figure 4.4 are presented in Section 4.2.2 and Section
4.2.3, respectively.

4.2.1 WRA Generation

As shown in Figure 4.2, I propose a WRA containing explicit semantic interactions
between the source words and image regions. The WRA is pre-processed; it acts as an
auxiliary input to guide interactions between the textual and visual information inside
the entire model.

w1 w2 w3 w4 wn-1 wn

[standing man]

[white dog]

[red shirt]

[yellow shirt]

[wooden ladder]

Fa
st

Te
xt

FastTextSrc: man in red shirt     course .

c1

c2

c3

cm-1

cm

Figure 4.2: WRA generation. Each region-level visual feature was annotated using a
visual concept consisting of an attribute class, followed by an object class.
Subsequently, it was be used to create a relationship with each source word
based on semantic similarity. The WRA represents the semantic correlation
between each regional visual feature and all words in a sentence.

For regions, I use the object detection method in [Anderson et al., 2018] to extract
object-level regions for each image. Specifically, each image region is not only de-
noted by a bounding box in the image but also detected along with a visual concept
consisting of an attribute class followed by an object class (see Figure 4.2). I extract m
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image regions along with visual concepts for each image that are used to annotate the
semantics of the corresponding regions. Then, I convert the source words and visual
concepts into subword units.

I identify two types of explicit WRA:

Soft WRA

The soft WRA is generated as a cosine similarity matrix that presents the semantic
similarity score between source words and image regions.

To calculate cosine similarity scores between the source words and image regions,
first, I utilize fastText* to learn subword representations of the source words and vi-
sual concepts. I use a pre-trained model† containing two million word vectors trained
on subword information on Common Crawl (600B tokens). The subword embeddings
of source words can be generated directly, whereas the subword embeddings of vi-
sual concepts should take an average of all the constituent subwords because they are
phrases. Then, these embeddings provide a mapping function from a subword to a 300-
dim vector, where semantically similar subwords are embedded close to each other. As
shown in Figure 4.2, the source words are represented by W = {w1, w2, w3, · · · , wn}
and visual concepts are represented by C = {c1, c2, c3, · · · , cm}, where n denotes the
source length and m denotes the region amount.

I define the soft WRA by computing the similarity score between the source words
and visual concepts as follows:

gi,j = cT
i ·wj

‖ci‖ · ‖wj‖
, i ∈ [1, m], j ∈ [1, n]

Here, gi,j represents the similarity score between the i-th region and the j-th word.
Finally, I define the semantic relevance between the i-th region and the whole source

sentence using a similarity vector gi. Then, the soft WRA is represented as Gsa =
{g1, g2, g3, · · · , gm}.

Hard WRA

The hard WRA is generated as a maximum similarity matrix along the source word
axis based on the soft WRA.

*https://github.com/facebookresearch/fastText
†https://fasttext.cc/docs/en/english-vectors.html
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I make a hard choice to pair each region with only one word in the whole sentence
by aligning the most semantically relevant words to each region based on similarity
score gi,j:

g′
i,j =


1, if arg max

j∈[1,n]
(gi) = j,

0, otherwise

Here, g′
i,j represents the replacement of the maximum similarity score between the

i-th region and the j-th word with 1, and the replacement of others with 0.
Finally, the hard WRA can be represented using m one-hot vectors by Gha =
{g′

1, g′
2, g′

3, · · · , g′
m}.

4.2.2 WRA-Guided RNN-Based MNMT Model

As illustrated in Figure 4.3, based on text-to-text RNN architecture [Bahdanau et al.,
2015], my WRA-guided RNN-based MNMT model comprises four parts: textual en-
coder, visual encoder, word-to-region (W2R), and decoder. The most unique stage
is the W2R, where the soft/hard WRA are integrated to guide interactions between
textual and visual representations.

Textual Encoder

The textual encoder is a bi-directional RNN with a gated recurrent unit (GRU) [Cho
et al., 2014a]. Given a source sentence X = (x1, x2, x3, · · ·, xn), the encoder up-
dates the forward hidden states with annotations (

−→
h1,
−→
h2,
−→
h3, · · ·,

−→
hn) ∈ Rds and

updates the backward with annotations (
←−
h1,
←−
h2,
←−
h3, · · ·,

←−
hn) ∈ Rds . By concatenat-

ing the forward and backward annotations, the textual representation is denoted as
H = (h1, h2, h3, · · · , hn) ∈ Rdh .

Visual Encoder

The visual encoder is an object-detection-based approach [Anderson et al., 2018] to re-
gional feature extraction. Given an input image, the visual encoder employs the faster
R-CNN [Ren et al., 2015] in conjunction with ResNet-101 [He et al., 2016] as its back-
bone, which is pre-trained on the Visual Genome [Krishna et al., 2017] dataset to ex-
tract m regional visual features from each image. Each regional feature is represented
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Figure 4.3: WRA-Guided RNN-Based MNMT Model.
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as a vector a and the visual representation is denoted by A = (a1, a2, a3, · · · , am) ∈
Rdr .

Word-to-Region (W2R)

After generating textual and visual representations independently, the WRA is inte-
grated as an additional input to bridge them, acting as an auxiliary cue to guide source
words to interact with regional features.

The formulation, which entails two stages, is illustrated in Figure 4.3.
In the first stage, intermediate textual representations H′ = (h′

1, h′
2, h′

3, · · · , h′
m) ∈

Rdr are associated with each image region under the guidance of the WRA. Subse-
quently, two definitions are used to calculate the WRA-guided textual feature h′

i, with
respect to the i-th region.

• Under the guidance of the soft WRA:

h′
i = T( 1

n
� (gi · H))

• Under the guidance of the hard WRA:

h′
i = T(g′

i · H)

where gi is from the Gsa; g′
i is from the Gha; H is the textual representation; n is the

source length; and a linear transformation function is defined by T : Rdh → Rdr .
In the second stage, the WRA-guided textual representations H′ = (h′

1, h′
2, h′

3, · · · ,

h′
m) ∈ Rdr are combined with the visual representations A = (a1, a2, a3, · · · , am) ∈

Rdr through concatenation, to enrich each image region using semantically relevant
textual features. Through this transformation, the interaction between the indepen-
dently represented textual and visual features is effectively facilitated.

ri = CONCAT(h′
i, ai) =

 h′
i

ai

 (4.1)

Thus, the visual representations are semantically enhanced by combining WRA-
guided textual features and advanced to multimodal representations, denoted as R =
(r1, r2, r3, · · · , rm) ∈ Rdr .
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Doubly Attentive Decoder

The doubly attentive decoder inspired by [Calixto et al., 2017] functions in the textual
and multimodal contexts based on two independent attention mechanisms, then pre-
dicts the probability of a target word. It is a deepGRU [Delbrouck and Dupont, 2018]
with three stacked GRUs derived from the convoluted gated recurrent units (cGRUs).‡

To generate the target word yt at time step t, a hidden state proposal s′
t is computed

in the first GRU (fgru1) using the previous target word yt−1 and hidden state st−1 as
follows:

s′
t = fgru1(yt−1, st−1)

s′
t = (1− ξ̂t)� ṡt + ξ̂t � st−1

ṡt = tanh(WEY [yt−1] + γ̂t � (Ust−1))
γ̂t = σ(WγEY [yt−1] + Uγst−1)
ξ̂t = σ(WξEY [yt−1] + Uξst−1)

where Wξ, Uξ, Wγ, Uγ, W , and U are the training parameters and EY is the target word
embedding.

Textual attention focuses on every textual representation hi in H by assigning an
attention weight, following which the textual context vector zt is generated as follows:

etxt
t,i = (V txt)Ttanh(U txts′

t + W txthi)
αtxt

t,i = softmax(etxt
t,i )

zt =
n∑

i=1
αtxt

t,i hi,

where V txt, U txt, W txt are the training parameters; etxt
t,i is the attention energy; αtxt

t,i is
the attention weight matrix.

Likewise, visual attention focuses on every multimodal representation ri in R by
assigning an attention weight. Then, the multimodal context vector ct is generated as
follows:

‡https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/

cgru.pdf
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eimg
t,j = (V img)Ttanh(U imgs′

t + W imgri)
αimg

t,j = softmax(eimg
t,j )

ct =
m∑

j=1
αimg

t,j ri,

where V img, U img, W img are the training parameters; αimg
t,j is a weight matrix; eimg

t,j is
the attention energy.

Based on the textual context vector zt and previous hidden state proposal s′
t, a hid-

den state proposal s′′
t is computed in the second GRU (fgru2). Similarly, based on the

multimodal context vector ct and the s′′
t, the final hidden state st is generated in the

third GRU (fgru3). Because the calculation of fgru2 and fgru3 are similar to the function
of fgru1 , I organize them as follows:

st = fgru3([ct, yt−1], s′′
t)

s′′
t = fgru2(zt, s′

t)

I ensure that both representations have their own projections to compute the candi-
date probabilities by obtaining textual and visual GRU blocks as follows:

bv
t = fght(W v

b st)
bt

t = fght(W t
bs′′

t)
yt ∼ pt = softmax(W t

projbt
t + W v

projbv
t ).

where W v
b , W t

b, W t
proj, W v

proj are training parameters, and fght is a gated hyperbolic
tangent activation [Teney et al., 2018] substituted for the tanh function.

4.2.3 WRA-Guided Transformer-Based MNMT Model

As illustrated in Figure 4.4, based on text-to-text Transformer architecture [Vaswani
et al., 2017], my proposed model also comprises four parts: textual encoder, visual
encoder, word-to-region (W2R), and decoder. The W2R is the core stage to leverage
WRA.

Textual Encoder

In the Transformer [Vaswani et al., 2017], a source sentence is encoded by a textual
encoder with multiple layers. The encoder is composed of a stack of N identical lay-
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Figure 4.4: WRA-Guided Transformer-Based MNMT Model.

ers, each of which included two sublayers. The first and second sublayers are the
multi-head attention and position-wise fully connected feed-forward network (FFN).
Residual connection and layer normalization are used between sublayers. Formally, the
output of each sublayer is defined as LayerNorm(x+Sublayer(x)), where Sublayer()
is the function implemented by the sublayer itself. To encourage these residual con-
nections, all the sublayers and embedding layers produce outputs of dimension dm.
Each source word is encoded as a vector h and the textual representation is denoted by
H = (h1, h2, · · · , hn) ∈ Rdm .

Visual Encoder

The internal structure of the visual encoder is the same as that introduced in Section
4.2.2. Similarly, the visual representation is denoted by A = (a1, a2, a3, · · · , am) ∈
Rdr .

Word-to-Region (W2R)

Based on the two stages of the WRA integration method introduced in Section 4.2.2, I
similarly combine semantically relevant textual features into visual features guided by
soft/hard WRA. Consequently, the visual representations are combined with the WRA-
guided textual representations and converted into semantically enhanced multimodal
representations, which are denoted as R = (r1, r2, r3, · · · , rm) ∈ Rdr .
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Doubly Attentive Decoder

The decoder also comprises a stack of N identical layers. In addition to the two sub-
layers, similar to the encoder, a decoder with double cross-attention mechanisms over
the sources inspired by [Libovický et al., 2018] is implemented. The proposed model
attends to textual representations and multimodal representations simultaneously to
generate textual and multimodal contexts. Each of them is attended to using the same
set of queries, that is, the output of the self-attention sublayer. A residual connection
link is used between the queries and summed context vectors from the parallel double
cross-attentions.

The conventional textual cross-attention used in the Transformer, called the multi-
head scaled dot-product attention, is simultaneously calculated on a set of queries,
keys, and values with M heads in parallel. Then, the generation of each head is packed
together into a matrix Q, Kt, Vt. The output matrix is computed as follows:

MultiHead(Q, Kt, Vt) = Concat(head1
t , . . . , headM

t )W O

where headi∈[1,M ]
t = Attention(QW Q

i , KtW
K
i , VtW

V
i )

= softmax(QW Q
i (KtW

K
i )T

√
dm

)VtW
V
i

where W ∗
i and W O are learnable parameter matrices.

Similarly, the visual cross-attention mechanism performs the multi-head scaled dot-
product attention on multimodal representations with M heads in parallel, as follows:

MultiHead(Q, Kr, Vr) = Concat(head1
r , . . . , headM

r )W o

where headi∈[1,M ]
r = Attention(QW q

i , KrW
k
i , VrW

v
i )

= softmax(QW q
i (KrW

k
i )T

√
dm

)VrW
v
i

where W ∗
i and W o are learnable parameter matrices.

Therefore, the summarized output from the two cross-attentions is fed into the resid-
ual connection and layer normalization. Then, the output is fed into the FFN sublayer,
where the dimensions of the input and output are dm and dff . Finally, the decoder is
capped using a linear layer and a softmax layer to predict the probability of a target
word.

43



4.3 Experiments

4.3.1 Datasets

I experimented on English→German (En→De) and English→French (En→Fr) tasks
using the Multi30k dataset [Elliott et al., 2016]. The dataset contained 29k training
images and 1,014 validation images. For testing, I used three public test sets to eval-
uate my models: the Test2016 set and the Test2017 set, each containing 1k images.
Each image was paired with image descriptions expressed by both the original English
sentences and the German and French translations. I lowercased and tokenized the
English, German, and French descriptions and English visual concepts using the script
in the Moses Toolkit.§ I converted space-separated tokens into subword units using a
byte pair encoding (BPE) model.¶ With 10k merge operations, the resulting vocabulary
sizes of each language pair were 5,202→7,065 tokens for En→De and 5,833→6,575
tokens for En→Fr.

4.3.2 Evaluation

I evaluated the quality of the translation according to the token level BLEU [Papineni
et al., 2002] and METEOR [Denkowski and Lavie, 2014] metrics and reported the
average score over three runs.

I conducted a statistical significance test with bootstrap resampling [Koehn, 2004]
for the merger of three test translations using the script in Moses Toolkit. I reported a
statistically significant improvement in BLEU if the p-value is < 0.05.||

4.3.3 Setup

In my experiments, I split two branches based on the architecture of the models:
RNN-based models and Transformer-based models. Each branch includes the follow-
ing types of models for comparison.

§https://github.com/moses-smt/mosesdecoder
¶https://github.com/rsennrich/subword-nmt
||I did not report on METEOR due to the statistical significance test for METEOR is not implemented in
the Moses script.
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• NMT: the text-to-text NMT model, wherein only the textual sentences were
used.

• MNMTR: the doubly attentive MNMT model [Zhao et al., 2020] using regional
visual features, without integrating WRA to process W2R strategy.

• MNMTW2R(sa): the proposed MNMT model incoporating soft WRA to guide
W2R stage.

• MNMTW2R(ha): the proposed MNMT model incorporating hard WRA to guide
W2R stage.

All the models were implemented with Nmtpytorch [Caglayan et al., 2017b].**

In the visual encoder for all the MNMT models, the number of regional features
was set to m = 36, and the dimensions of the regional feature vectors were set to
dr = 2, 048.

Settings of the RNN-Based Models

I set the dimensions of the encoder and decoder hidden states at ds = 256, the textual
representation dimension at dh = 512, word embedding at 128-dim, batch size at 46,
textual dropout at 0.3, visual dropout at 0.5, model dropout at 0.5, and both blocks bt

t

and bv
t at 0.5. I used the Adam optimizer [Kingma and Ba, 2015] with a learning rate

of 0.0004 for all the models. I consistently stopped training when the METEOR score
did not improve over 10 evaluations on the validation set, and one validation evaluation
was performed every 1,000 iterations.

Settings of the Transformer-Based Models

I set the encoder and decoder to contain N = 6 layers. The dimensions of all the input
and output layers were set to dm = 512. The textual representation dimension was
dm = 512 and the dimensions of the inner feed-forward neural network layer were
dff = 2, 048. The number of all the multi-head modules in the encoder and decoder
layers was set to M = 8.

**https://github.com/lium-lst/nmtpytorch

45

https://github.com/lium-lst/nmtpytorch


For training En→De and En→Fr tasks, the sentence-minibatch size was set to 64,
the label smoothing value was set at 0.1, and the attention dropout and residual dropout
were 0.3. I used the Adam optimizer with β1 = 0.9, β2 = 0.98. The learning rate
was tuned to 0.05, with a warm-up step of 4,000 for the NMT model; 0.03 with a
warm-up step of 4,000 for the MNMTR, MNMTW2R(sa), and MNMTW2R(ha) models. I
stopped training when the METEOR score did not improve over 10 evaluations on the
validation set and one validation evaluation was performed every 1,000 iterations.

4.3.4 Further Experimental Comparison

To empirically verify the merit of my proposed model, I also presented the performance
of the following state-of-the-art MNMT models for comparison, namely:

• VAG-NMT [Zhou et al., 2018]: Jointly optimizes a translation model and learns
a shared vision-language space.

• VMMTF [Calixto et al., 2019]: An MNMT model that incorporates image con-
text learned by a latent variable model.

• Del+Obj [Ive et al., 2019]: A Transformer-based deliberation model enriched
using object-level features.

• Trans+VR [Zhang et al., 2020]: A Transformer model with universal visual
representation by a topic-image lookup table.

• VAR-{S2S, TF} (hard) [Yang et al., 2020]: Jointly trains the source-to-target
and target-to-source translation models through hard visual agreement regular-
ization.

• MNMT+SVA [Nishihara et al., 2020]: A Transformer-based MNMT model
with the supervised visual attention mechanism.

• GMFE-NMT [Yin et al., 2020]: A graph-based multimodal fusion encoder to
conduct graph encoding for NMT.

• MTF [Yao and Wan, 2020]: A Transformer-based NMT model with multimodal
self-attention to integrate text and image features.
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• OVC+Lm [Wang and Xiong, 2021]: An MNMT model with grounding trans-
lation on desirable visual objects by masking irrelevant objects in the visual
modality.

• ImagiT [Long et al., 2021]: An MNMT method via visual imagination.

4.4 Results

4.4.1 Results on the En→De Task

Results within RNN-Based Models

As shown in Table 4.1, compared with the text-to-text NMT, the MNMTR consistently
improved the translation performance, benefiting from integrating regional features.
Nevertheless, the improvements were less significant across different metrics on all
the test sets. From this point, I observed that even if high-quality regional features
are fused, the role of the visual feature is limited by the integration method and is
not fully realized. In contrast, the proposed MNMTW2R(sa) and MNMTW2R(ha) models
yielded significantly improved translation results, compared to the NMT baseline, and
consistently obtained a larger margin than the MNMTR.

The key difference between the MNMTW2R and MNMTR was the integration of
WRA. It was verified that integrating the WRA enabled better use of the visual fea-
tures; therefore, the performance was better than that of the model without the WRA.
I think that the significant improvements could be attributed to two aspects of the pro-
posed model:

• The WRA bridges vision and language well.

• Integrating WRA-guided textual features with visual features can promote visual
feature utilization.

In general, both the MNMTW2R(sa) and MNMTW2R(ha) models performed well, and
there was almost no gap in translation results between the integration of soft WRA
and hard WRA. In more detail, the integration of soft WRA could help visual attention
focus on regional visual features by considering all textual features according to the
semantic relevance of each image region. On the other hand, the integration of hard
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Multi30k En→De

Models
Test2016 Test2017

BLEU METEOR BLEU METEOR

Existing MNMT Models

VAG-NMT [Zhou et al., 2018] N/A N/A 31.6 52.2
VMMTF [Calixto et al., 2019] 37.7 56.0 30.1 49.9
Del+Obj [Ive et al., 2019] 38.0 55.6 N/A N/A
Trans+VR [Zhang et al., 2020] 36.9 N/A 28.6 N/A
VAR-S2S (hard) [Yang et al., 2020] N/A N/A 29.3 51.2
VAR-TF (hard) [Yang et al., 2020] N/A N/A 29.3 50.2
MNMT+SVA [Nishihara et al., 2020] 39.9 58.1 N/A N/A
GMFE-NMT [Yin et al., 2020] 39.8 57.6 32.2 51.9
MTF [Yao and Wan, 2020] 38.7 55.7 N/A N/A
OVC+Lm [Wang and Xiong, 2021] N/A N/A 32.3 53.4
ImagiT [Long et al., 2021] 38.5 55.7 32.1 52.4

RNN-Based Models

NMT 37.4 57.5 29.6 51.3

MNMTR 37.5 57.7 30.1 51.6

MNMTW2R(sa) 38.4†‡ 58.1 30.2† 51.9

MNMTW2R(ha) 38.4†‡ 58.0 31.2†‡ 52.2

Transformer-Based Models

NMT 38.4 57.5 31.5 51.9

MNMTR 38.4 57.6 31.1 51.5

MNMTW2R(sa) 39.3†‡ 58.3 32.3†‡ 52.8

MNMTW2R(ha) 39.0†‡ 58.2 31.8‡ 52.6

Table 4.1: BLEU and METEOR scores on Multi30k En→De task. The results are
significantly better than those of NMT (†) and MNMTR (‡) with p-value
< 0.05. The best performance in my models and existing MNMT models
appear in bold. All my results are the average scores over three runs.
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WRA could assist visual attention to focus on regional visual features by indicating the
most semantically relevant textual features for each of them. Therefore, the integration
of either soft WRA or hard WRA could help visual attention pay attention to regional
visual features that were semantically related to the textual features, leading to better
visual information use.

Results within Transformer-Based Models

As shown in Table 4.1, based on the Transformer architecture, the MNMTR model
cannot outperform the state-of-the-art text-to-text NMT model. This may be attributed
to two factors:

• When the primary modality (text) is sufficient to accomplish the translation task,
the visual context cannot play a supplementary role; however, it may interfere
with the effect of the textual context.

• When encoding source words, the Transformer considers the association be-
tween words and the entire sentence. However, there was no relationship be-
tween the regional features. Therefore, the visual context may not be as useful
as the textual context.

In contrast, the proposed MNMTW2R(sa) and MNMTW2R(ha) models consistently im-
proved the translation performance over the text-to-text NMT model. The significant
improvements show that the proposed MNMTW2R(sa) and MNMTW2R(ha) models over-
come both problems. Specifically, in my proposed models, I maintained the textual
context while enriching the visual features with WRA-guided textual features to gen-
erate a multimodal context such that the multimodal context can play a more effective
role than the pure visual context.

Comparison of Proposed Model and Existing Ones

I conducted early stopping on the METEOR metric; therefore, I mainly compared my
METEOR results with existing models. As shown in Table 4.1, the METEOR scores
of the Transformer-based MNMTW2R(sa) and MNMTW2R(ha) models surpassed most of
the state-of-the-art MNMT results. The best performance was yielded by the proposed
Transformer-based MNMTW2R(sa) model. This demonstrates that my proposed models
are competitive among all the existing MNMT models.
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Multi30k En→Fr

Models
Test2016 Test2017

BLEU METEOR BLEU METEOR

Existing MNMT Models

VAG-NMT [Zhou et al., 2018] N/A N/A 53.8 70.3
Del+Obj [Ive et al., 2019] 59.8 74.4 N/A N/A
VAR-S2S (hard) [Yang et al., 2020] N/A N/A 52.6 69.9
VAR-TF (hard) [Yang et al., 2020] N/A N/A 53.3 70.4
Trans+VR [Zhang et al., 2020] 57.5 N/A 48.5 N/A
GMFE-NMT [Yin et al., 2020] 60.9 74.9 53.9 69.3
OVC+Lm [Wang and Xiong, 2021] N/A N/A 54.1 70.5
ImagiT [Long et al., 2021] 59.7 74.0 52.4 68.3

RNN-Based Models

NMT 59.3 74.6 51.6 69.2

MNMTR 59.5 74.7 51.6 69.0

MNMTW2R(sa) 59.7 75.0 52.2†‡ 69.6

MNMTW2R(ha) 60.3†‡ 75.5 52.3†‡ 69.6

Transformer-Based Models

NMT 60.7 75.2 53.1 69.6

MNMTR 60.6 75.4 52.7 69.2

MNMTW2R(sa) 61.7†‡ 76.3 54.1†‡ 70.6

MNMTW2R(ha) 61.8†‡ 76.3 54.0†‡ 70.4

Table 4.2: BLEU and METEOR scores on Multi30k En→Fr task. The results are sig-
nificantly better than those of NMT (†) and MNMTR (‡) with p-value of
< 0.05. The best performance in my models and existing MNMT models
appear in bold. All my results are the average scores over three runs.
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4.4.2 Results on the En→Fr Task

As shown in Table 4.2, the results of the En→Fr task showed a consistent trend with
the results of the En→De task. Thus, the generality of the proposed framework was
established.

First, based on either the RNN or Transformer, the proposed MNMTW2R(sa) model
and MNMTW2R(ha) model consistently surpassed the NMT model by a significant mar-
gin. In contrast, the MNMTR without the WRA failed to achieve a unified improvement
over NMT and the improvement was less significant. This validates the effectiveness
of my postulation that translation performance can be effectively improved through the
integration of WRA.

Second, the results of the proposed Transformer-based MNMTW2R(sa) model and
MNMTW2R(ha) model surpassed all the state-of-the-art MNMT results based on both the
BLEU and METEOR metrics. The best performance was achieved by the Transformer-
based MNMTW2R(sa) model, which is consistent with the result of the En→De task.

4.5 Analyses

4.5.1 Ablation Study

To further verify the effectiveness of the different components in my proposed model, I
also showed the performance of the following ablated versions. All the ablated versions
were implemented on both RNN-based and Transformer-based models with soft/hard
WRA.

Different Integration Strategies of WRA

In the proposed MNMTW2R(sa) and MNMTW2R(ha) models, I integrate WRA to guide
textual features into corresponding visual features to generate multimodal context dur-
ing the W2R stage. In the ablation study, I conduct extensive experiments on different
integration strategies of WRA to confirm the effectiveness of the integration method
of WRA.

Region-to-Word (R2W): Unlike the MNMTW2R(sa) and MNMTW2R(ha) models, I im-
plemented a region-to-word (R2W) stage instead of the W2R stage introduced in Sec-
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Different Strategies⇒ WRA Integration

Models
Multi30k En→De

Test2016 Test2017

BLEU METEOR BLEU METEOR

RNN-Based Models

MNMTW2R(sa) 38.4 58.1 30.2 51.9
MNMTW2R(ha) 38.4 58.0 31.2 52.2

MNMTR2W(sa) 34.6 55.6 25.6 48.0
MNMTR2W(ha) 31.5 51.9 22.4 44.2

MNMTR
W(sa) 35.3 56.1 26.8 49.0
MNMTR
W(ha) 31.7 52.1 22.6 44.8

Transformer-Based Models

MNMTW2R(sa) 39.3 58.3 32.3 52.8
MNMTW2R(ha) 39.0 58.2 31.8 52.6

MNMTR2W(sa) 37.7 56.5 30.3 50.4
MNMTR2W(ha) 36.1 55.5 27.9 48.9

MNMTR
W(sa) 37.8 56.8 30.9 51.3
MNMTR
W(ha) 36.5 55.7 29.0 49.2

Table 4.3: Ablation study on different integration strategies of WRA. BLEU and ME-
TEOR scores on En→De task using the Multi30k dataset. The best perfor-
mance is shown in bold. All results are the average scores over three runs.
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Different Strategies⇒ WRA Integration

Models
Multi30k En→Fr

Test2016 Test2017

BLEU METEOR BLEU METEOR

RNN-Based Models

MNMTW2R(sa) 59.7 75.0 52.2 69.6
MNMTW2R(ha) 60.3 75.5 52.3 69.6

MNMTR2W(sa) 57.0 73.2 48.0 65.9
MNMTR2W(ha) 52.5 69.2 43.2 62.2

MNMTR
W(sa) 57.3 73.3 48.3 66.3
MNMTR
W(ha) 52.9 69.7 44.4 63.2

Transformer-Based Models

MNMTW2R(sa) 61.7 76.3 54.1 70.6
MNMTW2R(ha) 61.8 76.3 54.0 70.4

MNMTR2W(sa) 60.6 75.4 52.3 68.9
MNMTR2W(ha) 57.8 73.1 49.6 66.9

MNMTR
W(sa) 61.4 75.8 53.4 69.8
MNMTR
W(ha) 58.9 74.0 51.3 68.2

Table 4.4: Ablation study on different integration strategies of WRA. BLEU and ME-
TEOR scores on En→Fr task using the Multi30k dataset. The best perfor-
mance is shown in bold. All results are the average scores over three runs.
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tions 4.2.2 and 4.2.3. In R2W, I maintained the pure visual context and integrated the
WRA-guided visual features with corresponding textual features to enrich the textual
context and realize a multimodal context.

W2R and R2W (R
W): I implemented W2R together with R2W to achieve a bi-
directional integration strategy called R
W. In R
W, both the visual context enriched
by WRA-guided textual features and the textual context enriched by WRA-guided
visual features became multimodal contexts.

As shown in Tables 4.3 and 4.4, the proposed MNMTW2R(sa) and MNMTW2R(ha) mod-
els achieved the best performance among all the integration strategies. When the WRA
was integrated with the R2W and R
W strategies, the results were worse than the
W2R integration strategy because it might disturb the textual context. It was suggested
that maintaining the textual context while enriching the visual context into a multi-
modal context by WRA-guided textual features was the most appropriate integration
strategy for WRA.

Moreover, compared with the R2W strategy, the R
W strategy was slightly better.
I conjectured that when interfering with the textual context in the text-to-text task,
enriching the visual context using WRA-guided textual features, instead of the pure
visual context, enabled better visual information use in the image-to-text task. These
results validated the effectiveness of the proposed WRA integration strategy.

Different Intermodal Fusion Operations

I explored the impact of different intermodal fusion operations during the generation
of a multimodal context on the overall performance.

In the proposed W2R stage, I combined the WRA-guided textual features and vi-
sual features to generate a multimodal context with CONCAT as the fusion operator,
which is defined in Equation 4.1. Instead of CONCAT, I investigated the SUM and
MULTIPLY operations to fuse modalities for generating multimodal contexts.

From Tables 4.5 and 4.6, it can be observed that the CONCAT operation was the
most effective fusion operation to generate the multimodal context in my proposal. The
results were slightly worse when the fusion was realized using the SUM and MULTI-
PLY operators. This difference could be attributed to the fact that concatenation could
make use of a linear layer that learned how to integrate the modality-specific activa-
tions into the multimodal context vector, as demonstrated in [Caglayan et al., 2016b].
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Different Intermodal Fusion Operations

Variants
Multi30k En→De

Test2016 Test2017

BLEU METEOR BLEU METEOR

RNN-Based MNMTW2R(sa)

CONCAT 38.4 58.1 30.2 51.9

MULTIPLY 36.1 56.5 28.1 50.3
SUM 37.9 57.8 30.3 51.7

RNN-Based MNMTW2R(ha)

CONCAT 38.4 58.0 31.2 52.2

MULTIPLY 37.5 57.7 29.8 51.2
SUM 37.5 57.7 30.1 51.7

My Transformer-Based MNMTW2R(sa)

CONCAT 39.3 58.3 32.3 52.8

MULTIPLY 39.2 58.3 31.6 52.1
SUM 38.4 57.7 31.4 51.8

Transformer-Based MNMTW2R(ha)

CONCAT 39.0 58.2 31.8 52.6

MULTIPLY 39.0 58.1 31.4 51.9
SUM 38.2 57.6 31.6 52.2

Table 4.5: Ablation study on different intermodal fusion operations. BLEU and ME-
TEOR scores on En→De task using the Multi30k dataset. The best perfor-
mance is shown in bold. All results are the average scores over three runs.
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Different Intermodal Fusion Operations

Variants
Multi30k En→Fr

Test2016 Test2017

BLEU METEOR BLEU METEOR

RNN-Based MNMTW2R(sa)

CONCAT 59.7 75.0 52.2 69.6

MULTIPLY 58.3 74.0 50.9 68.3
SUM 60.0 75.6 51.9 69.1

RNN-Based MNMTW2R(ha)

CONCAT 60.3 75.5 52.3 69.6

MULTIPLY 59.8 74.8 51.7 68.8
SUM 59.6 74.8 52.2 69.4

Transformer-Based MNMTW2R(sa)

CONCAT 61.7 76.3 54.1 70.6

MULTIPLY 61.5 76.0 53.5 69.5
SUM 61.6 76.1 54.1 70.6

Transformer-Based MNMTW2R(ha)

CONCAT 61.8 76.3 54.0 70.4

MULTIPLY 60.9 75.3 52.6 69.0
SUM 61.1 75.8 54.0 70.3

Table 4.6: Ablation study on different intermodal fusion operations. BLEU and ME-
TEOR scores on En→Fr task using the Multi30k dataset. The best perfor-
mance is shown in bold. All results are the average scores over three runs.
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4.5.2 Visualization

In Figure 4.5, I visualized the learned textual and visual representations to further
analyze the proposed method.

In detail, I visualized the textual and visual representations, which are learned by
RNN-based/Transformer-based MNMTW2R(sa) and MNMTW2R(ha) on different language
pairs, respectively. For the Test2016 set of the En→De and En→Fr tasks, I generated
textual and visual representations as follows:

• Text: the hidden representations for textual features generated by the textual
encoder.

• Image_(independent): representations of regional visual features generated by
the visual encoder, independent of textual features.

• Image_(MNMTW2R(sa/ha)): the learned representations for regional visual fea-
tures generated by the W2R integration strategy using soft/hard WRA, which
are enriched with semantically relevant textual features guided by WRA.

I took the average of word/region representations to obtain the representations for
each sentence and image and visualized them using the T-SNE toolkit.

As shown in Figure 4.5, the representations learned by the RNN-based/Transformer-
based MNMTW2R(sa) model and MNMTW2R(ha) model are visualized, respectively. The
representation distribution of different proposed models conveys the same commonal-
ity that the distribution of image_(MNMTW2R(sa/ha)) is always in the middle of the text
and image_(independent). It can be observed that the distribution of image_(MNMTW2R(sa/ha))
is always closer to the text than the image_(independent). Furthermore, although the
image_(MNMTW2R(sa/ha)) is close to the text, the distribution of the text is not disturbed
by the image_(MNMTW2R(sa/ha)).

Visualizations in Figure 4.5 further prove the contributions of each key component
of the proposed method as follows:

First, the utilization of WRA is a key component that causes the distribution of the
image_(independent) and image_(MNMTW2R(sa/ha)) to be different. It can be found that,
after enriching the independent visual features with related textual features guided by
WRA, the proposed method can bring the visual features closer to the textual features.
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Figure 4.5: Representation visualization for textual features, independent visual fea-
tures, and enriched visual features with soft/hard WRA-guided textual
features. Representations are learned by RNN-based/Transformer-based
MNMTW2R(sa) and MNMTW2R(ha) on the En→De and En→Fr tasks, respec-
tively. Text (blue): the textual representations generated by the textual en-
coder. Image_(independent) (orange): the visual representations generated
by visual encoder before conducting W2R, which are independent of tex-
tual representations. Image_(MNMTW2R(sa/ha)) (green): the enriched visual
representations generated by W2R, which have been related with textual
features by leveraging soft/hard WRA as a bridge.
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This demonstrates that the intermediate facility WRA plays a crucial role as a bridge,
connecting independent textual and visual features that are far from each other.

Second, the W2R integration strategy is another key component that brings the
image_(MNMTW2R(sa/ha)) close to the text without disturbing the distribution of the
text. By concatenating visual features with WRA-guided textual features in the W2R
strategy, the proposed method can encourage visual features to interact with seman-
tically relevant textual features to help them be closer without disturbing the textual
features. Therefore, it can be demonstrated that the W2R strategy plays a crucial role
in advancing interactions between textual and visual modalities without disturbing the
textual features.

4.5.3 Case Study

To further analyze the effectiveness of the proposed model, I showed two cases gener-
ated by different models to analyze the translation quality.

I performed the visualization as follows: (1) I visualized the source-target alignment
of textual attention. (2) I visualized the region-target alignment of visual attention at
a time step that generated a certain target word while attending to the most weighted
region. The region was denoted by a bounding box along with the target word. (green
indicated MNMTW2R and gray indicated MNMTR).

In Figure 4.6, I showed two cases to analyze the translation quality. The upper case
shows the results from the RNN-based models and the lower case shows the results
from the Transformer-based models.

In the upper example, the MNMTW2R(ha) correctly translated “backyard” to a com-
pound noun of “arrière-cour.” However, the NMT and MNMTR without the WRA
models mistranslated it as “cour,” which means “yard” in English. Through visual-
ization, I observed that the regional visual feature utilized by the MNMTW2R(ha) model
provided more helpful information for generating more accurate translations than the
MNMTR model. This showed that the proposed model can fully utilize visual infor-
mation to complement textual information to learn more accurate translations.

In the lower example, the MNMTW2R(sa) correctly translated the source phrase “tank
tops” to the target word “débardeurs,” whereas the NMT and MNMTR without the
WRA models failed. From the visualization, I observed that the textual attention
weights for the source tokens “tank” and “tops” to the target word “débardeurs” were
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Src (En): two women wearing tank tops are looking at the camera .
Ref (Fr): deux femmes portant des débardeurs regardent l&apos; objectif .
MNMTW2R: deux femmes portant des débardeurs regardent l&apos; objectif .
MNMTR: deux femmes vêtues de hauts (tops) regardent l&apos; objectif .
NMT: deux femmes portant des hauts (tops) regardent l&apos; objectif .

hauts

Src (En): a man is grilling out in his backyard .
Ref (Fr): un homme fait un barbecue dans son arrière-cour .
MNMTW2R: un homme fait griller quelque chose dans sa arrière-cour .
MNMTR: un homme fait griller quelque chose dans sa cour (yard) .
NMT: un homme fait griller quelque chose dans sa cour (yard) .

débardeurs

arrière-cour

cour

Figure 4.6: Improved examples for the case study.
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the highest. At the same time, the region with the highest visual attention weight pro-
vided semantically relevant information about “tank tops” to help generate the target
word “débardeurs.” This showed that in the proposed model, the textual and visual
context provided semantically relevant information interactively to generate a more
accurate translation.

These cases revealed that my proposal can lead to the better visual information use
and improved translation accuracy.
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4.6 Summary

In this proposal, I proposed WRA to link textual and visual features based on semantic
relevance. To facilitate the semantic correlation between textual and visual contexts,
I proposed a novel integration strategy W2R. The W2R integration method guided by
WRA effectively maintained the textual context while transforming the visual context
into a multimodal one by enriching it using WRA-guided textual features. Extensive
experimental results showed that the proposed model significantly outperformed the
competitive baselines on the En→De and En→Fr language pairs consistently. More-
over, the performance of the proposed model surpassed most of the existing MNMT
methods. Further analysis demonstrated that the proposed models superior translation
performance was attributable to better visual information utilization.
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5 Conclusions and Future Directions

This thesis presents two effective solutions to the difficulties faced by the MNMT
task: (1) The region-attentive MNMT aims to generate target words by attending to
specific semantic image regions with an additional region-dependent attention mecha-
nism; (2) The WRA-guided MNMT aims to guide textual features to interact with se-
mantically relevant regional visual features by incorporating an auxiliary facility WRA
as a bridge. Both these two methods have been implemented on two mainstream archi-
tectures of NMT: the RNN and the Transformer. Extensive experiments on English–
German and English–French translation tasks using the Multi30k dataset have been
conducted to verify the effectiveness of the proposed methods. Consistent results on
different language pairs and different architectures show that the proposed methods can
improve over baselines and outperforms most of the state-of-the-art MNMT methods.
Further analyses demonstrate that both of the proposed methods can achieve better
translation performance because of their better image information use.

In the future, I suggest exploring new solutions to overcome the challenges faced by
machine translation research from the following research directions:

• I suggest using much finer visual information, such as instance semantic seg-
mentation, to improve the quality of visual features.

• I recommend taking into account parsing word attributes in the sentence struc-
ture to avoid redundant visual information use, such as some non-visual words.

• As data sparsity issues are still a limitation of the MNMT task and the data
collection is really expensive, I think that exploiting how to effectively integrate
retrieval and reranking pipelines for MNT or exploring the unsupervised way
using the pseudo dataset are more promising for the next research step.
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6 Social Impacts

Computational language understanding is at the heart of MT which requires inferring
the meaning of a sentence in one language and transferring that meaning to another
language. For human beings, semantic understanding comes from perceiving multi-
ple modalities including linguistic, visual, and auditory to help understand semantic
tasks. Similar to human perception, MT can also benefit from incorporating auxiliary
modalities. Therefore, this work is inspired by the semantic understanding achieved
by human multimodal perception, and the following societal impacts that are closely
related to human technologies and applications will be driven and stimulated.

From a technical perspective, this work combines the two major research areas of
computer vision (CV) and natural language processing (NLP). Therefore, many other
multimodal tasks can benefit from the findings of this work, e.g. Visual Question
Answering (VQA), multimodal Dialog, and video-guided MT. In addition, as hu-
man semantic understanding comes from multimodal perceptions of language, images,
sounds, and videos, multimodal learning systems inspired by the human perceptual
system can be extended to different realistic downstream fields, such as AI Agents,
User Interfaces, Robotics Industry, and so on.

From the application perspective, this work visually enriches purely linguistic un-
derstanding to improve machine translation as a multimodal task. Communication in
the world is inseparable from language, and language communication is based on ef-
fective machine translation. In the future, multimodal machine translation systems will
facilitate semantic communication between languages, it will become a popular way to
allow people to communicate freely without having to learn multiple languages, such
as travel, cultural exchange, and trade.
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