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1. Introduction 

 

1.1. History of superconductivity 

Since the discovery of superconductivity for mercury by Onnes, superconductivity studies have been 

intensively developed for over 100 years [1, 2]. Until the beginning of the 1980s, conventional 

superconductors, where Cooper pairs are basically formed by the attractive interaction of the electron-

phonon interaction, had been central targets for the superconductivity study [3–5]. The 

superconducting transition temperatures Tc were below 30 K. The superconducting-gap structure for 

the conventional superconductors is expected to be fully gapped s-wave superconductivity. Generally, 

the fully gapped s-wave superconductivity mediated by the electron-phonon coupling is called 

conventional superconductivity [6]. However, a significant breakthrough occurred in 1986: the 

discovery of cuprate superconductors by Bednorz and Müller [7]. The Tc for the cuprate 

superconductors first exceeded the liquid-nitrogen temperature T = 77 K [8]. Thus, the cuprate allows 

us to open the door to the possibility of the application for superconducting cable. Superconductors 

that exceed the cuprate’s Tc under ambient pressure have not been discovered until Today. The 

superconducting gap structure of cuprate has been investigated in detail and the momentum-dependent 

gap structure 𝑑𝑥2−𝑦2-wave state by magnetic (spin) fluctuation is suggested [9]. Such superconductors 

with the momentum-dependent gap structure are called anisotropic or unconventional 

superconductors. Furthermore, an interesting normal state: the Mott insulator, which is not a band 

insulator but an insulating state by the electronic correlation, is realized in the normal states [9]. In 

1994, Sr2RuO4, which has a similar crystal structure (perovskite) to the cuprate superconductors, was 

found by Maeno et al. [10]. Several studies have suggested that the time-reversal symmetry breaking 

and the spin-triplet superconductivity can occur in Sr2RuO4 and thus intriguing chiral spin-triplet 𝑝𝑥 ±

𝑖𝑝𝑦-wave state can be realized [11]. Therefore, Sr2RuO4 has been extensively studied until now. 

Recent experimental work exhibited that the spin-triplet superconductivity is not suitable for Sr2RuO4 

[12]. In 2001, MgB2 was found by Nagamatsu and Akimitsu et al. [13]. The superconducting pairing 

mechanism is expected to be conventional superconductivity by the electron-phonon coupling, and 

the Tc ≈ 39 K has been the highest in the conventional superconductors under ambient pressure. 

Moreover, MgB2 exhibits multigap superconductivity from the multi-orbital nature of the 𝜋 and 𝜎 

bunds [14]. In 2008, Kamihara and Hosono et al. found a new high-Tc family distinct from the cuprate 

superconductors: iron-based superconductors [15]. Before the discovery of iron-based 

superconductors, many researchers considered that the magnetic elements contribute negatively to 

superconductivity, so the systems give superconductivity researchers a significant impact. The highest 

Tc has been recorded to be  56 K [16]. The iron-based superconductors have high Tc, but the electronic 
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states differ from the cuprate. Multi-orbital nature of Fe-3d orbitals plays an essential role in the 

electronic states, but a single orbital of Cu-𝑑𝑥2−𝑦2 orbital. Normal states are metal or semimetal for 

iron-based systems but Mott insulators for cuprate superconductors. The superconducting gap 

structure has not been completely revealed, but the orbital degrees of freedom are essential in 

superconductivity [17, 18]. In recent studies, iron-chalcogenide compounds are the primary targets, 

and intriguing phenomena have been observed, such as electronic nematicity, BCS-BES (BCS: 

Bardeen–Cooper–Schrieffer. BES: Bose-Einstein Condensation) crossover, and topological 

superconductivity [18]. In 2015, Eremets et al. found that sulfur hydride shows superconductivity at 

Tc = 203 K under extremely high pressure [19]. The significant phonon frequency of hydrogen leads 

to such high Tc. After the discovery, the studies aiming for room-temperature superconductivity by the 

hydride and huge pressure have been intensively studied. In 2020, room-temperature 

superconductivity [Tc = 288 K (~15 C˚)] for carbon-sulfur hydride was reported [20]. However, 

unfortunately, this article was retracted in September 2022 due to several doubtful data. Thus, 

humankind has not reached room-temperature superconductivity, although it has been over 100 years 

since the discovery of superconductivity. I summarize the history of Tc for several superconductors in 

Fig. 1.1. Except for the above superconductors, there are many intriguing superconductors, such as 

heavy-fermion superconductors, including 4f or 5f electrons near the Fermi level [21, 22] and two-

dimensional (2D) superconductivity of atomic-layer systems [23]. Furthermore, another way has been 

paved for the application of superconductors: this is topological superconductivity [24]. Majorana 

fermion, which can open the possibility of quantum computing, can be realized in topological 

superconductors.  

Theoretical work has fulfilled essential contributions to understanding superconductivity. Especially, 

BCS theory has played a crucial role [25]. The theory microscopically describes superconductivity as 

the condensation of Cooper pairs which is basically based on almost all superconductors. The 

formation of the Cooper pairs can occur in the presence of an attractive interaction (the strength of the 

interaction is not important). The theory reveals the existence of the superconducting gap as well. 

Several studies of the isotope effect revealed that the electron-phonon interaction is reasonable for 

forming the pairs [26, 27]. An isotropic (fully gapped s-wave) superconducting gap emerges if the 

interaction is independent of momentum. Furthermore, the Ginzburg–Landau (GL) theory is helpful 

for the macroscopic behavior of superconductors, particularly in applying magnetic fields such as the 

intermediate state in the type-I superconductors and the mixed states in the type-II superconductors 

[28]. There is spatial inhomogeneity under such magnetic fields; thus, the microscopic theory is 

unsuitable for describing the state. The GL theory gives us the effective formula of upper critical fields, 

so call the orbital limit (I introduce this formula in Chapter 3).   
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Fig. 1.1. History of superconducting transition temperature Tc for several superconductors. The inset 

shows the enlarged figure for the low-temperature region. These references for the Tc and year are 

displayed in 16.4. 

 

1.2. Layered superconductors 

Layered superconductors, such as Cuprate, Sr2RuO4, MgB2, and iron-based superconductors, have 

played significant roles in superconductivity studies because of material variation, relatively high Tc 

(except for Sr2RuO4), and unconventional superconductivity [7, 8, 10, 13, 15, 18]. Figure 1.2 shows 

the crystal structure of the several layered superconductors. My target materials, BiCh2-based (Ch: S, 

Se) superconductors, have layered crystal structures composed of the blocking layers and conducting 

layers as well. I will introduce the BiCh2-based superconductors in the next chapter.  
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Fig. 1.2. Crystal structure of several layered systems of (a) La2-xSrxCuO4, (b) YBa2Cu3O7-x, (c) 

Sr2RuO4, (d) LaO1-xFxFeAs, (e) Ba1-xKxFe2As2, (f) FeSe, and (g) MgB2. These crystal structures are 

drawn by VESTA [29].  
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2. BiCh2-based (Ch = S, Se) superconductors 

 

2.1. Material development 

BiCh2-based layered superconductor was discovered by Mizuguchi et al. in 2012 and has been 

extensively studied since the layered structure is similar to that of cuprate and iron-based 

superconductors [30, 31]. The first BiCh2-based superconductor is Bi4O4S3, and the Tc is roughly 6 K 

[30]. The crystal structure comprises BiCh2 conducting layers and Bi4O4(SO4)0.5 blocking layers, and 

the space group is tetragonal I4/mmm (No. 139, D4h). First-principles calculations show that the 

conduction band mainly originating from Bi-6px/6py orbitals cross the Fermi level EF, which indicates 

that the Bi orbitals play a significant role in the electronic properties of Bi4O4S3 and thus this 

compound has relatively strong spin-orbit coupling (SOC) [32]. After the discovery of Bi4O4S3, the 

most typical BiCh2-based system was found: (RE/AE)(O/F)BiCh2-type (RE: La, Ce, Pr, Nd, Sm, Gd, 

Yb and AE: Ca, Sr, Eu) compounds [31, 33]. Figure 2.1(a) shows the typical crystal structure of the 

(RE/AE)(O/F)BiCh2-type compound, and the space group is tetragonal P4/nmm (No. 129, D4h), which 

is different from Bi4O4S3 while the tetragonal structure is the same. There is much material variation 

for the (RE/AE)(O/F)BiCh2-type compounds because we can easily perform the elemental 

substitution. The parent compounds of REOBiCh2 or AEFBiCh2 are band insulators (band gap is 

below 1 eV), and LaOBiS2-xSex or SrFBiS2-xSex are monoclinic structures P21/m (No. 11, C2h) [34–

37]. The substitution of F- for O2- sites (RE3+ for AE2+ in the AEFBiCh2-type system) leads to electron-

carrier doping, and superconductivity emerges at low temperatures. The carrier-doping way is similar 

to the iron-pnictide compounds [15]. Moreover, electron-carrier doping in the BiCh2-based system 

stabilizes the tetragonal structure [38, 39]. The RE sites can be substituted by La, Ce, Pr, Nd, Sm, and 

Yb and cause the difference in superconducting properties. In particular, Ce has a mixed-valence state 

of Ce3+ and Ce4+ and thus may cause self-carrier doping and ferromagnetism due to 4f electron [40, 

41]. For EuFBiS2, possible charge-density-wave (CDW) formation was observed by transport 

properties, probably due to the mixed-valence state of Eu2+ and Eu3+ and 4f electron [42].  The 

possibility of CDW to the BiCh2-based system will be discussed in Section 2.4 and Chapter 9. In 

addition, we can successfully control from BiS2-type to BiSSe-type (or BiSe2-type) layers by the Ch-

site substitution [37, 43]. The elemental-substitution effects for RE and Ch sites are considered 

chemical pressure. I will describe the chemical-pressure effect in the next section. The single-crystal-

growth method was first found by Nagao et al. in 2013 [44]. The single-crystal samples were grown 

by the high-temperature flux method. Alkali metal chlorides are used as the flux, and those can be 

easily removed by pure water [45]. The obtained single crystals have plate-like shapes which reflect 

the tetragonal structure [see Fig. 7.4]. Studies of pairing mechanisms and superconducting-gap 

structures have been developed using single crystals. I will discuss them in Section 2.3.2. Until now, 
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I have shown two-layer-type BiCh2-based compounds. At the end of this section, I briefly introduce 

four-layer- and one-layer-type superconductors, including similar Bi-based layers. Four-layer-type 

compound LaOBiPbS3 was first discovered by Sun et al. in 2014 [46]. The crystal structure is 

composed of La2O2 blocking layers and BiPbS3 conducting layers. We can regard the crystal structure 

as the rock-salt-type layers are intercalated into Van-der-Waals gaps between BiCh2 bilayer for 

REOBiCh2-type compounds. LaOBiPbS3 shows semiconductor-like behavior of temperature-

dependent resistivity and does not show superconductivity in ambient pressure, although band 

calculations predicted that the band gap is close to zero. The reason metallic behavior and 

superconductivity in ambient pressure do not emerge has not been revealed. In contrast, the (Ag,Bi)S-

rock-salt-type La2O2Bi3AgS6 exhibits superconductivity at Tc ≈ 0.5 K in ambient pressure [47]. After 

discovering La2O2Bi3AgS6, various types of La1-xRExOM4S6 were found, and the maximum Tc is 4.1 

K in ambient pressure at the present stage [48]. In addition, applying high-pressure increases the Tc to 

T ≈ 10 K for four-layer systems [49]. One-layer-type Bi3O2S2Cl was discovered by Ruan et al. in 2019 

[50]. The crystal structure consists of alternatively stacking BiS2Cl conducting layers and BiO blicking 

layer. Superconductivity emerges at Tc ≈ 3 K by the sulfur vacancies. There has not been any other 

report for the one-layer-type compound until now. The layered structures for four-layer-type and one-

layer-type compounds are similar to the two-layer-type compounds, but the electronic states differ. 

Thus, these new-type systems have promising potential. Further investigation using single crystals is 

necessary for revealing the pairing mechanisms and superconducting-gap structures for four-layer-

type and one-layer-type superconductors. Note that I use “BiCh2-based” for the typical two-layer-type 

system (especially REOBiCh2-type compounds) below.  
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Fig. 2.1. Crystal structures of the BiCh2-based (two-layer-type) compounds for (a) tetragonal P4/nmm, 

(No. 129, D4h) and (b) monoclinic P21/m (No. 11, C2h) structure. These crystal structures are drawn 

by VESTA [29]. 

 

2.2. Chemical-pressure and high-pressure effect 

 

2.2.1. Chemical-pressure effect  

The chemical-pressure effect is significant for enhancing the superconducting properties of BiCh2-

based compounds [31]. Chemical pressure basically means that the lattice volume is controlled by 

isovalent substitution. In the BiCh2-based systems, there are two types of chemical pressure of RE and 

Ch sites. RE-site substitution with the different ionic radius of RE3+ is a powerful tool for applying 

chemical pressure. The superconducting property is enhanced with decreasing RE3+ ionic radius. Bulk 

superconductivity emerges (shielding volume fraction is roughly 100%) by the substitution of small 

ionic-radius RE3+ while LaO0.5F0.5BiS2 is a filamentary superconducting phase (shielding volume 

fraction is less than 10%) [51]. Another chemical pressure effect is Se substitution for S sites. Se is 

selectively substituted at the in-plane Ch1 sites [52]. The Se substitution leads to lattice expansion 

because of the larger ionic radius of Se than S, which is different from the case of RE substitution. 

The Se substitution seems to be negative chemical pressure. However, the bonding of the RE(O/F) 

layer is more robust than that of the BiCh2 layers. Thus, the lattice constant a does not largely expand, 

which causes the chemical pressure effect in the RE(O/F)BiCh2 system. The essence of the chemical 
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pressure is the suppression of local disorder at the Ch1 sites [37, 53, 54]. Anisotropic atomic 

displacement parameters Uii are effective for investigating the local disorder. The U11 is estimated by 

Rietveld refinement using synchrotron X-ray diffraction data (RETAN-FP software [55] are often used 

for the Rietveld refinements). U11 for Ch1 sites gradually suppressed with decreasing RE ionic radius 

and increasing Se concentration, implying that the in-plane local disorder can be diminished with 

increasing chemical pressure [37, 51]. Moreover, extended X-ray absorption fine structure (EXAFS) 

reveals that the local distortion within the BiCh2 plane is suppressed by Se substitution for 

LaO0.5F0.5BiS2-xSex [53]. Therefore, the chemical-pressure effect plays a vital role in adjusting the 

local crystal structure in the BiCh2 plane.  

 

2.2.2. High-pressure effect  

The high-pressure effect is essential for improving the superconducting properties of BiCh2-based 

compounds as well as the chemical-pressure effect. For LaO0.5F0.5BiS2, the Tc steeply increases from 

T ≈ 3 K to T ≈ 10 K around critical pressure P ≈ 0.8 GPa [56]. The X-ray diffraction under high 

pressure shows that the Tc jumping accompanies the crystal-structural transition from tetragonal 

(P4/nmm, No.129) to monoclinic (P21/m, No.11) symmetry [56, 57]. Therefore, the quasi-one-

dimensional Bi-Ch zigzag chains are probably crucial for the high-Tc phase in the BiCh2-based 

compounds. The high-Tc (monoclinic) phases under undoped compounds emerge in both high-

pressure annealing and applying high pressures. In contrast, F-free LaOBiCh2 also exhibits a 

monoclinic structure [36, 37]. However, F-substitution leads to a structural transition from monoclinic 

to tetragonal and stabilizes the tetragonal structure by increasing the F-doing level [38, 39]. Therefore, 

there is a dilemma in obtaining the high-Tc phases under ambient pressure. If we successfully 

synthesize optimally F-doped monoclinic compounds under ambient pressure, we will probably 

realize the high-Tc phase without high-pressure effects.  

 

2.3. Pairing mechanisms of superconductivity and superconducting 

gap structure 

 

2.3.1. Conventional pairing mechanism and superconducting gap structure  

Electron-phonon coupling, a conventional pairing mechanism of superconductivity, is first discussed 

[32]. McMillan formula helps discuss conventional electron-phonon coupling [58, 59]. This formula 

is given by  

𝑇𝑐 =
𝜔log

1.2
exp [

−1.04(1 + 𝜆𝑆𝐶)

𝜆𝑆𝐶 − 𝜇∗(1 + 0.62𝜆𝑆𝐶)
] (2.1) 

where 𝜆SC is the electron-phonon coupling constant, 𝜔log is the logarithmic frequency average, and 
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𝜇∗ is the Coulomb coupling constant. Basically, 𝜇∗ is approximately estimated to be 0.1 [58, 59]. From 

theoretical calculations, 𝜆SC is estimated to be 0.5–0.85 for LaO0.5F0.5BiS2-xSex (x = 0 and 1), and the 

𝜔log is in the order of 100 K [60]. The Tc estimated from the theoretical expectations are same order 

as the experimentally observed Tc = 2–10 K. The results indicate that the BiCh2-based compounds are 

conventional phonon-mediated superconductors. In contrast, a theoretical calculation by density-

functional theory for superconductors (SCDFT) showed Tc = 0.4 K with 𝜆SC = 0.5 and 𝜇∗ = 0.16, 

which implies that the BiCh2-based superconductors cannot be explained by the electron-phonon 

coupling [61]. However, this calculation was performed with a tetragonal structure assumed while 

high-Tc phases (Tc ≈ 10 K) are in a monoclinic structure. Therefore, the SCDFT calculation under the 

monoclinic phase may generate Tc ≈ 10 K. We have not concluded whether the pairing mechanism of 

superconductivity is the conventional electron-phonon coupling or others (e.g., charge/orbital 

fluctuation and/or spin fluctuation) at the present stage.  

The superconducting-gap structure is the most important property for investigating whether one 

superconductor is conventional fully gaped s-wave or unconventional anisotropic [18]. In the former 

cases, bulk physical quantities associated with low-energy quasiparticle excitations exhibit 

exponential temperature dependence at low temperatures. In the latter cases, the superconducting gap 

is dependent on momentum k due to the presence of nodes, and the physical-quantity behavior at low 

temperatures exhibits the power-law behavior. Therefore, the low-temperature measurements of bulk 

physical quantities sensitive to low-energy-quasiparticle excitations are necessary for clarifying the 

superconducting-gap structure. Here, I introduce experimental results which suggest conventional 

fully-gapped s-wave superconductivity: magnetic penetration depth, thermal conductivity, and 

specific heat measurements [62–65].  

First, let me show the magnetic penetration depth measurements. The temperature dependence of the 

London penetration depth 𝜆 (𝑇), which directly reflects the low-energy-quasiparticle excitations (the 

number of superconducting electrons), is a bulk probe for revealing pairing symmetry. In fully gapped 

s-wave superconductors, the change of the magnetic penetration depth, Δ𝜆 (𝑇) = 𝜆(𝑇) − 𝜆(0), is 

exponential temperature dependence at low temperatures. In contrast, Δ𝜆 (𝑇) is proportional to T (T2) 

at low temperatures in line (point) nodes. For BiCh2-based superconductors, magnetic penetration 

depth measurements were first performed by tunnel diode oscillator technique for the Bi4O4S3 

polycrystalline sample by Srivastava and Patnaik [62]. The Δ𝜆 (𝑇) at low temperatures shows an 

exponential temperature dependence, which indicates the fully gaped s-wave superconductivity. They 

estimated the superconducting gap ratio of  2Δ(0)/𝑘B𝑇𝑐 ~ 6.7 by fitting the data of Δ𝜆 (𝑇). This value 

is much larger than the weak-coupling value of 3.53, which implies that a strong-coupling nature is 

expected for Bi4O4S3. They also estimated the normalized superfluid density. The superfluid density 

data is in good agreement with a single s-wave equation for 2Δ(0)/𝑘B𝑇𝑐 ~ 7.2, which again indicates 

the strong-coupling scenario for Bi4O4S3. They finally confirmed that a two-gap model, which was 
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suggested by Muon-spin rotation and relaxation (SR) measurements (I will introduce the SR 

measurements later) [66–68], is not suitable for the explanation of their data and thus concluded that 

Bi4O4S3 is a fully gapped s-wave superconductor with the strong coupling. Next, Jiao et al. measured 

magnetic penetration depth using the tunnel diode oscillator for NdO1−xFxBiS2 single crystals (x = 0.3 

and 0.5) [63]. The Δ𝜆 (𝑇), after subtracting the paramagnetic contributions of Nd3+ ions, also exhibits 

exponential temperature dependence at low temperatures, which provided evidence of nodeless 

superconductivity for NdO1−xFxBiS2. The temperature dependence of the normalized superfluid 

density further supported the emergence of fully gapped s-wave superconductivity. The estimated 

superconducting gap ratio is 2Δ(0)/𝑘B𝑇𝑐 ~ 4.3, which is larger than the weak-coupling value but 

smaller than that of Srivastava et al.’s result for Bi4O4S3. In summary, these magnetic penetration 

depth measurements suggested that fully gapped s-wave superconductivity with strong coupling is 

realized in Bi4O4S3 and NdO1−xFxBiS2.  

Thermal conductivity (𝜅) is also a powerful probe for investigating the superconducting gap, which 

is sensitive to low-energy-quasiparticle excitations. The temperature dependence of 𝜅  has the 

quasiparticle and phonon contributions in superconducting states. The 𝜅/𝑇 in the zero-temperature 

limit presents important information for revealing the superconducting-gap structure. For conventional 

fully gapped superconductors, 𝜅/𝑇 in the zero-temperature limit always vanishes since the phonon 

term is also zero. In contrast, the presence of nodes in the superconducting gap causes the finite 𝜅/𝑇 

in the zero-temperature limit, 𝜅0/𝑇. Magnetic field dependence of 𝜅 also provides information on 

whether a fully gapped or nodal superconductivity is plausible for the superconducting states. In 

conventional fully gapped s-wave superconductors, 𝜅 is almost independent of the low magnetic fields 

and steeply increases near the upper critical field since low-energy-quasiparticle excitations do not 

exist, and vortex cores are overlapped with increasing magnetic fields. On the other hand, nodal 

superconductors have delocalized quasiparticles owing to the presence of low-energy quasiparticle 

excitations. The supercurrent around the vortices induced by magnetic fields affects the quasiparticle 

energy spectrum by the Doppler-shift mechanism. The Doppler shift leads to an initial increase in low 

magnetic fields. For BiCh2-based superconductors, Yamashita et al. carried out measurements of 𝜅 

for NdO0.71F0.29BiS2 single crystals [64]. The absence of residual 𝜅0/𝑇 was observed. The low-field 

𝜅/𝑇 (𝐵)  did not largely change and steeply increased above B∗, which implies the absence of Doppler-

shifted quasiparticles. They proposed that B∗ is much lower than the upper critical field due to the 

presence of large gap modulation in the two-dimensional Fermi surface (FS). They finally concluded 

that NdO0.71F0.29BiS2 is a conventional fully gapped s-wave superconductor since the resistivity 

measurement also indicates that the superconductivity is robust against impurities due to a dirty 

superconductor.  

Heat capacity is the most fundamental thermodynamic quantity that can also examine the low-

energy-quasiparticle excitations in superconducting states. The temperature dependence of electronic 
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specific heat Ce divided by temperature shows exponential dependence in fully gaped superconductors 

while it shows power-law behavior in nodal superconductors. For BiCh2-based superconductors, it 

was challenging to discuss the superconducting-gap structure using single crystals due to the relatively 

lightweight of a single crystal (less than 1 mg) and low electronic specific-heat coefficient 𝛾 while the 

bulk nature of superconductivity by specific heat measurements had been reported in several 

polycrystalline and single crystal samples. To overcome the situation, Kase et al. examined the 

superconducting gap structure for LaO0.5F0.5BiSSe single crystal with their handmade sensitive 

calorimeter [65]. The Ce/T (T) data shows exponential temperature dependence at low temperatures, 

comparable to a fully gapped s-wave scenario. They estimated the superconducting gap ratio 

2Δ(0)/𝑘B𝑇𝑐 = 4.5, which implies the strong-coupling nature. Moreover, the ratio of the specific heat 

jump Δ𝐶𝑒/𝛾𝑇𝑐  was obtained to be 2.3. The value supports strong-coupling superconductivity for 

LaO0.5F0.5BiSSe as well. The field dependence of the specific heat also provides us with necessary 

information about superconducting-gap structure as well as thermal conductivity. The Ce/T (B) data 

shows the B-linear dependence on the applied magnetic fields, which indicates fully-gapped 

superconductivity. In nodal superconductors, Ce/T (B) steeply increases at low fields as proportional 

to √𝐵 dependence. The observed result is clearly distinct from nodal superconductivity behavior. 

They also confirmed that the multigap nature, as discussed in μSR measurements (I will introduce the 

next paragraph), was not observed in the specific heat measurements. Therefore, they concluded that 

LaO0.5F0.5BiSSe is a fully gapped s-wave superconductor with strong-coupling nature.  

At the end of this section, I briefly introduce 𝜇 SR measurements. SR is a unique probe for 

examining superconducting gap structure and magnetic ordering characteristics. An advantage of SR 

measurement is the easiness of experiments on a polycrystalline sample. Zero-field (ZF) SR has 

revealed the magnetic-order phase and the possible time-reversal-symmetry-breaking 

superconductivity in several unconventional superconductors. Transverse-field (TF) SR provides a 

way to estimate the magnetic penetration depth (𝜆), which allows us to investigate the superconducting 

gap structure. Lamura et al. performed ZF- and TF-SR measurements for the high-pressure (high-

pressure-synthesized) phase of LaO0.5F0.5BiS2 with a monoclinic structure [66]. The time dependence 

of the ZF-SR was well fitted by a Kubo-Toyabe model, which indicates the presence of small and 

broad static magnetic fields on the muon site only due to randomly oriented nuclear magnetic dipole 

moments. Thus, static magnetism of an electronic origin and the indication of time-reversal-symmetry-

breaking superconductivity were not detected in the high-pressure phase of LaO0.5F0.5BiS2. TF-SR 

measurements were performed by field cooling in the mixed state. They estimated the normalized 

superfluid density obtained from the magnetic penetration depth and proposed the s-wave character 

with a possible anisotropic gap (but no nodes) for the high-pressure phase of LaO0.5F0.5BiS2. The 

calculated superconducting ratio is 2Δ(0)/𝑘B𝑇𝑐 = 3.4–3.7, which is almost consistent with the weak-
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coupling value. At almost the same time as Lamura et al.’s study, Biswas et al. revealed the 

temperature dependence of the magnetic penetration depth for Bi4O4S3 polycrystalline by SR 

measurement [67]. The ZF-SR data ultimately ruled out the presence of any magnetic anomaly in the 

superconducting state for Bi4O4S3 as well as high-pressure-phase LaO0.5F0.5BiS2. The temperature 

dependence of 𝜆−2 obtained from TF-SR data is more compatible with a two-gap s-wave model for 

Bi4O4S3, although a single-gap model cannot be eliminated. They finally concluded the fully gapped 

superconductivity with possible two gaps for Bi4O4S3. Moreover, Zhang et al. performed SR 

measurements for the polycrystalline of the ambient-pressure-phase LaO0.5F0.5BiS2 [68]. They 

revealed no signature of magnetic order and the possibility of two-gap superconductivity (s + s-wave) 

or anisotropic s-wave superconductivity (but no nodes). Therefore, the presence of the nodes was not 

observed from the three SR measurements. In contrast, the possible anisotropic superconducting gap 

(but no nodes) and two-gap superconductivity were indicated for the polycrystalline of the high-

pressure- and ambient-pressure-phase LaO0.5F0.5BiS2 and Bi4O4S3, respectively. I have introduced the 

theoretical and experimental results which suggested conventional superconductivity. In the 

following, I will present the possibility of unconventional superconductivity. 

 

2.3.2. Unconventional pairing mechanism and superconducting gap structure  

Several theoretical studies investigated the possibility of unconventional superconductivity 

originating from the Coulomb repulsions [60]. Usui et al. first proposed that the extended s-wave and 

d-wave superconductivity can be realized in BiCh2-based superconductors. After this pioneering work, 

several candidates of unconventional superconductivity, such as 𝑑𝑥2−𝑦2-wave, 𝑑𝑥𝑦, and 𝑔-wave states 

have been reported [60, 69, 70]. FS topology is essential for determining superconducting gap 

structure. In the REO1-xFxBiCh2-type compounds, electron pockets exist around X points up to the 

doping level x ≈ 0.45 [71]. With increasing carrier doping, Lifshitz transition occurs around x ≈ 0.45, 

and hole pockets emerge around  and M points [71]. Agatsuma and Hotta suggested that the 

superconducting gap structure changes from the 𝑑𝑥2−𝑦2-wave to the extended s-wave state with the 

Lifshitz transition [72]. Moreover, Suzuki et al. showed that unconventional pairing could be realized 

by focusing on the orbital degrees of freedom only with an attractive interaction such as the electron-

phonon coupling [60]. They considered the Bi-6px/6py-orbital degrees of freedom in the BiCh2-based 

system and proposed that the 𝑑𝑥𝑦- or extended s-wave states as unconventional pairing mechanisms 

can emerge. In summary, various theoretical calculations have suggested unconventional pairing 

mechanisms for the BiCh2-based superconductor, although several experimental results indicated the 

fully gapped s-wave state, as discussed in Section 2.3.1. In the following, I will show the experimental 

results suggesting unconventional superconducting states: anisotropic superconducting gap structure 

and absent or weak phonon-mediated pairing. 
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For unconventional superconductors, the superconducting gap is expected to have a dependence on 

momentum k, which sometimes has nodes in a specific k direction. Angle-resolved photoemission 

spectroscopy (ARPES) is a powerful tool to directly examine the electronic state and superconducting 

gap structure. The initial ARPES works revealed the basic electronic band structure in the normal 

states for the BiCh2-based compounds [73]. It was found that FSs for NdO1−xFxBiS2 are smaller than 

those expected from the nominal composition, which implies that the actual F concentration (electron-

carrier concentration) is lower than the nominal values for the compound [74]. It was challenging to 

directly observe the superconducting gap for the BiCh2-based superconductors in ambient pressure by 

ARPES due to relatively low Tc < 5 K. However, Ota et al. revealed the superconducting gap structure 

for NdO0.71F0.29BiS2 by a laser ARPES apparatus that achieves the maximum energy resolution of 70 

μeV and the lowest temperature of 1.5 K [75]. They found that a strongly anisotropic superconducting 

gap and the nodelike minima were observed for NdO0.71F0.29BiS2. The result is not contradictory to 

unconventional superconducting states such as the 𝑑- or 𝑔-wave scenarios introduced above. Note that 

in this context, 𝑑𝑥𝑦-wave superconductivity is assumed as the 𝑑-wave state. The superconducting-gap 

nodes of the 𝑑-and 𝑔-wave superconductivity are categorized into symmetry-protected nodes, and the 

positions of the nodes are strictly decided on the FSs. Thus, such nodes should be detected by the bulk 

probes. However, several bulk measurements proposed that nodeless superconductivity is realized in 

NdO1−xFxBiS2 [63, 64]. A possible way to reconcile the contrary situation is to bring the s-wave 

superconductivity with accidental nodes. When the nodes are not symmetry-protected but accidental, 

the superconducting gap changes to nodal to nodeless (fully gapped) states by nonmagnetic impurity 

effect [76]. Such disorder of atomic defects was reported for NdO1−xFxBiS2 single crystals [77]. 

Moreover, Ichikawa and Hotta theoretically suggested that the nodes in the nodal s-wave state, as 

discussed in the ARPES, are easily lifted by nonmagnetic impurities [78]. Thus, the bulk 

measurements, such as magnetic penetration depth and thermal conductivity measurements, may 

detect the nodeless behavior for the accidental nodes with the disordered crystals. In contrast, if 

𝑑𝑥2−𝑦2-wave superconductivity is realized in NdO0.71F0.29BiS2, the disconnected FSs below x ≈ 0.45 

lead to a nodeless state. That is because the nodal lines of the 𝑑𝑥2−𝑦2-wave state are along the 𝑘𝑥 =

±𝑘𝑦 directions and do not cross the FS curves [78]. Thus, we cannot rule out the nodeless 𝑑𝑥2−𝑦2-

wave superconductivity if the anisotropic superconducting gaps observed by ARPES are just node-

like minima (put differently, the APRES spectra do not imply the presence of the distinct nodes). 

However, a sign change occurs between the gaps on the disconnected FSs curves if the nodeless 

𝑑𝑥2−𝑦2-wave state is realized. Therefore, a nonmagnetic impurity effect by using a high-purity single 

crystal is necessary to completely determine the superconducting gap structure in the future.  

Electron-phonon interaction plays a crucial role in Cooper-pair formation for conventional 

superconductors [26, 27]. The isotope effect provides us with information on whether the phonon is 

essential for the Cooper-pair formation of the superconductivity or not. The isotope effect exponent 𝛼 
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is defined as 𝑇𝑐  ∝  𝑀−𝛼, where M is the isotope mass, and 𝛼 ≈ 0.5 is expected from the electron-

phonon interaction [26, 27]. In many superconductors, 𝛼 is close to 0.5, which indicates that the 

electron-phonon interaction is necessary for the pairing mechanisms of the superconductivity. In 

contrast, a remarkably deviates from 0.5 in unconventional superconductors like copper-oxide and 

iron-based superconductors [79, 80]. In these superconductors, spin fluctuation and/or orbital/charge 

fluctuation are suggested as their pairing mechanisms of superconductivity. In the BiCh2-based 

superconductors, I performed a selenium isotope effect for the polycrystalline sample of 

LaO0.6F0.4Bi(S,Se)2 using 76Se and 80Se isotopes [81]. The Se substitution leads to in-plane chemical 

pressure and suppression of local in-plane distortion in LaO0.5F0.5BiS2−ySey: y = 1.0 can be regarded 

as a phase with less local distortions in the Bi–Ch plane [37, 53, 54]. In addition, Tc in LaO1−xFxBiSSe 

does not remarkably change for x = 0.3–0.5, which implies that Tc is not mainly sensitive to the F 

concentration [37]. Therefore, LaO0.6F0.4BiSSe is a phase suitable for investigating the isotope effect 

in the BiCh2-based superconductors. I selected selenium isotopes since Se is included in the 

conducting BiCh2-layer, and Bi has no stable isotope other than 209Bi. The Se concentration, linked to 

the Tc, is successfully controlled within y = 1.09–1.14 in LaO0.6F0.4BiS2−ySey. The Tc of 76Se- and 80Se-

containing samples was estimated from magnetization and electrical resistivity measurements. The Tc 

does not mainly change between 76Se and 80Se, as shown in Fig. 2.2. Thus, the isotope effect exponent 

𝛼Se is close to zero (|𝛼Se| < 0.04), which indicates that the electron-phonon coupling may not be 

primarily crucial for the Cooper-pair formation of LaO0.6F0.4Bi(S,Se)2. Moreover, Jha and Mizuguchi 

examined the sulfur isotope effect for tetragonal Bi4O4S3 [82]. The space group, I4/mmm (No. 139, 

D4h) for Bi4O4S3, differs from P4/nmm (No.129, D4h) for LaO0.6F0.4Bi(S,Se), but it has the same 

tetragonal structure. The sulfur isotope effect for Bi4O4S3 allows us to investigate the influence of both 

Ch1 and Ch2 sites (see Fig. 2.1) while Se in LaO0.6F0.4BiSSe is almost substituted at the Ch1 sites 

[52]. The unconventional behavior |𝛼s| < 0.1 was observed for Bi4O4S3, implying that the electron-

phonon interaction is not primely significant for the compound. Unfortunately, we cannot perform the 

Bi isotope effect as discussed above. Although the Bi-site phonon may play a crucial role in Cooper-

pair formation, at least both Ch1- and Ch2-site phonon does not primarily affect it. A straightforward 

way to understand the reason for remarkably varying from 𝛼 ≈ 0.5 is to consider the substantial 

contribution of the Coulomb repulsion. Given the possibility of anisotropic gaps by the ARPES study 

also, we can expect the spin-fluctuation scenario originating from the repulsive Coulomb interaction. 

However, several bulk measurements indicate that fully gapped s-wave superconductivity, i.e., 

attractive interaction such as electron-phonon coupling, is necessary for the BiCh2-based 

superconductors. A possible way to reconcile these contradictory results may be to bring the scenario 

which suggests that the anisotropic superconducting gap structure can emerge by considering the Bi-

orbital degrees of freedom only with the attractive interaction [60]. The anisotropic superconducting-

gap structure predicted from this scenario is consistent with the ARPES work. The Bi-orbital degrees 
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of freedom may cause a checkerboard-stripe-type charge ordering (probably CDW) observed by 

scanning tunneling spectroscopy/microscopy (STM/STS) [77, 90]. Thus, the orbital/charge fluctuation 

originating from the Bi-orbital degrees of freedom is possibly essential for the pairing mechanism for 

the BiCh2-based superconductors. 

Given these theoretical calculations and experimental results, extended s-wave superconductivity 

with accidental nodes or node-like minima (the point group is A1g even in both cases) by the attractive 

interaction is reasonable as the superconducting-gap structure and the pairing mechanism for the 

BiCh2-based superconductors. However, we cannot completely rule out the nodeless 𝑑𝑥2−𝑦2-wave 

scenario below the doping level of x ≈ 0.45 because there are disconnected electron pockets around X 

points in the doping level. Furthermore, we cannot conclude that the pairing interaction is electron-

phonon interaction or orbital/charge fluctuation at the present stage. The Bi-orbital degrees of freedom 

are probably significant in any case of phonon-mediated pairing or orbital/charge fluctuation. The non-

magnetic impurity effect using high-purity single crystals is adequate to determine the 

superconducting-gap structure. I hope that studies considering FS topology will be developed in the 

future. Finally, I summarized these experimental results suggesting both conventional and 

unconventional superconductivity in Table 2.1.  

 

 

Fig. 2.2. (a) Temperature dependence of the resistivity around superconducting transitions for 76Se- 

and 80Se-isotope polycrystalline samples. (b)–(e) Temperature dependence of the magnetization for 

76Se- and 80Se-isotope polycrystalline samples. 
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Table 2.1. Summary of experimental results for the superconducting-gap structures and pairing 

mechanisms for the BiCh2-based superconductors.  

 

 

2.4. Possible exotic superconducting states 

At the end of Chapter 2, I briefly introduce other exotic states: superconducting fluctuation (strong 

coupling), multiorbital-electronic states (multi-gap superconductivity), CDW, and quantum critical 

point (QCP). First, I show the possibility of superconducting fluctuation and strong coupling. It is 

known that superconductivity can survive even above Tc as thermal fluctuation. The superconducting 

fluctuations basically emerge just above Tc and are well understood in terms of the standard Gaussian 

fluctuation theorem. However, high-temperature superconductor cuprate is expected to have strong 

superconducting fluctuations due to strikingly high Tc, and the effect is closely related to the pseudogap 

formation [9]. In iron-selenide superconductors, giant superconducting fluctuations were observed and 

are obviously distinct from conventional superconductors [83]. The pseudogap formation is expected 

to be related to the BCS-BEC crossover [18, 83]. In BiCh2-based superconductors, Liu et al. observed 

giant superconducting fluctuation far above Tc for NdO0.5F0.5BiS2 [84]. A reduction in normal-state 

resistivity (T* ~ 20 K) above the superconducting transition (Tc = 4.8 K) was observed, which is an 

indication of superconducting fluctuation. The Nernst effect and STM results support the 

superconducting-fluctuation scenario. Furthermore, similar behavior of the reduction above 

superconducting transition was observed in Bi4O4S3 polycrystalline [85]. Liu et al. also found the two-

gap nature by STM and the smaller gap, which is related to the superconducting transition, shows the 

extremely high gap ratio 2𝛥(0)/𝑘𝐵𝑇𝑐 ~ 17 under Tc = 4.8 K observed by resistivity measurements. 

The ratios observed from magnetic penetration depth, specific heat, and SR measurements are also 

large values, while these are much smaller than 17. Therefore, I believe that the strong-coupling 
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scenario is plausible for BiCh2-based superconductors, while I cannot determine how strong the 

coupling is.  

Hall resistivity measurements detected multiband-like behavior for several polycrystalline samples 

[40, 86, 87]. Field dependence of the Hall resistivity shows nonlinear behavior in a magnetic field, 

although a single-band system exhibits B-linear dependence. Under multi-band systems, multi-gap 

superconducting states can be realized, such as MgB2 and iron-based superconductors [14, 18]. Indeed, 

the magnetic penetration depth estimated from SR measurements indicated the multi-gap 

superconductivity for polycrystalline samples of Bi4O4S3 and LaO0.5F0.5BiS2 under ambient pressure 

[67, 68]. Moreover, the temperature dependence of the in-plane upper critical fields for single crystal 

samples of LaO0.5F0.5BiS2 was well-fitted by the two-gap model [155]. These results exhibit that the 

multi-gap scenario is reasonable for the BiCh2-based superconductors. However, a simple question is 

whether the multi-gap superconductor can really emerge even in relatively simple FS topology for the 

BiCh2-based compounds compared with the iron-based and MgB2 superconductors. The FSs are 

mainly composed of the Fe-𝑑𝑥𝑦, 𝑑𝑥𝑧, and 𝑑𝑦𝑧 orbitals for the iron-based compounds and of the 𝜎 and 

𝜋 bands for MgB2, respectively [14, 18]. In contrast, the FSs for the BiCh2-based systems mainly 

consist of the Bi-𝑝𝑥 and 𝑝𝑦 orbitals and these orbitals should degenerate in the tetragonal phase. If the 

multi-gap superconductivity was observed in monoclinic phases [high-pressure applying (or high-

pressure-annealing/synthesized) or much-poor F-doped samples], the scenario would be compelling. 

However, the multi-gap nature was reported in the tetragonal phase synthesized under ambient 

pressure and optimal F-doped regions. Therefore, it does not seem easy to realize the multi-gap 

superconductivity in BiCh2-based systems. In addition, the polycrystalline samples were used in the 

Hall resistivity and SR measurements, suggesting the multi-band nature. BiCh2-based compounds 

have quasi-two-dimensional electronic states and large electronic anisotropy between the ab plane and 

c axis [44, 45]. Indeed, single-band nature has been observed in our single crystals (see Chapter 9). Of 

course, I do not try to rule out the two-gap scenario for the BiCh2-based compounds, but we need to 

use single crystals to investigate the physical properties in detail. Possibly, the local monoclinic 

distortion can lead to lifting the degeneracy of the Bi-6𝑝𝑥 and 6𝑝𝑦 orbitals and may generate a multi-

band nature.  

The existence of the CDW phase was predicted by theoretical calculations from the early stage [60, 

88, 89]. FS nesting at the wave vector (𝜋, 𝜋) expected in x = 0.5 can lead to the one-dimensional CDW 

nature along the in-plane Bi-Bi directions. The STM/STS studies for NdO0.7F0.3BiS2 and 

LaO0.5F0.5BiSe2 directly observed the checkerboard stripe along the Bi-Bi directions, which indicates 

the CDW formation [77, 90]. Moreover, recent X-ray diffraction studies using single-crystal samples 

suggested the presence of CDW phases for NdO0.7F0.3BiS2 and LaO0.5F0.5BiS2 [91, 92]. The CDW 

formations occur in T ≈ 120 K and T ≈ 260 K for NdO0.7F0.3BiS2 and LaO0.5F0.5BiS2, respectively. 

Furthermore, the Supplemental Materials in Ref. 92 showed a possible signature of the CDW from the 
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temperature dependence of the electrical resistivity and magnetic susceptibility. In addition, transport 

properties for a polycrystalline sample of EuFBiS2 indicated that the CDW transition occurred around 

T ≈ 280 K, at which the anomaly of electrical resistivity and Hall coefficient was observed [93]. These 

results give us solid evidence of CDW formation. In future work, I expect the relationship between 

the CDW and superconductivity will be clear. I will discuss that the CDW phases may exist for LaO1-

xFxBiS2-ySey, and the states can be suppressed by Se substitution in Chapter 9.  

Higashinaka et al. investigated transport properties for CeOBiS2 and suggested the possibility of a 

quantum critical point (QCP) [94]. The -log T divergence of the specific heat was observed at low 

temperatures in zero field, which indicates the existence of quantum critical fluctuations of 4f magnetic 

moments near a QCP. Furthermore, the -log T divergence of the specific heat was basically reported 

in numerous f-electron-based strongly correlated electron systems. To realize a QCP in the f-electron-

based compounds, we need to adjust the balance between Kondo and Ruderman-Kittel-Kasuya-

Yoshida (RKKY) interactions by chemical doping and pressure. However, the temperature 

dependence of the ab-plane electrical resistivity for CeOBiS2 showed semiconducting behavior, which 

implies that the Kondo effect cannot be realized since it is the interaction between conduction electrons 

and f electrons in the f-electron-based systems. Finally, they proposed that non-doped CeOBiS2 is 

positioned at an unconventional QCP among geometrically frustrated nonmetallic magnets. Although 

they observed no superconductivity for CeOBiS2 up to T ≈ 2 K, other gropes exhibited zero resistivity 

around T ≈  1.2 K for the same composition [41], which may support the QCP scenario since 

superconductivity has often been observed near a QCP [17]. As described above, the mother 

compound REOBiS2 is a band insulator; hence, carrier-doping is necessary for obtaining the 

superconducting phase. Therefore, the fact that superconductivity emerges in CeOBiS2 gives us the 

possibility of the mixed-valence state between Ce3+ and Ce4+. The remaining questions are how the 

mixed-valence state is associated with the QCP-like behavior for CeOBiS2 and whether this state can 

tune by applying pressure or isovalent-elemental substitution (without F substitution).  
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3. Local inversion symmetry breaking 

 

3.1. Non-centrosymmetric superconductors 

Non-centrosymmetric superconductors have been extensively studied where the crystal structure 

lacks the inversion center [95, 96]. In these superconductors, antisymmetric spin-orbit interaction 

(SOI) plays a significant role in the superconducting properties. Rashba-type SOC (RSOC), where a 

lack of a mirror plane perpendicular to the c axis removes inversion symmetry, such as the C4v point 

group, is one of the most typical antisymmetric SOC. The SOI by the antisymmetric SOC can lead to 

lifting the spin degeneracy, i.e., a spin-split state can emerge by the inversion symmetry breaking. This 

state can cause profound consequences on the superconducting properties, such as the mixture of spin-

singlet and spin-triplet components, huge upper critical fields due to the suppression of the 

paramagnetic pair-breaking effect, Helical phase parallel to the plane, and topological 

superconductivity [95, 96]. Furthermore, in respect of superconducting gap structures, the singlet-

triplet mixing can cause the superconducting-gap nodes, which are not symmetry-protected (Of 

course, this should be called unconventional superconductivity). This section briefly introduces 

several non-centrosymmetric superconductors, mainly focusing on the upper critical fields. In this 

paper, I basically consider the Rashba-type SOI (RSOI) as the antisymmetric spin-orbit interaction.  

Before cutting to the chase to introduce the non-centrosymmetric superconductors, I explain two 

distinct pair-breaking effects for Cooper pairs under magnetic fields: the paramagnetic pair-breaking 

effect and the orbital pair-breaking effect. The former mechanism originates from spin polarization 

due to the Zeeman effect, which competes with the antiparallel-spin formation of the Cooper pairs in 

the spin-singlet superconductor. Therefore, the paramagnetic pair-breaking effect is significant in the 

spin-singlet superconductivity. The limiting field by the paramagnetic pair-breaking effect can be 

evaluated by comparing the superconducting condensation energy with the Zeeman energy. The 

paramagnetic pair-breaking limiting field Bp is given as  

𝐵p =
√2𝛥(0)

𝑔𝜇𝐵√1−
𝜒𝑠
𝜒𝑛

, (3.1)    

where 𝛥(0) is the superconducting gap at zero temperature, 𝑔 is 𝑔-factor, 𝜇𝐵 is the Bohr magneton, 

and 𝜒 is the spin susceptibility (𝜒𝑠 exhibits superconducting states and 𝜒𝑛 normal states). If we assume 

𝑔 = 2 for free electrons and the spin-singlet superconductivity with weak-coupling value 𝛥(0) =

1.76𝑘𝐵𝑇𝑐, where 𝑘𝐵 is the Boltzmann constant, we can find the well-known formula 

𝐵p = 1.86 𝑇𝑐 (3.2) 

since 𝜒𝑠  disappears at zero temperature. This limiting field is the so-called Pauli-Clogston-

Chandrasekhar limit or simply the Pauli limit. When the Cooper pairs comprise parallel spins, i.e., the 

spin-triplet superconductivity, the paramagnetic pair-breaking effect depends on the directions of the 
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d vector, which is generally used to describe the spin-triplet superconductivity. The paramagnetic pair-

breaking effect is significant when the magnetic field is parallel to the d vector (Eq. 3.2 is valid). On 

the other hand, the paramagnetic pair-breaking effect is absent when the magnetic field is 

perpendicular to the d vector [𝜒𝑠 do not affect by superconducting transition (𝜒𝑠 = 𝜒𝑛) and thus Eq. 

3.1 yields 𝐵𝑝 → ∞). Hence, the paramagnetic pair-breaking effect depends on the pairing symmetry 

of the Cooper pairs.  

In non-centrosymmetric superconductors, the paramagnetic pair-breaking effect is either absent or 

depressed by the magnetic field directions. For non-centrosymmetric superconductors, the spin 

degeneracy is lifted even in a zero field. Put differently, spin-band splitting can occur. By RSOI, the 

spins are aligned along the in-plane direction, and the spin direction depends on the momentum k. The 

paramagnetic pair-breaking effect occurs only in magnetic fields parallel to the spin directions. Thus, 

the paramagnetic pair-breaking effect is partial along the ab-plane magnetic fields and is absent along 

the c-axis magnetic fields since all spin directions are aligned along the ab-plane. Strictly speaking, 

the behavior of the paramagnetic pair-breaking effect for non-centrosymmetric superconductors 

originates from Van-Vleck susceptibility. The Van-Vleck susceptibility arises from the interband 

hopping, while the intraband contribution gives rise to the Pauli susceptibility. The superconducting 

transition hardly affects the Van-Vleck susceptibility when the band splitting owing to the 

antisymmetric SOI is much larger than the superconducting gap. On the other hand, Pauli 

susceptibility for the spin-singlet superconductor is suppressed by the superconducting transition, and 

the value disappears at zero temperature, as described above. For the Rashba-type superconductors, 

the in-plane susceptibility is determined by both Pauli and Van-Veleck contributions, while the out-

of-plane susceptibility is determined only by the Van-Vleck contribution. Therefore, the paramagnetic 

pair-breaking effect is absent along the out-of-plane directions, although partial along the in-plane 

direction.  

Next, I introduce the orbital pair-breaking effect. The orbital pair-breaking effect can be written as 

𝐵orb(𝑇) =
𝛷0

2𝜋𝜉2(𝑇)
, (3.3) 

where the 𝛷0 is the flux quantum, and the 𝜉 is the GL coherence length. Small coherence length leads 

to large upper critical fields. There is the following relationship among the GL coherence length, 

Pippard coherence length 𝜉0, and mean free path ℓ  

1

𝜉
=

1

𝜉0
+

1

ℓ
. (3.4) 

In clean superconductors (ℓ ≫ 𝜉0), the GL coherence length is comparable to the Pippard coherence 

length 𝜉0 = 0.18ℏ𝑣𝐹/𝑘𝐵𝑇𝑐 where the ℏ is Plank constant and 𝑣𝐹 is Fermi velocity. Fermi velocity is 

inversely proportional to the effective mass (𝑣𝐹 = ℏ𝑘𝐹/𝑚∗ where 𝑘𝐹 is Fermi wave number and 𝑚∗ 

is effective mass). Thus, the conference length is essentially small in heavy fermion systems, and thus 
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the orbital limit is greatly enhanced. Furthermore, the Werthamer–Helfand–Hohenberg (WHH) model 

is familiar as the fitting function for the orbital pair-breaking effect [97, 98]. The WHH model can be 

described as 

𝐵orb(0) = −𝐴𝑇𝑐

𝑑𝐵𝑐2(0)

𝑑𝑇
|

𝑇=𝑇𝑐

, (3.5) 

where the A is 0.73 in the clean limit and 0.69 in the dirty limit. The initial slope of Bc2 (T) is significant 

in the orbital limit (Indeed, GL theory is suitable for temperatures close to Tc). The orbital pair-

breaking effect is independent of the pairing symmetry of the Cooper pairs.  

CePt3Si is the first non-centrosymmetric heavy fermion superconductor [99]. The space group is 

tetragonal P4mm (No. 99, C4v), where the inversion symmetry is broken along the c-axis direction, 

leading to RSOC [95, 96]. Unconventional superconducting states, i.e., the presence of 

superconducting-gap nodes, were observed by several bulk measurements, such as magnetic 

penetration depth, thermal conductivity, and specific heat measurements. The observed upper critical 

fields vastly exceed the Pauli-paramagnetic limiting field, and the Knight shift remains constant below 

Tc for all crystallographic directions of the magnetic fields. These results indicate the significance of 

the RSOI. However, the anisotropy of the upper critical fields between the ab plane and c axis is small, 

and the upper critical fields for both directions exceed the Pauli limit. If the RSOI is essential for the 

superconducting state, the upper critical field should be significantly enhanced only along the c-axis 

direction. Consequently, the constant Knight shift should also be observed in this direction. Thus, 

given the difficulties of synthesizing high-quality single crystals as well, it is a challenging task to 

ultimately determine the pairing mechanisms and superconducting gap structures.  

Next, CeTX3-type (T = transition metal, X = Si or Ge) compounds are also attractive non-

centrosymmetric superconductors [95, 96, 100]. In this system, superconductivity is indeed by 

applying high pressure. The space group in the CeTX3 is I4mm tetragonal (No. 107, C4v). A remarkable 

feature in the CeTX3 superconductors is the extremely high c-axis Bc2 (T) and the large anisotropy, 

distinct from the weak anisotropy of CePt3Si. For example, Bc2 (0) for CeRhSi3 exceeds 30 T along 

the c axis even though the Tc is in the order of 1 K, which strongly indicates that RSOI plays a 

significant role in the superconducting properties. The high Bc2 (T) in the c-axis direction and large 

anisotropy contribute to the anisotropic paramagnetic pair-breaking effect by RSOI. That is because 

the orbital limit is also primarily enhanced in the heavy-Fermion electronic states, and thus the upper 

critical fields can be limited by the paramagnetic pair-breaking effect. Indeed, the much sizeable initial 

slope of the Bc2 (T) was observed in the CeTX3 compounds. Therefore, the 𝐵𝑐2(𝑇)/𝑇𝑐 is remarkably 

high in all superconductors (see Fig. 3.1) because of the suppression of both paramagnetic pair-

breaking and orbital pair-breaking effects.  

Finally, I introduce 2D superconductors transition metal dichalcogenides such as monolayer NbSe2 

and MoS2 [23, 101, 102]. The inversion symmetry is broken in the surface; thus, RSOC exists in this 
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system. For these systems, the in-plane Bc2 (T) is strikingly enhanced, but the out-of-plane is much 

smaller than the plane. Considering the RSOC, explaining the huge in-plane Bc2 (T) may be 

challenging. However, there is another critical feature in the monolayers for MoS2 and NbSe2: in-plane 

inversion symmetry is broken. This symmetry breaking can cause c-axis-direction spin splitting, so-

called Zeeman-type spin polarization, which is different from the Rashba-type spin polarization (ab-

plane-direction spin splitting). The singlet Cooper pairs under this spin texture can be locked along 

the out-of-plane direction and protected against the in-plane magnetic field. Such Cooper-pair 

formation is called Ising pairing. Therefore, the in-plane paramagnetic pair-breaking effect is primarily 

suppressed in these systems. The orbital limit should also be enhanced to observe the highly high in-

plane Bc2 (T). For the layered superconductors, the Bc2 (T) and the coherence length have the anisotropy 

between the in-plane and the out-of-plane direction. Thus, the following formula gives the Bc2 (T) for 

layered superconductors [28], 

𝐵orb
∥ (𝑇) =

𝛷0

2𝜋𝜉∥(0)𝜉⊥(0)
(1 −

𝑇

𝑇𝑐
) , (3.6) 

𝐵orb
⊥ (𝑇) =

𝛷0

2𝜋𝜉∥
2(0)

(1 −
𝑇

𝑇𝑐
) . (3.7) 

𝜉∥ and 𝜉⊥ are in-plane and out-of-plane coherence lengths, respectively. Therefore, the out-of-plane 

coherence length becomes short when the electronic states have a quasi-two-dimensional nature 

(superconducting anisotropy is large). Furthermore, when the effective thickness of superconductivity 

𝑑𝑆𝐶 is smaller than the out-of-plane coherence length, such as 2D systems, the in-plane Bc2 (T) is 

written as  

𝐵orb
∥ (𝑇) =

𝛷0√12

2𝜋𝜉∥𝑑𝑆𝐶
√1 −

𝑇

𝑇𝑐
. (3.8) 

Under this condition, the orbital pair-breaking effect is largely suppressed. In order to show solid 

evidence that 2D superconductivity is realized, the angular dependence of the upper critical fields 

should be comparable to the 2D Tinkham model (see Chapter 10). Indeed, the angular variations of 

the Bc2 (T) for the monolayers of NbSe2 and MoS2 are well-fitted by the 2D Tinkham model. Because 

of the suppression of both orbital pair-breaking and paramagnetic pair-breaking effects, the in-plane 

Bc2 (T) is largely enhanced for these monolayers. As introduced so far, high upper critical fields have 

been observed in non-centrosymmetric superconductors due to the presence of antisymmetric SOC 

(Rashba-type SOC and Zeeman-type SOC). On the other hand, local inversion symmetry breaking 

leads to significant contributions of superconductivity attributed to a staggered ASOC, even in 

centrosymmetric systems. In the following, I will introduce how the local inversion symmetry 

breaking affects superconductivity with respect to theoretical (Section 3.2) and experimental (Section 

3.3) studies.  

At the end of this section, I show the upper critical fields for several superconductors (see Fig. 3.1). 
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Uranium compounds and non-centrosymmetric heavy-fermion compounds can exhibit huge upper 

critical fields due to the suppression of both paramagnetic and orbital pair-breaking effect (For several 

uranium compounds, the paramagnetic pair-breaking effect is absent due to the spin-triplet pairing). 

Therefore, we need to focus on the crystal structure, electronic band structure (the kind of orbitals near 

the Fermi level), and pairing symmetry to realize high upper critical fields despite low Tc. In addition, 

recently discovered CeRh2As2 with locally non-centrosymmetric crystal structure, which is the same 

crystal structure as my target material BiCh2-based superconductors, also shows high upper critical 

fields. In the next section, I will introduce the locally non-centrosymmetric systems.  

 

Fig. 3.1 (a) History of upper critical fields divided by superconducting transition temperatures Tc for 

several superconductors. (b) Tc dependence of upper critical fields or critical fields divided by Tc for 

several superconductors. These references of the upper critical fields, critical fields, Tc, and year are 

displayed in 16.4.  

 

3.2. Local inversion symmetry breaking and superconductivity: 

theoretical aspect 

As introduced in Section 3.1, non-centrosymmetric superconductors show intriguing 

superconducting properties, especially extremely high upper critical fields, and have been a central 

research topic for a long time. Recently, several theoretical studies suggested that the local inversion 

symmetry breaking in the sublattice structure can cause interesting physical properties even when 

global inversion symmetry is possessed (centrosymmetric systems) [103, 104]. All symmetry-distinct 

sites in the unit cell, captured by the concept of Wycko positions, have their symmetry group, the so-

called site symmetry group. The site symmetry group is a subgroup of the bulk point group with 

transformations that leave the specific site invariant. Consequently, we can build a sublattice from 

such sites with lower symmetry so that this sublattice lacks symmetries of the whole crystal structure, 

such as inversion. When a crystal structure is composed of two sublattices that lack inversion 

symmetry, but the point group of the crystal contains inversion symmetry (which exchanges the 
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sublattices), we call such crystal structures locally non-centrosymmetric systems [104]. There are 

several examples of locally noncentrosymmetric crystal structures. The most typical cases are layered 

structures, in which each layer lacks the mirror plane perpendicular to the c axis, but the layers are 

connected by interlayer coupling so that global inversion symmetry is possessed. In such layered 

structures, the staggered RSOC can exist in each layer. Because my target materials, BiCh2-based 

superconductors, have a layered structure, I consider the RSOI contribution below. The studies using 

thin films are familiar with the locally non-centrosymmetric systems. Artificial superlattices of heavy-

fermion multilayers [105–107] and bilayer (and trilayer) systems [108, 109] have been studied as the 

layered structure with local inversion symmetry breaking. In bulk systems, the crystal structure of the 

recently discovered CeRh2As2 superconductor has tetragonal P4/nmm (No. 129, D4h), and the Ce site 

lacks the inversion symmetry with the C4v site point group [110]. The experimental results for these 

systems are introduced in the next section. My target compounds LaO1-xFxBiS2-ySey also belong to the 

space group P4/nmm (No. 129, D4h), the Bi and Ch sites lack the inversion symmetry with the C4v site 

point group, and I describe the physical properties in detail later. Note that the F-free compounds 

LaOBiS2-ySey have monoclinic structures [36, 37, 39], but F substitution (electron-carrier doping) 

leads to the stabilization of the tetragonal structure [38, 39, and Chapter 8]. In these layered structures, 

the staggered RSOC dependent on each layer can emerge and lead to spin polarization. If we assume 

a bilayer system, the sign of the RSOC is inverse between the layers. In non-centrosymmetric 

superconductors, mixed-parity pairing can occur in the superconducting states. Locally non-

centrosymmetric superconductors can also emerge in the mixed-parity states similar to the glocal 

inversion symmetry breaking. In the locally non-centrosymmetric case, the superconducting order 

parameters largely depend on each layer owing to the staggered RSOC. The relative amplitude of the 

RSOC and the interlayer coupling (hopping) between the sublattice is essential for the local inversion 

symmetry breaking to play an important role in the electronic states. A crossover from conventional 

superconductivity to non-centrosymmetric (global inversion symmetry breaking) superconductivity 

can be realized by controlling the ratio of the RSOC to the interlayer hopping. The spin susceptibility 

in the superconducting states, which is significant in the non-centrosymmetric systems, depends on 

the relative strength of RSOC and interlayer coupling. The spin susceptibility does not disappear at 

zero temperature, even with spin-singlet states predominant when the RSOC contribution is 

significant. The spin susceptibility is close to the spin-triplet case by increasing the RSOC term even 

in the predominant spin-singlet states. This non-zero spin susceptibility can lead to the depression of 

the paramagnetic pair-breaking effect. This layer-dependent RSOC causes exotic superconducting 

states under magnetic fields. I introduce the two distinct cases: (I) Pair-density wave (PDW) in 

magnetic fields parallel to the out-of-plane direction and (II) Complex stripe (CS) phase to Helical 

phase in magnetic fields perpendicular to the out-of-plane direction. I briefly summarize the two 

phases below.  
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Fig. 3.2. Schematic images of (a) globally and (b) locally (staggered) non-centrosymmetric systems 

as the example of the layered structure. The red crosses in (b) represent the global inversion centers. 

Two sublattices (structures) of A and B in (b) lack inversion symmetry, while the global inversion 

symmetry is possessed with the inversion centers.  

 

(I). Pair-density wave (PDW) state in magnetic fields parallel to the c axis [103, 111] 

We consider a pure spin-singlet (or spin-singlet state is predominant) bilayer system, where the 

individual layer lacks local inversion symmetry, and the applied magnetic field is parallel to the c axis. 

The sign of the RSOC is inverse between the bilayer. In the zero-magnetic field, the superconducting 

order parameter is the same in both layers (uniform superconducting parameter is realized in both 

layers). In low-field regions, superconductivity is suppressed against the applied magnetic field owing 

to the paramagnetic pair-breaking effect. This state from zero-field to low-field regions is called the 

BCS state compared with the PDW state (the interlayer coupling can realize the uniform BCS state). 

Interestingly, with further increasing magnetic fields, the superconducting order-parameter changes 

between the layers (see Fig. 3.3). This state is called the PDW state because the order parameter 

modulates on the length scales of the crystal lattice. The stability of the PDW can be understood by 

considering the spin susceptibility [112]. When the RSOC contribution is stronger than interlayer 

coupling, the Cooper pairs for both BCS and PDW states can form in the intraband. The PDW state is 

more robust against the paramagnetic pair-breaking effect than the BCS state since Van-Vleck 

susceptibility, which is predominant in the susceptibility for the PDW state, originates from the 

interband contribution and is hardly affected by the superconducting transition. Note that the spin-

band splitting by RSOI and interlayer coupling contributions gives rise to Van-Vleck susceptibility, 

which is much larger than the superconducting gap. However, the BCS state is stabilized by the 
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interlayer coupling in the zero-field and low-filed regions. Therefore, the phase transition from the 

BCS to the PDW state can occur by applying magnetic fields. The paramagnetic pair-breaking effect 

must be dominant to observe the PDW state. In other words, the orbital pair-breaking effect should be 

neglected or weak. Non-centrosymmetric superconductors do not exhibit such field-induced phase 

transition; thus, this is unique physics in the locally non-centrosymmetric system. Furthermore, the 

PDW state is categorized as odd-parity superconductivity [113]. In the locally non-centrosymmetric 

superconductor CeRh2As2, the field-induced phase transition has been observed, and the high-filed 

region is called the odd-parity state [110]. I will introduce the CeRh2As2 in the next section. I have 

introduced the bilayer system, but trilayer systems and more have been extensively investigated. These 

results are similar to the bilayer system, but a slightly different behavior was suggested since the center 

layer does not have inversion symmetry breaking. I would like you to refer to the following papers 

Refs. 103, 111, and 112 to understand more-layer cases.  

 

 

Fig. 3.3. (a) Schematic figure of the bilayer system for PDW state parallel to the out-of-plane direction. 

The green bars represent the 2D conducting layers. The structure of staggered RSOC and 

superconducting order parameters in BCS and PDW states are shown on the right-hand side of the 

figure. The presence of interlayer coupling (𝑡⊥ ≠ 0) is shown on the left-hand of the figure. Applied 

magnetic fields are perpendicular to the plane. (b) Example of the T-Bc2 phase diagram for the PDW 

state. The solid and dashed curves show the second- and first-order phase transition. These images 

were described based on Ref. 111. 

 

(II). Complex stripe (CS) phase to Helical phase in magnetic fields parallel to the ab-plane [103, 

109, 114, 115]  

Next, I introduce the CS phase. It is the case for the magnetic field parallel to the in-plane direction. 

I consider the bilayer system as well as the PDW case. First, if we neglect the interlayer coupling and 

make the layers completely decoupled, i.e., we consider the pure RSOC effect in the individual layer, 

magnetic fields parallel to the plane can induce a helical phase, which has finite center-of-mass 

momentum q pairing. Such a finite-momentum pairing (Helical phase) is expected in non-
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centrosymmetric superconductors [95, 96]. Owing to the opposite sign of RSOC, the wave vectors of 

the superconducting order parameter have opposite signs in the two layers. When the interlayer 

coupling is effective, the complex order parameters between two layers can mix (see Fig. 3.4). This is 

called the CS phase because of a complex phase with a strip structure. This state is unique in the locally 

non-centrosymmetric system. The CS phase is stabilized in the magnetic field due to the finite center-

of-mass momentum q and the interlayer coupling, while the BCS state exists at zero field. The orbital 

pair-breaking effect is not considered so far because the weak in-plane hopping, which is proportional 

to the Fermi energy EF, is assumed compared with the RSOC, i.e., the paramagnetic pair-breaking 

effect is predominant. The orbital pair-breaking effect can give rise to the CS phase as well. When the 

orbital pair-breaking effect is dominant (strong in-plane hopping), the CS phase is induced by 

quantized vortices penetrating between the layers. The vortex-induced CS phase is regarded as the 

Josephson vortex phase. Moreover, with further increasing magnetic fields, the interlayer coupling 𝛿 

is weakened (𝛿 approaches zero with increasing the in-plane magnetic fields), and thus Helical phase 

can emerge (independent superconducting states are stabilized). Hence, there are two kinds of CS 

phases by the paramagnetic or orbital pair-breaking effects. Furthermore, intriguing superconducting 

phases can be realized by competition of the two CS phases (moderate in-plane hopping) by 

paramagnetic pair-breaking effect (RSOI) and orbital pair-breaking effect (Josephson vortex): this is 

the PDW state even in the in-plane magnetic-field direction. In order to provoke the PDW state along 

the in-plane direction, the sign of the center-of-mass momentum q needs to be inverse between the 

two CS phases by paramagnetic and orbital pair-breaking effects. Under this condition, we may call 

the CS phase induced by the paramagnetic pair-breaking effect the antivortex phase (basically, the 

sign of the center-of-mass momentum q depends on the band structure and the sign of RSOC). When 

these two CS phases by the paramagnetic and orbital pair-breaking effects are in balance, the interlayer 

coupling stabilizes the uniform superconducting states, and thus the center-of-mass momentum q 

becomes zero. The sign of the superconducting order parameter is inverse between the layers as well 

as the c-axis magnetic field case. Consequently, the balance of the paramagnetic (RSOI) and orbital 

(Josephson vortex) pair-breaking effects can lead to the PDW state in magnetic fields parallel to the 

ab-plane direction. 
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Fig. 3.4. (a-c) Schematic figures of bilayer system for (a) the Helical, (b) the complex-strip (CS) 

phases, and (c) the Josephson vortex phase. The Josephson vortex phase is a kind of CS phase. The 

green bars represent the 2D conducting layers. The structures of the staggered RSOC are described on 

the left-hand side of the green bars. The superconducting order parameters for the upper and lower 

layers are shown on the top and bottom of the green bars, respectively. In the case of the Helical phase, 

the interlayer coupling is neglected (𝑡⊥ = 0), and the orbital pair-breaking (Josephson vortex) is 

assumed. In the case of the CS (antivortex) and Josephson vortex phases, the finite interlayer coupling 

is assumed (𝑡⊥ ≠ 0). Applied magnetic fields are parallel to the planes for all cases. In the Helical and 

Josephson vortex phases, the quantized vortex is described between the superconducting layers. (d) 

Example of the T-Bc2 phase diagram for the CS and Helical phases. The solid and dashed curves show 

the second- and first-order phase transition, respectively. These images were described based on Refs. 

109 and 114.  

 

3.3. Local inversion symmetry breaking and superconductivity: 

experimental aspect 

Experimental studies for local inversion symmetry breaking have been developed in 2D compounds. 

The orbital pair-breaking effect along the ab-plane magnetic field is suppressed in the 2D systems, as 

explained in Section 3.1. Consequently, we can naively investigate the paramagnetic pair-breaking 
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effect using 2D compounds. The first example of the locally non-centrosymmetric superconductors is 

artificial superlattices composed of heavy-fermion superconductor CeCoIn5 and normal metal 

YbCoIn5 (block layers), where the inversion symmetry is locally broken at the interface between the 

CeCoIn5 layer [105–107]. However, the global inversion symmetry is present for the whole lattice. 

Thus, the staggered RSOC can emerge due to the local inversion symmetry breaking along the out-of-

plane direction. The RSOI can lead to the weakening of the paramagnetic pair-breaking effect. 

Moreover, in this system, the RSOC can be tuned by the modulation of both CeCoIn5 and block layers. 

They revealed the change of the pair-breaking nature from the angular dependence of the Bc2 (T) by 

modulating the layers. The cusp-like behavior of the angular dependence of Bc2 (T) around the plane 

[put differently, the 2D-Tinkham model (Eq. 10.2) is effective] exhibits the orbital pair-breaking effect 

is predominant, which indicates that the paramagnetic pair-breaking effect is diminished due to the 

RSOI. On the other hand, the suppression of the cusp shows that the paramagnetic pair-breaking effect 

is predominant [the 3D-GL model (Eq. 10.1) is effective], which implies that the modulation of the 

layers weakens the RSOC. Unfortunately, the PDW state in the c-axis-field direction and the CS phase 

in the ab-plane-field direction has not been observed in the artificial superlattice. However, we expect 

that the local RSOI plays an essential role in the electronic state from these results. 

I introduced the monolayer of MoS2 as the non-centrosymmetric (global inversion symmetry 

breaking) 2D superconductor. In contrast, the MoS2 bilayer (2H-MoS2) has global inversion 

symmetry, while the inversion symmetry within the individual layers is locally broken [108]. In the 

monolayer of these transition-metal dichalcogenides, the Zeeman-type SOI, by the lack of in-plane 

inversion symmetry, generates the Ising pairing, which leads to the protection from the departing of 

the Cooper pairs against the in-plane magnetic field. The interlayer Josephson coupling between the 

layers exists in the bilayer system. The Zeeman-type SOC and the interlayer Josephson coupling can 

be controlled by tuning the carrier concentration in the individual layers. The in-plane Bc2 (T) can be 

depressed below the conventional Pauli limit in the bilayer system, which implies that the Ising 

protection is strongly weakened by the enhancement of the interlayer Josephson coupling (orbital pair-

breaking effect by conventional Abrikosov vortices may be predominant).  

The CS phase in the magnetic field parallel to the plane was observed in the thin films stacked by Pb 

and Sb [109]. In this system, the coupling strength between the Pb monolayer films was controlled by 

changing the thickness of the Sb spacer layer. They investigated the bilayer and trilayer systems. The 

observed in-plane Bc2 (T) is similar to the theoretically predicted phase diagram in magnetic fields 

parallel to the ab-plane for locally non-centrosymmetric superconductors. The interlayer Josephson 

coupling favors the BCS state with a uniform order parameter, denoted as BCS in Ref. 109, in zero 

and low fields parallel to the plane (𝒒 = 0). With increasing magnetic fields, the CS phase with a finite 

center-of-mass momentum emerges (𝒒 ≠ 0). As introduced above, the CS phase can originate from 

the staggered RSOI (the paramagnetic pair-breaking effect is predominant) and the Josephson vortex 
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state between the layers (the orbital pair-breaking effect is predominant). This case exhibits the latter: 

the CS phase is induced by the quantized vortices penetrating the Sb spacer layer. Interestingly, by 

further increasing magnetic fields, the transition from the CS phase to the helical phase was observed, 

which results from the interlayer Josephson coupling 𝛿 between the layers being effectively weakened 

by the magnetic fields (𝛿  approaches zero). Thus, this Helical phase has a finite center-of-mass 

momentum q and almost zero interlayer Josephson coupling. The upturn behavior of the Bc2 (T) was 

observed in the high-field regions, and they suggested that the upturn corresponds to the transition 

from the CS phase to the Helical phase.  

I have introduced 2D systems so far; however, studies of bulk single crystals for heavy-fermion 

superconductor CeRh2As2 have been extensively developed [110]. The crystal structure of CeRh2As2 

has a centrosymmetric tetragonal CaBe2Ge2-type structure [the space group is P4/nmm (No. 129, 

D4h)]. However, the Ce site lacks local inversion symmetry with the C4v site-symmetry group. (The 

crystal structure of our target materials is the same as the CeRh2As2, and Bi and Ch sites lack the local 

inversion symmetry with the C4v site point group.) Therefore, we can regard that there are two local 

non-centrosymmetric layers of Ce per unit cell. The obtained c-axis Bc2 is approximately 14 T, even 

at Tc = 0.26 K, which vastly exceeds the Pauli limit. The orbital pair-breaking effect is also suppressed 

due to the heavy-fermion electronic states. Moreover, they suggested that the c-axis Bc2 (T) behavior 

exhibits a phase transition from even parity to odd parity. The superconducting phase diagram is 

similar to the theoretical prediction about the PDW state in the c-axis magnetic field. They named the 

high-field superconducting state odd parity because the PDW is categorized as odd-parity 

superconductivity, as introduced above [113]. Such multiphase superconducting states were limited, 

such as UPt3. However, this study proposed that odd-parity superconducting states can be created by 

increasing magnetic fields even if the superconducting order parameter belongs to the even-parity and 

spin-singlet superconductivity in the zero and low fields. Note that the mixture of spin-singlet and 

spin-triplet is not so significant, but the relative magnitude of the RSOC and the interlayer coupling is 

essential to generate the odd-parity (PDW) state in the magnetic fields. Moreover, the odd-parity 

superconductor is a promising candidate for topological superconductors [113, 116]. Therefore, the 

locally non-centrosymmetric superconductors can create a new way to explore topological 

superconductors.  
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4. Weak antilocalization (WAL) 

 

4.1. Weak localization (WL) and weak antilocalization (WAL) 

Localization has been the central topic of condensed matter physics for a long time. The pronounced 

impact of the localization study is the prediction of the Anderson localization, which suggests that the 

localization state of the conduction electron can occur in disordered systems [117, 118]. Anderson 

predicted the Andeson localization in 1958, but it took about 20 years to significantly develop the 

study [119]. Originally, the usual Boltzmann theory neglects interferences between the scattered 

partial waves. The momentum of the electron wave exponentially disappears by the impurity scattering 

after the time 𝜏 . Thus, the Boltzmann theory simply leads to the simple Drude formula for the 

conductivity 

𝜎 =
𝑛𝑒2𝜏

𝑚
, (4.1) 

where 𝑚  and 𝑛  exhibit the mass of the electron and the density of the electrons. However, the 

neglected interference really plays a significant role in the disordered metal system [119]. We consider 

the electron wave in the distribution of the impurities such as disordered metal systems [see Fig. 4.1 

(a)]. The electron wave is continuously scattered at the impurities, and there is backscattering. If time-

reversal symmetry is preserved in the system, i.e., without magnetic impurities and magnetic field, 

there is a time-reversal path for the backscattering. The two paths of the backscattering are constructive 

to each other, and thus the two waves interfere. As a consequence, the probability of the backscattering 

is enhanced, and the conductance reduces. That is caused by quantum correction to the conductance, 

often called quantum interference. The quantum correction to the conductance in the 2D systems is 

given as  

𝛥𝜎 = − (
𝑒2

𝜋2ℏ
) log (

𝐿

ℓ
) , (4.2) 

where 𝐿 and ℓ present the sample size and mean free path of the electron. A scaling theory and Kubo 

formula give rise to quantum correction. I would like you to refer to the following papers in detail 

[120, 121]. The phenomenon is called weak localization (WL) because of a precursor of localization. 

WL occurs in one-, two-, and three-dimensional materials. However, the 2D system is the most famous 

experimental investigation since the localization inevitably occurs in the 2D systems regardless of the 

magnitude of the impurity scattering. We can easily see the quantum-interference effect in the 2D 

systems in the magnetic field perpendicular to the plane. Indeed, many experimental WL studies have 

been performed using 2D materials [119, 122, 123]. In the experimental work, it is significant to 

investigate magnetoresistance (MR). Applying magnetic fields suppresses the quantum interference 

since the time-reversal symmetry is broken, and a phase shift is realized in the wave function. 

Therefore, the resistance decreases with applying magnetic fields, called negative MR [see Fig.4.1 



32 

 

(b)]. The existence of negative MR is necessary for experimentally suggesting the WL (Anderson 

localization). I have not mentioned spin-orbit coupling so far. Interestingly, the presence of the SOC 

causes the sign change of the quantum correction to the conductance [124]. The strong spin-orbit 

scattering leads to destructive interference, and thus the resistance decreases compared with the WL 

case at the zero field. Thus, the MR behavior also changes the sign, which is generally called weak 

antilocalization (WAL) [see Fig. 4.1(c)]. The 2D magnetoconductance (MC) behavior by the WAL is 

well described by the Hikami-Larkin-Nagaoka (HLN) model [124] 

Δ𝐺 =
𝛼𝑒2

2𝜋2ℏ
[𝜓 (

1

2
+

ℏ

4𝑒𝑙𝜙
2 𝐵

) − ln (
ℏ

4𝑒𝑙𝜙
2 𝐵

)] , (4.3) 

where the 𝛼 is prefactor, 𝑙𝜙 is the phase coherence length, and 𝜓 is the digamma function. The 𝛼 is -

0.5 in a single surface (channel) without magnetic impurities and with spin-orbit coupling [124]. The 

HLN theory has also been used for analyzing WL [125, 126]. In the case of the WL, the sign of 𝛼 

changes, and thus we may regard the  𝛼 as the type of localization (WL or WAL) [126]. Thus, the 𝛼 

has been used as the phenomenological parameter in the experimental studies [126, 127]. The phase 

coherence length 𝑙𝜙 is where the WL or WAL occurs by the scattering. When the phase coherence 

length 𝑙𝜙 is smaller than the magnetic length 𝑙𝐵, which is the length that the localization of WAL or 

WL is kept under the magnetic fields, the WL or WAL dominates. Note that Ref. 119 suggests that 

the HLN theory does not describe the high-field MR data so well. Therefore, we should analyze the 

low-field data by the HLN theory. Indeed, the HLN theory has been used for low-field experimental 

data in several experimental studies [127–129]. We can estimate the characteristic fields from the 

phase coherence length 𝑙𝜙 by the relation 𝐵𝜙 = ℏ/4𝑒𝑙𝜙
2 . When the applied magnetic fields exceed the 

𝐵𝜙, the WL or WAL are suppressed. HLN theory is assumed in the spin-orbit coupled impurities (spin-

orbit scattering), but the HLN theory has been used for the materials with strong SOC lattice in nature, 

such as a gold film, and there is good agreement with the theory and the experiments [119]. Nowadays, 

the HLN theory has been developed to analyze whether the surface state has the presence of 

topological surface conduction channels and how these parameters change with altering temperature, 

thickness, and doping level [126–128]. I will introduce several examples of WAL in the next section. 
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Fig. 4.1. (a) Schematic figure of weak localization (antilocalization) effect in 2D disordered 

conductors. Gray closed circles show non-magnetic impurities and/or defects. The red and blue paths 

(electron waves are assumed) have a time-reversal relationship. Weak (strong) spin-orbit coupled 

impurities lead to constructive (destructive) interference, which exhibits weak localization (weak 

antilocalization). (b,c) Conceptional figures of the field dependence of the resistance for (b) weak 

localization and (c) weak antilocalization.  

 

4.2. Material examples of WAL 

In this section, I briefly introduce the material examples of WAL. WAL studies have been intensively 

investigated by using HLN theory in 2D materials. When building the HLN theory, the WAL effect 

was investigated by single-element thin films such as Mg, Cu,  Bi, and Au [119]. The thin Mg film 

was examined as the weak SOC element. The MR data of the Mg film exhibit negative MR in entire 

temperature regions, which indicates that the constructive interference is suppressed and the WL state 

emerges. When 1% Au layers, which have a strong SOC, are introduced to Mg layers, the MR 

increases at low temperatures and low fields [125]. Strong spin-orbit coupled impurities (spin-orbit 

scatterings) lead to destructive interference: this is the WAL state. A Cu film, regarded as a moderate 

SOC, is investigated. The MR behavior of the Cu film is different from the pure Mg. The SOC 

contribution is significant at low temperatures and low fields, and the WAL emerges at low fields. In 

other words, the phase coherence length 𝑙𝜙 is larger than the spin-relaxation length 𝑙SO, which is the 

characteristic length of spin-orbit scattering and can also be estimated from the HLN theory or the 
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Iordanskii, Lyanda-Geller, and Pikus (ILP) theory, where inversion asymmetry is considered [129–

132]. With increasing magnetic field, the magnetic length is less than the spin-orbit scattering length, 

and the WAL behavior is suppressed. In addition, in high-temperature regions, the SOC contribution 

is small, and the WAL behavior disappears at low fields. A gold film regarded as a strong SOC is also 

examined, and the MR data show the WAL behavior at low fields in the broad-temperature region 

[133]. The negative MC (positive MR) is kept up to relatively high fields, probably due to the strong 

SOC of Au. These observed MC and MR data agree with the HLN theory. Therefore, it is essential to 

have strong SOC lattices or spin-orbit coupled impurities that cause destructive interference at zero 

field to realize the WAL at low fields.  

In recent topics, the WAL has been developed in topological materials. A promising topological-

insulator candidate of Bi2Se3 and its related materials has also been extensively studied in the WAL 

context [126, 128]. The surface state is significant in topological materials. Therefore, it is necessary 

to investigate whether the surface contribution is predominant in the compounds or bulk. As 

introduced above, the 𝛼 is -0.5 for a single surface (channel) in the HLN theory in the WAL state. In 

these compounds, there are two surface states on the top and bottom surfaces, and then 𝛼 ≈ -1 has 

been observed. Note that the origin of this WAL for the topological materials is distinct from the spin-

orbit scattering by the strong spin-orbit coupled impurities or the materials with the strong SOC in 

nature. In topological insulators, the Berry phase of 𝜋 leads to the WAL [128, 134]. A similar WAL 

has been observed in Graphen [135]. Thus, in these topological materials, the Berry phase  𝜋 leads to 

destructive interference. Given the weak SOC of carbon atoms, we can understand that the mechanism 

is clearly different from the conventional WAL due to the spin-orbit scattering by strong spin-orbit 

coupled impurities or strong SOC lattice, while the Bi2Se3 and its related compounds have a strong 

SOC from the Bi-6px/6py orbitals.  

The WAL studies have been performed in the transition metal dichalcogenides as well. Various 

transition metal dichalcogenides, such as WTe2, MoTe2, WSe2, TaSe2, PtTe2, MoS2, and VSe2, show 

the WAL in low-filed regions [129–131, 136–139]. Basically, the strong SOC is expected to be the 

role that causes the WAL. However, MoS2 and VSe2 exhibit the WAL behavior in the low-field regions 

even in relatively weak SOC [130, 139]. The enhancement of WAL by the quantum confinement in 

the 2D limit or 𝜋-Berry phase may make the observation of the WAL effect possible in these systems 

[130, 139]. However, the origin is still unclear. In addition, other intriguing physical properties, such 

as Zeeman-type SOI due to the in-plane symmetry breaking and CDW formation, and these 

relationships between the WAL have been investigated for these systems.  

A crossover from WAL to WL has been observed in several materials by controlling temperature, 

carrier concentration, thickness, and elemental substitution [126, 129, 135, 139]. Whether the origin 

of WAL is the strong SOC or the Berry phase depends on the kind of material. However, in any case, 

the crossover state can be realized by changing the constructive to destructive interference by several 
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parameters. I have introduced 2D systems so far. In bulk 3D systems, the 𝛼 becomes much larger than 

in 2D systems [162–164]. I will show the results in Chapter 9.  
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5. Nematic superconductivity 

 

5.1. Nematic electronic states 

The word “nematic” (“nematicity” in the noun), originating from the research field of liquid crystals, 

exhibits the states with the spontaneous rotational symmetry breaking of the bar-shaped liquid crystal 

molecules but without breaking the translational symmetry. Nowadays, this word is extended to solid-

state physics, and the electronic state shows the spontaneous rotational symmetry breaking without 

breaking the rotational symmetry in the crystal structure. Electronic nematicity has been studied in 

several unconventional superconductors such as cuprate, iron-based, and ruthenate superconductors 

[9, 18, 140]. Significantly, the iron-chalcogenide system is the main target for studying electronic 

nematicity [18]. So I briefly show the studies about this system as a representative of electronic 

nematicity. The iron-chalcogenide FeSe has a tetragonal structure at room temperature and shows 

superconductivity at Tc ≈ 9 K. FeSe also exhibits nematic (structural) transition T ≈ 90 K, and the 

nematic transition is suppressed by pressure and vanishes around 2 GPa.The nematic state means the 

orbital ordering, in which the degeneracy of 𝑑𝑥𝑧 and 𝑑𝑦𝑧 of Fe 3d orbitals is lifted. On the other hand, 

FeSe exhibits a spin-density-wave state, a stripe-type long-range antiferromagnetic order in applying 

pressure (from ~2 GPa to ~6 GPa), while no magnetic order in the ambient pressure. The 

antiferromagnetic order breaks the rotational symmetry of the tetragonal lattice. Thus, given the 

analogy of the iron-pnictide systems where the antiferromagnetic order always accompanies the 

nematicity, we can deduce that the magnetic order (spin contribution) leads to the nematic states in 

the FeSe as well. However, it has been suggested that applying pressure can induce antiferromagnetic 

order by changing the FS topology. Therefore, it is difficult to determine whether the driving force of 

the electronic nematicity is the orbital or spin degrees of freedom because of the entangled situation. 

In contrast, sulfur substitution strongly suppresses the antiferromagnetic fluctuation and thus makes 

the magnetic contribution weak. In the S-substituted FeSe1-xSx, the nematic susceptibility, evaluated 

from the elasto-resistivity measurements using a piezoelectric device, diverges at x ≈ 0.17, indicating 

that there is a nematic QCP around x ≈ 0.17. Therefore, we can expect that the orbital ordering is 

essential for the nematic state in the iron-chalcogenide systems. Moreover, the temperature 

dependence of the resistivity at x ≈ 0.17 presents the linear behavior, implying the non-Fermi liquid 

behavior, which is an indication of the QCP. It was reported that the superconducting gap structure 

could change when crossing the nematic QCP, suggesting that the nematic state probably correlates 

with superconductivity. The nematic transition in the iron-chalcogenide system may be regarded as 

the structural transition from tetragonal to orthorhombic. However, it is believed that the electronic 

contribution is the origin of the nematicity because the crystal (orthorhombic) distortion is tiny 

(~0.5%) below the nematic transition.  
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5.2. Nematic superconductivity 

In recent studies, nematic superconductivity has been investigated in the topological superconductor 

candidate dope-Bi2Se3 systems as the target material [141]. The rotational symmetry breaking on the 

basal plane for doped-Bi2Se3 compounds was observed in various probes, such as NMR Knight shift, 

specific heat, and MR in the superconducting states [142–144]. Nematic superconductivity is distinct 

from electronic nematicity in normal states such as iron-based superconductors. In nematic 

superconductivity, the superconducting gap amplitude spontaneously breaks the rotational symmetry 

of the lattice as a consequence of the superconducting order parameter. On the other hand, the orbital 

and/or spin degrees of freedom cause the electronic nematicity above Tc in the normal states. 

According to theoretical calculations, nematic superconductivity occurs even in the fully gapped s-

wave state by the uniaxial strain [145, 146]. In the doped-Bi2Se3 systems, odd-parity superconductivity 

is expected as the superconducting state and categorized as topological superconductivity [147]. In the 

odd-parity state, a two-component superconductor (multi-dimensional irreducible representation Eu) 

is suggested for the doped-Bi2Se3 superconductor. (Note that, for example, the fully gapped s-wave 

state is categorized in single-component A1g.) The counterpart in the two-component 

superconductivity can cause the nematic state. The two superconducting components are called the 

Δ4𝑥  and Δ4𝑦 . Ordinally, the two components form a complex linear combination to satisfy the 

rotational symmetry of the lattice, such as 𝑝𝑥 ±  𝑖𝑝𝑦. However, in the present case, the strong spin-

momentum locking forces a non-unitary superconducting state, i.e., the complex linear combination 

does not occur, and the counterpart of Δ4𝑥  or Δ4𝑦  states is selected [141]. Whether the Δ4𝑥  is 

favorable or Δ4𝑦 has not been completely determined, and also it is suggested that the two states almost 

degenerate. However, a recent uniaxial strain experiment revealed that the Δ4𝑦 state is stabilized under 

the uniaxial stress [148].  

Given this discussion, multi-component superconductivity is a promising candidate for the nematic 

superconductor. Indeed, the two-fold symmetric behavior of the thermal conductivity in the 

superconducting states was observed in UPt3 (trigonal crystal structure), which has multi-component 

superconductivity [149], which may be considered a consequence of nematic superconductivity. 

However, there are few studies about nematic superconductivity because such multi-component 

superconductivity is rare. More recently, in kagome superconductor CsV3Sb5, in-plane rotational-

symmetry breaking was observed in the superconducting states, indicating the nematic 

superconductivity [150]. On the other hand, s-wave superconductivity is suggested as the pairing state 

from the magnetic penetration depth measurements [151]. The s-wave state is categorized as single-

component superconductivity, so nematic superconductivity cannot be realized without strain. In 

CsV3Sb5, it is proposed that CDW formation may be related to the nematic-like behavior [150].  
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6. Motivation for this study  

 The motivation for this study is to reveal the physical properties in both normal and superconducting 

states of LaO1-xFxBiS2-ySey (x = 0.2 and 0.5, y = 0–1) by using single crystals. The Se-substitution 

effect in the BiCh2-based system was mainly examined by using polycrystalline samples. However, it 

is not easy to clarify the physical properties in detail using polycrystalline samples because BiCh2-

based compounds have quasi-two-dimensional electronic states from Bi-6px/py orbitals and thus large 

anisotropy between the ab plane and c axis. The reasons why I selected LaO1-xFxBiS2-ySey (x = 0.2 and 

0.5, y = 0–1) in many kinds of BiCh2-based compounds are below.  

(I). The systems do not have 4f electrons in the RE sites and any magnetic elements. Thus, we can 

purely investigate the normal electronic and superconducting properties.  

(II). We can easily synthesize Se-substituted samples from y = 0 to y = 1 in LaO1-xFxBiS2-ySey. Thus, 

we can examine the Se-substitution effect in the wide Se-concentration regions.  

(III). We can easily obtain relatively large single-crystal samples (ab-plane ~1 mm2) by a high-

temperature-flux method. Thus, we can efficiently perform transport properties by using bulk single 

crystals.  

 

I mainly focus on two intriguing natures of the BiCh2-based compounds. The first topic is the local 

inversion asymmetry in the BiCh2 conducting layer. As introduced in Chapter 3, studies about locally 

non-centrosymmetric systems have been intensively developed for other systems. The F-doped 

(electron-carrier-doped) BiCh2-based compounds belong to tetragonal P4/nmm (No. 129, D4h), which 

has the inversion center. However, the BiCh2 layer locally lacks the inversion symmetry with the C4v 

site point group of Bi and Ch sites. The local inversion symmetry breaking can lead to the presence of 

the modulated RSOC. Theoretical calculations show that hidden spin polarization can exist in the 

BiCh2-based systems [152], and the spin polarization was experimentally observed in spin-ARPES 

(SARPES) [153]. However, studies about local inversion asymmetry have not been extensively 

developed until now. That justifies the study focusing on the locally non-centrosymmetric nature of 

BiCh2-based compounds. In particular, I expected that upper critical fields could be enhanced by the 

local RSOI analogous to global non-centrosymmetric compounds. Hence, I have performed the 

resistivity measurements under magnetic fields between the ab plane and c axis and discussed the 

behavior of upper critical fields (Chapter 10). In addition, I have investigated the crystal structure for 

non- and poor F-doped samples (Chapter 8) because it is significant to discuss the local inversion 

symmetry breaking. I used polycrystalline samples to examine the crystal structures since I performed 

powder X-ray diffraction (XRD). The second topic is localization. In previous work, electrical 

resistivity increases with decreasing temperatures even in optimally F-doped LaO0.5F0.5BiS2 and La-

doped Sr0.5La0.5BiS2 [154–156]. The parent compounds LaOBiS2 and SrFBiS2 are band insulators, but 

the electron-carrier-doping level should be enough to become metal [60]. Moreover, LaO0.5F0.5BiS2 
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and Sr0.5La0.5BiS2 exhibit superconductivity at low temperatures under ambient pressure despite the 

slight increase in resistivity [57, 154–156]. Interestingly, the Se-substitution effect can suppress the 

increase of resistivity [154]. Sakai et al. suggested that the weak increase in resistivity is probably 

related to Anderson localization (WL) [156]. However, MR measurements were not performed. Thus, 

I devised an idea focusing on the localization-like behavior and performed MR measurements using 

single crystal samples of LaO1-xFxBiS2-ySey (Chapter 9). Finally, I investigated the in-plane anisotropy 

of MR in the normal and superconducting states to further reveal the physical properties of BiCh2-

based compounds.  
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7. Synthesis and physical properties measurements 

 

7.1. Single-crystal growth 

The target materials LaO1-xFxBiS2-ySey (x = 0.2, 0.5, y = 0, 0.25, 0.5, 0.75,1.0 as nominal values) 

single crystals were grown using a high-temperature flux method in an evacuated quartz tube [44, 45]. 

First, polycrystalline samples of LaO1-xFxBiS2-ySey were prepared by the solid-state-reaction method 

using starting materials of La2O3 (99.9%), La2S3 (99.9%), BiF3 (99.9%), Bi2S3, and Bi2Se3. La2O3 has 

water-absorbing properties and thus becomes La(OH)3 in the air for about two weeks. Therefore, I 

performed pre-annealing it at 700 ˚C for 15 h and confirmed that the peak pattern of powder XRD was 

consistent with pure La2O3 (ICSD data) before using it. The precursors of Bi2S3 and Bi2Se3 are 

synthesized by grains of Bi (99.999%), S (99.999%), and Se (99.999%). In evacuated quartz tubes, 

the annealing condition is at 700 ˚C for 15 h. I also confirmed that the peak patterns of Bi2S3 and 

Bi2Se3 are consistent with previous studies (ICSD data). Mixtures of these starting materials with 

nominal ratios of LaO1-xFxBiS2-ySey were mixed, pressed into a pellet, and annealed at 700 ˚C for 20 

h in an evacuated quartz tube. The obtained polycrystalline samples are black pellets. The 

polycrystalline samples were pulverized, and I checked the XRD patterns using the powders (see 

Chapter 8). The polycrystalline powders of LaO1-xFxBiS2-ySey (0.4 g) were mixed with flux (5.0 g), 

and the mixtures were sealed into an evacuated quartz tube under ~100 Pa. I used the mixture of CsCl 

and KCl as the flux, and the molar ratio is 5 : 3 (the melting point is roughly 615 ˚C ). The tubes were 

heated at 900 ˚C for 10 h and slowly cooled to 600 ˚C at a rate of -2.0 ˚C/h (175 h), followed by 

furnace cooling to room temperature. At room temperature, the quartz tube was opened under an air 

atmosphere, and the product was filtered and washed with pure water. The obtained single crystals are 

like silver plates [see Figs. 7.1(b) and 7.2] and stable in the air. The actual atomic ratios of the single-

crystal samples for the physical properties measurements were estimated by energy-dispersive X-ray 

spectroscopy (EDX) with a scanning electron microscope (SEM) TM-3030 (Hitachi High-Tech). 

These values were almost consistent with the nominal composition. 

 

7.2. X-ray diffraction (XRD) 

XRD is one of the most important experiments to analyze crystal structures, from powders to single 

crystals. XRD techniques identify crystalline phases of various materials, and we can quantitatively 

analyze the phase. The physical properties depend on the crystal structures. Therefore, we need to 

analyze the crystal structures to reveal their physical properties. All crystals are arranged with 

translational symmetry. The scattered X-rays from the sample interfere with each other either 

constructively or destructively, which means that detectors can observe a signal only at angles where 

constructive interference occurs. The incident X-ray wave is scattered at different planes of the 
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material [see Fig. 7.1(a)]. Therefore, the diffracted X-rays have different optical path lengths to travel. 

The magnitude of this path length depends on the distance between the crystal planes and the incident 

angle 𝜃 of the X-ray beam. That is summarized in the famous Bragg’s formula given as  

𝑛𝜆 =  2𝑑𝑠𝑖𝑛𝜃, (7.1) 

where d is the length between diffraction planes, n is any integer, and 𝜆 is the wavelength of the X-

ray beam. This equation means that constructive interference occurs only when the path difference 

(given by  2𝑑𝑠𝑖𝑛𝜃) is a multiple (n = 1,2,…) of the wavelength of the X-ray beam. The use of the 

equation allows us to determine the distance between the lattice planes of the material since the 

wavelength in XRD experiments is known, such as Cu K𝛼 (Cu K𝛼1: 1.5405 Å, Cu K𝛼2: 1.5443 Å), 

and the angles (the phase difference), at which constructive interference occurs, are measured. The 

obtained diffraction patterns are plotted by X-ray intensity on the vertical axis versus the angle 2θ (2θ 

is defined as the angle between the incident and the diffracted beam) on the horizontal axis. We can 

qualitatively analyze the XRD patterns compared with the previous studies in databases (e.g., ICSD). 

When we need to quantitatively analyze the XRD patterns, i.e., estimate the lattice parameters, the 

Rietveld refinement is a powerful tool for analyzing powder XRD data. The Rietveld method uses the 

least squares approach to refine a theoretical line profile until it matches the experimental data. I used 

RIETAN-FP software [55] to estimate the lattice constants of polycrystalline samples in this study. I 

performed XRD for single crystal samples with those put on the sample holders [see Fig. 7.1(b)]. In 

this case, only 00l peaks are observed, and I used PDIndexer software to estimate the c-axis lengths 

for single crystal samples [157]. Assuming a rock-salt-type crystal structure, we can estimate the c-

axis lengths for single crystal samples from the 00l peaks. In this study, I performed two types of 

powder XRD: conventional laboratory system (Cu K𝛼 X-ray, Rigaku) and synchrotron X-ray at the 

beamline BL02B2 of SPring-8 (Research proposals No. 2019A1114 (𝜆 = 0.496197 Å) and 2019B1195 

(𝜆 = 0.496391 Å).  

 

 

Fig. 7.1. (a) Schematic image of XRD. Black bars exhibit the lattice planes of the material. Yellow 

lines show X-ray beams. The d and 𝜃 represent the spacing between diffraction planes and incident 

angle. (b) Photo of the experimental setup of XRD for single-crystal samples. Several crystals are 

arrayed on the sample holder and fixed with a small amount of vacuum grease.  
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7.3. Resistivity measurements  

 I performed a four-terminal method for resistivity measurements in this study. The four-terminal 

method is useful for measuring small-resistivity samples such as metal. In the four-terminal geometry, 

two leads pass a current through the sample, and two separate leads measure the potential drop 

(voltage) across a sample section. The voltage leads ideally bring very little or no current. Therefore, 

the current through the sample and potential drop (voltage) across the sample can be known to a high 

degree of accuracy. Ohm’s law can be used to calculate the resistance of the sample for the region 

between the two voltage leads. The setup removes the effects of lead contact resistance from the 

measurement results. The resistance is calculated using Ohm’s law 

𝑉 = 𝑅𝐼, (7.2)  

where V is the measured potential drop (voltage) across the sample, R is the resistance of the sample, 

and I is the current through the sample. Resistivity 𝜌 can be calculated from the R given by  

𝜌 = 𝑅
𝑆

ℓ
, (7.3)  

where ℓ is the voltage lead separation and S is the cross-sectional area through which the current is 

passed. It is essential to configure the leads correctly to obtain exact resistivity. The current leads are 

typically located at the edge of the sample, while the voltage leads lie between them. An electric field 

is created when current is passed through the sample. The voltage leads should be adjusted to measure 

a potential drop across a region where the electric field lines are relatively straight. That is achieved 

by putting the voltage leads in line with the current leads or separating them by a small distance 

compared to their distance from the current leads. It is also significant for an accurate four-terminal 

measurement that the current and voltage leads do not contact the sample at the same place. Otherwise, 

the resistance will include the sample contact resistance. Figure 7.2(a) shows the sample configuration 

for the resistivity measurements of a single crystal sample of LaO0.8F0.2BiS1.76Se0.24 as the 

representative. I used gold wires and silver paste for mounting the samples.  

I also performed four-wire Hall resistivity measurements by changing the geometry. When charged 

particles move perpendicular to a magnetic field, a force (Lorentz force) emerges on them 

perpendicular to both the magnetic field and the direction of particle motion (current). The force F 

can be exhibited as 

𝑭 = 𝑞𝒗 × 𝑩, (7.4) 

where q is the charge of the electron or hole, v is the velocity of the charge, and B is the magnetic field. 

This transverse force can often allow the charge carriers to increase on one edge of a sample, which 

causes a potential difference across the sample. This potential difference is called the Hall voltage VH. 

The sign of the VH basically implies the sign of the charge carriers, and the absolute value of the VH is 

related to the density of charge carriers in the sample. The Hall coefficient, RH, describes these two 

properties and is defined as  
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𝑅𝐻 =
𝐸H

𝑗𝐵
=

𝑉H𝑆

𝐼ℓ⊥𝐵
, (7.5) 

where EH is the Hall field and j is the current density. For a well-defined geometry, the current density 

is equal to I/S where I is current, and the Hall field is equal to VH/ℓ⊥. Here, the ℓ⊥ is the distance 

between a set of transverse voltage leads used to measure the Hall voltage [see Fig. 7.2(b)]. It can be 

shown that the 𝑅𝐻 = (𝑛𝑞)−1 under the single-band model, where n is the carrier density. To measure 

the Hall voltage, we need to arrange the voltage leads perpendicular to both current and field directions. 

Figure 7.2(b) exhibits the sample configuration for the four-terminal Hall resistivity measurements of 

a single crystal sample of LaO0.8F0.2BiS1.28Se0.72 as a representative. I performed Hall resistivity 

measurements by such geometries under magnetic fields perpendicular to the planes. In order to 

remove the MR contribution, the Hall resistivity was modified and defined as  

𝜌𝐻(𝐵) =
𝜌+(+𝐵) − 𝜌−(−𝐵)

2
, (7.6) 

where 𝜌𝐻 is 𝜌𝐻 =
𝑉H𝑆

𝐼ℓ⊥
 and 𝜌+(+𝐵) [𝜌−(−𝐵)] is Hall resistivity in positive [negative] magnetic fields.  

In this study, the electrical resistivity, Hall resistivity, and MR measurements on the single-crystalline 

samples were performed by a conventional four-terminal method (see Fig. 7.2) in a physical properties 

measurement system (PPMS, Quantum Design) in Tokyo Metropolitan University and University of 

Amsterdam, a GM refrigerator (AXIS) in Tokyo Metropolitan University, pulsed magnet system at 

Solid State Physics (ISSP) at the University of Tokyo, and superconducting magnet at Institute for 

Materials Research (IMR) at Tohoku University.  

 

 

Fig. 7.2. Photos of sample configurations for four-terminal (a) electrical resistivity and (b) Hall 

resistivity measurements. The samples of (a) and (b) are LaO0.8F0.2BiS1.76Se0.24 and 

LaO0.8F0.2BiS1.26Se0.72 as the representatives, respectively. Silver paste and gold wire were used for 

mounting samples. The t in (a) and (b) means sample thickness.  
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8. Crystal-structural information 

  

8.1. XRD patterns and lattice constants 

First, I show the crystal-structural information for LaO1-xFxBiS2-ySey. Figures 8.1 and 8.2 show the 

XRD patterns for the polycrystalline and single-crystal samples of LaO1-xFxBiS2-ySey, respectively. 

Only 00l peaks were observed for the single-crystal samples (see Fig. 8.2) because the plate-like 

samples were arrayed in parallel on the sample holder [see Fig. 7.1(b)]. The Rietveld refinements were 

performed by using RIETAN-FP software [55] to estimate the lattice constants a and c of the 

polycrystalline. The tetragonal space group P4/nmm (No. 129, D4h) is used for the refinement since 

the F doping (electron-carrier doping) leads to the stabilization of the tetragonal structure [38, 39]. I 

will show that the slight F-doping effect stabilizes the tetragonal structure in Section 8.2. The lattice 

constant c for the single-crystal samples was estimated by the PDIndexer software [157]. The refined 

lattice constants a and c for the polycrystalline samples and single crystals are plotted in Figs. 8.3(a) 

and (b). I present only the c-axis lattice constants for the single crystals because only 00l peaks were 

used for the refinement. The a-axis lattice parameter increases with increasing Se concentration since 

the ionic radius of Se is larger than that of S. The c-axis lattice constant of x = 0.5 is smaller than x = 

0.2 since the electron-carrier doping (F substitution) is greatly sensitive to changing the c-axis length 

in the BiCh2-based system [37]. Thus, there are slight variations of the c-axis lengths with the Se 

concentration because the lattice constant c is dependent on both F and Se concentration, and it is hard 

to precisely control the F-doping level (we cannot determine the actual value of F concentration by 

EDX due to the light element). The trend of the c-axis parameters for the single crystals with the Se 

concentration agrees with polycrystalline samples. The results indicate that the F and Se 

concentrations are somewhat successfully controlled in our single crystals.  
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Fig. 8.1. Powder XRD patterns for the polycrystalline samples of (a) LaO0.8F0.2BiS2-ySey and (b) 

LaO0.5F0.5BiS2-ySey. Red dots, green curves, green dots, and blue curves represent the experimental 

data, theoretically calculated curves, peak positions for the tetragonal phase P4/nmm (No. 129, D4h), 

and residual curves between the experimental data and theoretically calculated curves, respectively. 

The Se concentrations y are nominal values. The lattice constants a and c are described in the insets 

of the figures. The R-factor Rwp is put in the insets as well. 
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Fig. 8.2. XRD patterns for single-crystal samples of (a) LaO0.8F0.2BiS2-ySey and (b) LaO0.5F0.5BiS2-

ySey. The color variation expresses the nominal Se concentration. Only 00l peaks were observed and 

indexed in the inset of figures.  

 

 

Fig. 8.3. Lattice constants (a) a and (b) c as functions of the nominal Se concentration y for the 

polycrystalline samples (closed red circles for x = 0.2 and blue squares for x = 0.5) and single crystals 

(open red circles for x = 0.2 and blue squares for x = 0.5) of the LaO1-xFxBiS2-ySey.  

 

8.2. Crystal-structural transition from monoclinic to tetragonal  

As introduced in Chapter 2, F-free LaOBiS2-ySey belongs to the monoclinic structure (P21/m, No. 11) 

[36, 37]. I show that the crystal-structural transition from monoclinic to tetragonal (P4/nmm, No. 129) 

symmetry occurs by slight F substitution (electron-carrier substitution). The lattice constant c for the 

F-free and slightly F-doped LaO1₋xFxBiSSe (x = 0, 0.01, 0.02, and 0.03) shows a systematic decrease 
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with increasing nominal x, as shown in Figure 8.5(e), which suggests that electron carriers are 

systematically doped even in the low F-doping regime. In monoclinic phases, the 200 peaks split into 

200 and 020. Therefore, by scanning the 200 peaks on temperatures, the structural transition 

temperature Ts and the evolution of the lattice constants a and b can be investigated. Figures 8.4(a)–

(d) display the temperature dependences of the tetragonal 200 peaks and monoclinic 200 and 020 

peaks on the synchrotron X-ray diffraction (SXRD) patterns for x = 0, 0.01, 0.02, and 0.03, 

respectively. Commonly, the 200 peaks shift to higher angles on cooling due to decreasing the lattice 

volume. As shown in Figure 8.4(a), the splitting of the 200 peaks into the monoclinic 200 and 020 

peaks was observed below T ≈  340 K for x = 0, which indicates a structural transition to the 

monoclinic structure at Ts ≈ 340 K. The peak intensity for x = 0 is rapidly suppressed with decreasing 

temperature when the temperature approaches Ts, indicating structural instability toward a structural 

transition (symmetry lowering). The decrease in peak intensity during the temperature scanning 

corresponds to the broadening of the peak in this experimental setup, in which the sample condition 

was not modified, and the temperature was continuously changed. The structural transition was 

observed for x = 0.01 at Ts ≈ 240 K. In addition, a similar trend in the suppression of peak intensity 

was observed for x = 0.01 [see Fig. 8.4.(b)]. On the other hand, for x = 0.02 and 0.03, a clear structural 

transition was not observed down to 100 K. However, the suppression of the peak intensity was 

observed for x = 0.02. This signature implies that the sample has structural instability and a structural 

transition is expected below 100 K. Notably, the peak intensity is almost constant from 300 to 100 K 

for x = 0.03, which probably implies no structural transition at temperatures lower than 100 K. To 

quantitatively confirm the peak broadening with decreasing temperatures, the temperature evolutions 

of the full-width half maximum (FWHM) of the 200 peaks were estimated from the Gaussian fitting 

[see Fig. 8.6]. The values of FWHM are also consistent with the scenario above. These results suggest 

that the structural transition can be completely suppressed at a concentration higher than x = 0.03 in 

LaO1₋xFxBiSSe. To analyze lattice constants a and b from the obtained data in Fig. 8.4, the 200 and 

020 peaks were fitted by one or two Gaussian functions. Two Gaussian functions were used for x = 0 

and 0.01, where clear structural transitions were observed. For x = 0.02 and 0.03, I analyzed the lattice 

constant with one Gaussian function. Figures 8.5(a) and (b) show the temperature dependence of the 

lattice constants a and b for x = 0 and 0.01. Indeed, the lattice constants a and b for x = 0 and 0.01 are 

split around Ts. For x = 0.02 and 0.03, the lattice constants linearly changed with decreasing 

temperature, which implies that the tetragonal structure may be dominant in this temperature regime. 

The trend that the structural transition from tetragonal to monoclinic is rapidly suppressed by slight F 

substitution in LaO1-xFxBiSSe is consistent with the theoretical study which proposed that the 

tetragonal structure is more stable than monoclinic in F-substituted LaOBiCh2 [38]. Due to the 

experimental limitation, we could scan the lattice constants on the temperature only at T > 100 K. 

Thus, I deduce that a structural transition below 100 K occurs for x = 0.02 from the suppression of 
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peak intensity. In contrast, because the peak intensity for x = 0.03 does not show a decrease down to 

100 K, I assume that the low-temperature structure for x = 0.03 may be tetragonal. At least, I speculate 

that higher F concentrations above x = 0.03 stabilize the tetragonal structure even at lower 

temperatures. However, this study is performed by the powder-XRD investigation, and it is difficult 

to analyze the higher-angle peaks, such as 400 and 600 peaks, since the intensity at higher angles is 

relatively weak, and these peaks are overlapped with others. We need to perform the crystal-structural 

analysis using single crystals to confirm such peak splittings in detail. A recent synchrotron XRD 

study using the single-crystal sample LaO0.5F0.5BiS2 found the presence of superlattice reflections 

below T ≈  260 K and suggested that it is related to the CDW formation [92]. Indeed, several 

theoretical calculations proposed that the one-dimensional nature of the Bi-6px/py orbitals exists even 

at the doping level of x = 0.5, which is related to the CDW formation by the FS nesting of the (𝜋, 𝜋) 

direction [88, 89]. However, the synchrotron XRD of Ref. 92 does not detect the distinct structural 

transition from the tetragonal to monoclinic symmetry for LaO0.5F0.5BiS2 down to 10 K. In contrast, 

the structural transition was clearly observed for the non-doped LaOBiS2 [36]. Therefore, the global 

crystal structure for optimally F-doped LaO0.5F0.5BiS2-ySey belongs to the tetragonal symmetry 

(P4/nmm, No. 129) at least, and there may be local monoclinic distortion, which might be related to 

CDW formation, even in the tetragonal structures for BiCh2-based compounds.  
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Fig. 8.4. Temperature evolutions of the 200 and 020 peaks of the synchrotron XRD patterns for (a) x 

= 0, (b) x = 0.01, (c) x = 0.02, and (d) x = 0.03 of LaO1₋xFxBiSSe. The wavelengths used in the scanning 

are indicated in the figures. 
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Fig. 8.5. Temperature dependence of the lattice constants a (red circles) and b (blue circles) for (a) x 

= 0, (b) x = 0.01, (c) x = 0.02, and (d) x = 0.03 in LaO1-xFxBiSSe. (e) F-concentration dependence of 

the lattice constant c at T = 300 K.  
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Fig. 8.6. Temperature evolution of full-width half maximum (FWHM) of the 200 peaks for (a) x = 0, 

(b) x = 0.01, (c) x = 0.02, and (d) x = 0.03 in LaO1₋xFxBiSSe. Yellow and Blue regions represent 

monoclinic and tetragonal phases, respectively. The analysis of FWHM was performed only in the 

tetragonal phase because it is difficult to estimate the FWHM of 200 and 020 peaks due to the 

overlapped peaks.  
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9. WAL states induced by Se substitution  

 

9.1. Previous results 

As introduced in Section 2, the superconducting properties have been intensively investigated in the 

BiCh2-based compounds. However, there is an unresolved problem in the normal-state-resistivity 

behavior. Previous experimental results for LaO0.5F0.5BiS2 showed a weak increase in resistivity, 

although superconductivity emerges at low temperatures [155]. The experimental results are 

inconsistent with the theoretical calculations since the Fermi level crosses the conduction band for the 

doping level x = 0.5, and thus metallic behavior should emerge [60, 159]. Furthermore, the shielding 

volume fraction estimated from magnetization measurements is less than 10%, which indicates that 

superconductivity in LaO0.5F0.5BiS2 is filamentary in nature [31, 33, 154]. Se substitution leads to the 

gradual suppression of the upward behavior in the resistivity, and heavily Se-doped LaO0.5F0.5BiSSe 

shows almost metallic behavior and bulk superconductivity (the shielding fraction is roughly 100%) 

[31, 154]. I will show the magnetization data in Section 9.4. The Se-substitution effect is considered 

to act as chemical pressure, which leads to the depression of the in-plane disorder [37, 54]. These 

results imply that a localization phenomenon is in play that can be suppressed by Se substitution. Sakai 

et al. suggested that similar localized states reported for Sr1-xLaxFBiS2, closely related to LaO1-xFxBiS2, 

may be due to Anderson localization [156]. If the states are related to Anderson localization, a negative 

MR is expected. However, MR data were not reported in the previous work. That justifies a systematic 

study to address the localization phenomena in BiCh2-based systems by means of magnetotransport.  

 

9.2. Electrical resistivity and Hall coefficient  

First, I show the electrical resistivity measurements for LaO1-xFxBiS2-ySey (x = 0.2 and 0.5, y = 0-

1.04). Figures 9.1(a) and (b) present the temperature dependence of the electrical resistivity in the ab-

plane 𝜌𝑎𝑏 for x = 0.2 and x = 0.5, respectively. For x = 0.2 [Fig. 9.1(a)], Se-free LaO0.8F0.2BiS2 (x = 

0.2, y = 0) exhibits insulating behavior in the entire temperature range. The insulating behavior is 

gradually suppressed with increasing Se concentration, and superconductivity is observed at low 

temperatures for y = 0.46, 0.72, and 0.94. However, a weak increase of 𝜌𝑎𝑏 in the low-temperature 

region is still seen for y = 0.46 and 0.72, while in the high-temperature region, metallic behavior is 

observed. When the Se-substitution level reaches y = 0.94, metallic behavior is found in the entire 

temperature range. The x = 0.5 samples [Fig. 9.1 (b)] show a trend similar to the x = 0.2 samples. 

However, there is a clear difference between the Se-free samples: LaO0.5F0.5BiS2 (x = 0.5, y = 0) shows 

a superconducting transition at T ≈ 2 K, while LaO0.8F0.2BiS2 (x = 0.2, y = 0) is insulating behavior in 

the entire temperature range down to 2 K. In addition, the absolute value of 𝜌𝑎𝑏 at low temperatures 

for LaO0.5F0.5BiS2 is much smaller than that of LaO0.8F0.2BiS2, despite the weakly insulating behavior 
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for LaO0.5F0.5BiS2. These results indicate that electron-carrier doping (F substitution) suppresses the 

insulating characteristics, but a F (electron-carrier-doped) content x = 0.2 is insufficient to completely 

suppress the insulating state. However, heavily Se-substituted LaO0.8F0.2BiS1.06Se0.94 (x = 0.2, y = 0.94) 

with the same nominal x = 0.2 shows metallic behavior and superconductivity. Moreover, theoretical 

calculations suggest that a doping level of x = 0.2 should be sufficient to make the BiCh2-based system 

metallic [60, 159]. The moderately Se-substituted samples (y = 0.46 and 0.72 with x = 0.2 and y = 0.39 

and 0.65 with x = 0.5) exhibit metallic behavior in the high-temperature region, but a weak increase 

in 𝜌𝑎𝑏  at low-temperatures. In other words, 𝜌𝑎𝑏  in the normal states increases with decreasing 

temperature below Tmin [see Figs. 9.1(a) and (b)]. Hence, I deduce that carrier localization occurs in 

these compositions. Thus, the LaO0.8F0.2BiS2 phase is not a conventional band insulator but an 

insulator caused by carrier localization. A similar localization state was observed for polycrystalline 

samples of Sr1-xLaxFBiS2, which compares well to our target material LaO1-xFxBiS2-ySey [156]. The 

authors of Ref. 156 suggested that the weak increase in 𝜌𝑎𝑏 is due to Anderson localization (WL). I 

will discuss this possibility with the MR results in Section 3.4. 

I performed Hall resistivity measurements to further investigate the physical properties in the normal 

states. Figures 9.1(c) and (d) show the temperature dependence of the Hall coefficient RH for x = 0.2 

and x = 0.5, respectively. As shown in the inset of Fig. 9.1(d), our experimental results show single-

band behavior, i.e., a linear function 𝜌𝐻 (𝐵), although multiband-like behavior [nonlinear 𝜌𝐻 (𝐵)] was 

reported for BiCh2-based compounds in previous studies [40, 86, 87]. Note that in the present work, I 

use single crystals, while in the previous experiments [40, 86, 87], the data were obtained on 

polycrystalline samples, which might cause some differences because there is large anisotropy 

between ab-plane and c-axis directions originating from the quasi-two-dimensional electronic state 

for BiCh2-based compounds [30, 31] and polycrystalline samples have the two contributions. I 

determined the Hall coefficient RH from the linear slope of RH (B). RH increases with decreasing 

temperature for x = 0.2 and 0.5. The increasing behavior is systematically depressed by increasing Se 

concentration, analogous to the 𝜌𝑎𝑏 (T) behavior in Figs. 9.1(a) and (b). For the x = 0.2 samples [Fig. 

9.1(c)], sign changes of RH from negative to positive are observed for y = 0, 0.24, 0.47, and 0.72. In 

contrast, a negative RH is kept until 5 K for heavily Se-substituted LaO0.8F0.2BiS0.95Se1.05 (x = 0.2, y = 

1.05), which indicates that electron-type carriers are dominant in the entire temperature region for this 

compound. For the x = 0.5 samples [Fig. 9.1(d)], the RH (T) curves are similar to those for x = 0.2. 

However, heavily Se-substituted LaO0.5F0.5BiS1.09Se0.91 (x = 0.5, y = 0.91) shows a positive RH 

throughout the entire temperature region, implying that hole-type carriers are predominant for that 

compound. According to the theoretical calculations for the FS topology of the BiCh2-based system, 

the electron pockets around the X points exist up to x ≈ 0.45, and hole pockets around the Γ and M 

points emerge above x > 0.45 [70, 71]. Therefore, the negative RH (electron-type carriers) for 

LaO0.8F0.2BiS0.95Se1.05 and the positive RH (hole-type carriers) for x = 0.5 in the low-temperature region 
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are in line with the theoretical work. However, the sign changes and the hole-type carriers at low 

temperatures observed for y = 0–0.72 in x = 0.2 are inconsistent with the theoretical expectations. A 

similar sign-change behavior of RH was observed in polycrystalline EuFBiS2, suggesting that CDW 

formation is related to the sign change [93]. In our experiments, the sign changes in RH are observed, 

concomitant with the upward behavior of 𝜌𝑎𝑏 (𝑇), which is incompatible with a conventional CDW 

scenario by FS nesting. However, the nonmetallic behavior probably does not originate from a 

conventional band insulator since superconductivity is observed even when 𝜌𝑎𝑏 (𝑇) increases at low 

temperatures. In addition, a recent synchrotron radiation XRD study found the appearance of the 

superlattice reflections in a single-crystal sample of LaO0.5F0.5BiS2 below T ≈ 260 K and suggested 

that it is related to the CDW formation [92]. Moreover, the electrical resistivity of LaO0.5F0.5BiS2 

increases with decreasing temperature below T ≈ 260 K [92]. I define similar temperatures as Tmin in 

this study [see Figs. 9.1(a) and (b)]. Besides, there are several theoretical papers in which a CDW for 

the BiCh2-based compounds is suggested [88, 89]. Thus, the sign changes in RH for our crystals may 

relate to the CDW formation. Moreover, the sign-change temperature T* progressively decreases, and 

the values of the positive RH in the low-temperature regions are also systematically depressed with 

increasing Se concentration. Therefore, together with the results of the 𝜌𝑎𝑏 (𝑇) measurements, I 

speculate that the RH data in the Se-free and moderately Se-substituted compounds with x = 0.2 point 

to carrier localization and that this may be linked to the CDW. For x = 0.5, the sign-change behavior 

is observed only for y = 0.19. Observing the sign change in the x = 0.5 case may be challenging since 

the hole-type carriers are basically predominant in the carrier-doping level. Alternatively, the 

temperature dependence of the Hall coefficients for x = 0.5 has almost the same tendency with 

increasing Se concentration as x = 0.2. Therefore, also considering that the possible CDW formation 

was observed for the x = 0.5 sample LaO0.5F0.5BiS2 by the synchrotron XRD [92], I expect that the 

CDW might be present in the x = 0.5 samples as well. The carrier density n at low temperatures, 

estimated from n = 1/|RHe|, changes from the order of 1019 cm-3 to 1021 cm-3 by Se substitution in x = 

0.2 and from the order of 1019 cm-3 to 1020 cm-3 in x = 0.5. 
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Fig. 9.1. (a,b) Temperature dependence of the electrical resistivity in the ab-plane, ab, for (a) x = 0.2 

(circles) and (b) x = 0.5 (squares), respectively. Different colors refer to the actual Se concentration, 

estimated from EDX. The arrows in (a) and (b) show Tmin, where the normal-state resistivity above T 

= 5 K has a minimum. The insets in (a) and (b) represent the enlarged ab (T) curves around the 

superconducting transition. The superconducting transition temperature Tc is defined as the zero-

resistivity temperature. (c,d) Temperature dependence of the Hall coefficient RH for (c) x = 0.2 (circles) 

and (d) x = 0.5 (squares), respectively. The inset of (c) expresses the enlarged RH (T) around the sign 

change. The arrows in the inset of (c) denote the sign-change temperature of the Hall coefficient. The 

inset of (d) shows the Hall resistivity H as a function of the magnetic field at T = 5 K for 

LaO0.5F0.5BiS1.81Se0.19 (open blue squares), LaO0.5F0.5BiS1.09Se0.91 (open purple squares), 

LaO0.8F0.2BiS1.28Se0.72 (open red circles), and LaO0.8F0.2BiS0.95Se1.05 (open orange circles). Note that we plot 

the x = 0.2 data to compare with x = 0.5, although figure (e) represents the Hall coefficient for x = 

0.5.    

 

 

 

 



56 

 

9.3. Magnetization measurements 

Next, I measured magnetization to estimate the shielding volume fractions for the LaO1-xFxBiS2-ySey 

samples. The magnetization measurements were performed by the Superconducting Quantum 

Interference Device (SQUID) magnetometer (MPMS 3, Quantum Design). Figures 9.2(a) and (b) 

show the temperature dependence of the magnetic susceptibility under H = 1 Oe for x = 0.2 and 0.5, 

respectively. The demagnetization factor N is large in this study since our single crystals have plate-

like shapes, and the applied magnetic field is parallel to the c axis (perpendicular to the plate surface) 

[160, 161]. Thus, we corrected the diamagnetic signal by considering the demagnetization effect, and 

the estimated N is displayed in Table 9.1. The observed Tc is almost consistent with the resistivity 

measurements [see Figs. 9.1(a) and (b)]. The shielding fraction after demagnetization correction 

increase with increasing Se concentration [see Fig. 9.2(c)], which is comparable to the results obtained 

on polycrystals [154]. The magnetic susceptibility for LaO0.8F0.2BiS1.28Se0.72, LaO0.5F0.5BiS1.35Se0.65, 

and LaO0.5F0.5BiS1.06Se0.94 slightly exceeds the perfect diamagnetism (4𝜋𝜒 = −1) probably because 

of the existence of tiny single crystals on the primary single-crystalline sample. These results 

demonstrate that the Se substitution is essential for bulk superconductivity to emerge, which may 

support the scenario that the Se substitution suppresses localization (see Sections 9.2 and 9.4). 

 

 

Fig. 9.2. Temperature dependence of the magnetic susceptibility after demagnetization correction for 

(a) x = 0.2 and (b) x = 0.5, respectively. The applied magnetic field is parallel to the c axis. Color 

difference denotes the actual Se concentration estimated from EDX. The insets of (a) and (b) show 

enlarged magnetic-susceptibility curves around the superconducting transition. (c) Magnetic 

susceptibility under the zero-field cooling at T = 1.8 K as a function of the Se concentration y for x = 

0.2 (red circles) and x = 0.5 (blue squares).  
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Table 9.1. Tc, sample size, demagnetization factor N, and magnetic susceptibility of LaO1-xFxBiS2-ySey. 

The Se concentration is estimated from the EDX.   

 

 

9.4. Magnetoresistance (MR) 

To further investigate the localization behavior deduced from 𝜌𝑎𝑏 (𝑇) and RH (T), we performed MR 

measurements. If Anderson localization (WL) is realized in the BiCh2-based systems, as suggested in 

a previous study [156], a negative MR should be observed in the localization regime [122, 123].  

Figures 9.3(a)–(h) show the MR defined as MR =  [𝜌𝑎𝑏(𝐵) – 𝜌𝑎𝑏  (0)]/𝜌𝑎𝑏(0) ×  100%  as a 

function of magnetic field for y = 0 and 1.05 with x = 0.2, and y = 0 and 0.91 with x = 0.5, at T = 5 K 

and 7.5 K, respectively. The observed MR is clearly different from the negative MR expected from 

the Anderson localization (WL) scenario. The MR curves for the heavily Se-substituted compounds 

in x = 0.2 and 0.5 show sharp cusps in the low magnetic field at T = 5 K. The sharp dip of the MR in 

the low field is a characteristic feature of WAL, which has been observed in various materials with 

strong SOC (or spin-orbit scattering by strong spin-orbit coupled impurity) [119 and Chapter 4]. 

Indeed, the coefficient of determination R2 for the quadratic fitting (classical MR) is relatively not 

good for the heavily Se-substituted samples. We display the results of the quadratic fittings in Table 

9.2. That is consistent with the previous ARPES observation that SOC gives a pronounced effect on 

the band structure of La(O,F)BiS2 [73]. The low-field MR curves for heavily F-doped and Se-free 

LaO0.5F0.5BiS2 become broad and close to classical quadratic-field dependence. Moderately F-doped 

and Se-free LaO0.8F0.2BiS2 exhibit an almost flat MR in low fields, which implies that a WAL-WL 
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crossover takes place. At T = 7.5 K, the WAL for the heavily Se-substituted samples with x = 0.2 and 

0.5 is weakened. The MR curves for moderately Se-substituted LaO0.5F0.5BiS1.35Se0.65 (x = 0.5, y = 

0.65) and LaO0.8F0.2BiS1.28Se0.72 (x = 0.2, y = 0.72) are displayed in Fig. 9.3 (a)–(h) as well. The MR 

behavior is probably positioned at the intermediate states of the Se-free and heavily Se-substituted 

samples, while there is uncertainty in both x = 0.2 and 0.5. However, the next magnetoconductance 

data, which are usually used to discuss the WAL and WL, clarify that the moderately Se-doped 

samples are in the intermediate states (I call weak WAL states in this study). To clearly exhibit the 

WAL, I correct the MR to the magnetoconductance Δ𝐺  (MC) defined as the Δ𝐺 (𝐵) =  𝐺 (𝐵) −

𝐺 (0). Figures 9.3(j)–(m) show the low-field MC as a function of the magnetic field at T = 5 K [Figs. 

9.3(i) and (j)] and 7.5 K [Figs. 9.3(k) and (l)]. I show positive-field regions to analyze the MC data. I 

have analyzed the low-temperature data only at T = 5.0 K and 7.5 K since the low-filed MR at higher-

temperature regions becomes broad and close to flat on the magnetic fields for all samples [see Fig. 

9.4]. Basically, the 2D MC of the WAL contribution is described by the Hikami-Larkin-Nagaoka 

(HLN) formula [124]. To quantitatively analyze the MC curves and compare them with previous 

studies of WAL, I fit the data with the 2D HLN formula (Eq. 4.3). The solid lines in Figs. 9.3(i)–(l) 

represent the HLN fitting. The HLN model can fit the MC data well except for LaO0.8F0.2BiS2 at T = 

7.5 K [red solid line in Fig. 9.3(k)]. The coefficient of determination R2 for this compound is less than 

80% despite over 95% for the others [see Table. 9.3]. That is probably due to the WAL-WL crossover 

state. The obtained values of 𝛼 and 𝑙𝜙 are displayed in Figs. 9.7(c), (d), and Table 9.3. The magnitudes 

of 𝛼 are in the order of 104, except for LaO0.8F0.2BiS2, which is much larger than reported for 2D 

compounds [126–128]. Such tremendous values of 𝛼 have been observed in 3D bulk systems and are 

considered to derive from the 3D bulk contribution (a large number of conducting channels) [138, 

162–164]. Thus, I speculate that the large values of 𝛼 in our systems are due to the 3D bulk nature of 

the single crystals. In this study, we use the HLN model only to quantitatively investigate the change 

of the MC behavior by the elemental-substitution effect. The obtained 𝑙𝜙 is comparable to the values 

found in previous studies for both 2D and 3D bulk compounds [126–128, 138, 162–164]. The absolute 

values of 𝛼 and 𝑙𝜙 systematically increase with increasing Se concentration [see Figs. 9.7(c) and (d)], 

which indicates that the WAL behavior emerges by Se substitution. Furthermore, the order of 𝛼 for 

LaO0.8F0.2BiS2 is 104 times smaller than in the other samples [see Table 9.3], which implies that this 

compound is in the WAL-WL crossover states. A similar evolution of 𝛼 by doping was observed for 

Bi2-xCrxSe3, and the sign-change behavior of 𝛼 from negative to positive was regarded as the crossover 

from WAL to WL [126]. I also performed the HLN fitting for lower-field (up to B = 0.2 T) MC data 

(see Fig. 9.5 and Table 9.4). The change of 𝛼 and 𝑙𝜙 by Se substitution is the same tendency as the 

HLN fitting up to B = 1 T in Figs. 9.3(i)–(l). Thus, I expect that the change from the WAL to weak 

WAL (almost quadratic MR) and WAL-WL crossover can be controlled by the elemental substitution 

of F and Se in the BiCh2-based system and that the localization states observed in 𝜌𝑎𝑏 (𝑇) and RH (T) 
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[Figs. 9.1(a)–(d)] can be associated with the MC behavior. 

 

 

Fig. 9.3. (a) MR for y = 0 (red circles), y = 0.72 (green circles), y = 1.05 (blue circles) with x = 0.2 at 

T = 5 K. (b) The enlarged MR curves in the low-field region at T = 5.0 K. (c) and (d) show the MR for 

x = 0.2 at T = 7.5 K. (e–h) MR data for x = 0.5. Dotted lines in (b), (d), (f), and (h) show the quadratic 

in B fits. (i–l) MC at T = 5 K for (i) x = 2 (open circles) and (j) x = 0.5 (open squares), respectively. 

Solid lines represent the fits with the HLN model (Eq. 4.3). (k) and (l) express the MC at T = 7.5 K. 

The color variation expresses the actual Se concentration as listed, estimated from the EDX results.  
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Fig. 9.4. MR at various temperatures for (a) LaO0.8F0.2BiS2, (b) LaO0.8F0.2BiS1.28Se0.72, (c) 

LaO0.8F0.2BiS0.95Se1.05, (d) LaO0.5F0.5BiS2, (e) LaO0.5F0.5BiS1.35Se0.65, and (f) LaO0.5F0.5BiS1.09Se0.91 

from T = 50 K to 5 K.  The Se concentration is estimated from the EDX.  
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Fig.9.5. MC up to B = 0.2 T at T = 5 K for (a) x = 0.2 (open circles) and (b) x = 0.5 (open squares), 

respectively. Solid lines represent the fits with the HLN model (Eq. 4.3 in the main text). (c) and (d) 

express the MC at T = 7.5 K. The color variation expresses the actual Se concentration as listed, 

estimated from the EDX results.  
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Table 9.2. Coefficient A and coefficient of determination R2 for the quadratic fitting (MR = AB2) for 

LaO1-xFxBiS2-ySey at T = 5 K and 7.5 K. The Se concentration is estimated from the EDX. 

 

 

Table 9.3. HLN parameters 𝛼 and phase coherence length 𝑙𝜙 and coefficient of determination R2 in the 

HLN fitting for LaO1-xFxBiS2-ySey at T = 5 K and 7.5 K up to B = 1 T. The Se concentration is estimated 

from the EDX.  
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Table 9.4. HLN parameters 𝛼 and phase coherence length  𝑙𝜙 and coefficient of determination R2 for 

the HLN fitting for LaO1-xFxBiS2-ySey at T = 5 K and 7.5 K up to B = 0.2 T. The Se concentration is 

estimated from the EDX. 

 

 

9.5. Electronic band structure 

I have analyzed the data with the HLN model, but a recent theoretical calculation about the WAL 

may be useful for our experimental results. The theoretical work which considered the strong SOC in 

the atoms that constitute the lattice (denoted as SOC lattice in Ref. 165) suggested that the WAL-WL 

crossover is realized by adjusting the ratio of the Fermi energy EF to the band gap Eg [165]. In the 

BiCh2-based system, several electronic-band calculations suggest that Eg decreases by Se substitution 

[35, 166]. Since the F substitution causes electron-carrier doping, the elemental-substitution effect of 

Se and F leads to controlling EF and Eg in the BiCh2-based system, which may contribute to the change 

of the MC. Moreover, the predicted G (B) for the Bi1-xSbx alloy [165], in which EF of semi-metallic Bi 

can be changed by Sb substitution, is similar to the observed MC [Figs. 9.3(j)–(m)].To confirm the 

scenario on the changes of the MC behavior by controlling EF and Eg by Se substitution, we investigate 

the electronic band structures. Figures 9.6(a) and (b) exhibit the calculated electronic band structures 

for Se-free LaO0.5F0.5BiS2 and heavily Se-substituted LaO0.5F0.5BiSSe. The band gap at the X point 

clearly decreases with Se substitution. Moreover, Figs. 9.6(c) and (d) show the ARPES spectra for our 

single crystals of Se-free LaO0.5F0.5BiS2 and heavily Se-substituted LaO0.5F0.5BiSSe. The observed 

band gap values at the X point were estimated to be 0.875 eV for Se-free LaO0.5F0.5BiS2 and 0.715 eV 

for heavily Se-substituted LaO0.5F0.5BiSSe. The tendency of the band gap change observed in ARPES 

is consistent with the theoretical calculations. In addition, the spectral intensity at EF of Se-free 

LaO0.5F0.5BiS2 is strongly reduced compared to that of heavily Se-substituted LaO0.5F0.5BiSSe [see 

Fig. 9.6(e)], which is consistent with the localized and non-localized nature of the samples. Thus, the 
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electronic band structures from the theoretical calculations and ARPES support the results of the 

transport properties.  

 

 

Fig. 9.6. Electronic band structures. (a,b) Calculated band structures of  (a) LaO0.5F0.5BiS2 (x = 0.5, y = 

0) and (b) LaO0.5F0.5BiSSe (x = 0.5, y = 1). (c,d) ARPES spectra for the single crystals of (c) 

LaO0.5F0.5BiS2 (x = 0.5, y = 0) and (d) LaO0.5F0.5BiSSe (x = 0.5, y = 1). (e) Comparison of the k-integrated 

spectra near EF for the electron pocket at X between LaO0.5F0.5BiS2, LaO0.5F0.5BiS1.5Se0.5, and 

LaO0.5F0.5BiSSe. The Se concentration for the ARPES results is given by its nominal value. The inset 

of (e) shows an expanded view of the EF region. The spectra were normalized by area after subtracting 

the Shirley background [167, 168].  
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9.6. Clear maximum of MR  

Next, I discuss an apparent maximum of the MR for moderately F-doped and Se-free LaO0.8F0.2BiS2. 

The theoretical calculation suggested that there is no minimum of Δ𝐺 (B) (no maximum of the MR) 

as a function of the field in the SOC lattice, while a clear minimum of the Δ𝐺 (B) (maximum of the 

MR) is observed in conventional HLN theory, which considers a 2D system with strong spin-orbit 

coupled impurities (disordered 2D system) [165]. I have not found any specific impurities in my single 

crystal samples (I confirmed that the actual atomic ratios are almost consistent with the nominal values, 

although I cannot wholly determine that there are no impurities). However, moderately F-doped and 

Se-free LaO0.8F0.2BiS2 probably have a disorder originating from local crystal distortions caused by 

structural instability due to the presence of Bi lone pairs [31]. The crystal structure of the parent 

compound has a monoclinic symmetry (P21/m, No. 11) [36, 37], and the tetragonal structure (P4/nmm, 

No.129) is gradually stabilized by the F substitution (electron-carrier doping) [38, 39, and Chapter 8]. 

Moreover, the Se-substitution effect causes the depression of the local disorder in the BiCh1 plane 

[37, 54]. Thus, moderately F-doped and Se-free LaO0.8F0.2BiS2 still have local distortions, which may 

lead to the clear maximum of the MR. Furthermore, the temperature dependence of the resistivity for 

LaO0.8F0.2BiS2 follows variable range hopping (VRH) in a relatively wide temperature region (see Fig. 

16.4), which indicates the presence of disorder. On the basis of the discussion here, I propose that the 

BiCh2-based LaO1-xFxBiS2-ySey compounds provide a new platform where the WAL states may be 

realized when the structural disorder is removed by Se substitution [the behavior of VRH is also 

suppressed by Se substitution (see Fig. 16.4)].  

 

9.7. Electronic phase diagram 

In Figs. 9.7(a) and (b), I summarize the electronic phases of LaO0.8F0.2BiS2-ySey and LaO0.5F0.5BiS2-

ySey as functions of y and temperature. For x = 0.2 [Fig. 9.7(a)], the 𝜌𝑎𝑏(𝑇)  behavior for y = 0 

demonstrates an insulating behavior in the entire temperature region [blue region in Fig. 9.7(a)]. The 

insulating behavior is gradually suppressed with increasing Se concentration, and superconductivity 

emerges for y = 0.46, 0.72, and 0.94, although the weak increase in 𝜌𝑎𝑏(𝑇) is still observed for y = 

0.46 and 0.72 (denoted as Weakly insulating in Fig. 9.7). There is no strong correlation between y and 

Tc in x = 0.2. When the Se-substitution level reaches y = 0.94, the 𝜌𝑎𝑏(𝑇) curve exhibits the metallic 

behavior in the whole-temperature region (yellow regions in Fig. 9.7). The Tmin and T* (the definition 

is described in the caption of Fig. 9.7) progressively decline with increasing Se concentration, and the 

sign change disappears for y = 1.05, which indicates that the Se substitution suppresses the localization 

state. The normalized resistivity 𝜌𝑎𝑏 (5 K)/ 𝜌𝑎𝑏 (295 K) and the Hall coefficients at T = 5 K and 100 

K systematically decrease with increasing Se concentration, as shown in Figs. 9.7(c) and (d). The 

magnitude of 𝛼 and 𝑙𝜙 in the HLN model increases with increasing Se concentration, which implies 
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that the WAL state emerges for y = 1.05 [denoted as WAL in Fig. 9.7(a) because of the largest 𝛼 in the 

x = 0.2 samples], and it is weakened for y = 0.72 [denoted as Weak WAL in Fig. 9.7(a) because of the 

intermediate value of 𝛼 between y = 0 and 1.05]. Furthermore, the absolute value of  for Se-free 

LaO0.8F0.2BiS2 is much smaller than the others, indicating that the crossover state is realized. The 

electronic phase diagram for x = 0.5 [Fig. 9.7(b)] is similar to the one for x = 0.2; however, y = 0 in 

the x = 0.5 case presents superconductivity at T ≈ 2 K, although 𝜌𝑎𝑏 (T) exhibits a weakly insulating 

behavior. The largest absolute values of 𝛼 and 𝑙𝜙 for y = 0.91 in the x = 0.5 samples imply the WAL 

characteristics [see Fig. 9.7(d)]. The WAL is diminished for LaO0.5F0.5BiS1.35Se0.65 and LaO0.5F0.5BiS2 

[denoted as Weak WAL in Fig. 4(b) because of the intermediate values of  between LaO0.8F0.2BiS2 

and heavily Se-substituted samples]. Therefore, the change of the MC behavior by the F and Se 

substitution is associated with the 𝜌𝑎𝑏  (T) behavior for both x = 0.2 and 0.5. The Tc for x = 0.5 

monotonically increases with increasing Se concentration, which is different from the x = 0.2 case. 

The distinct behavior may originate from the FS topology since theoretical studies propose that the 

superconducting gap structure and the Tc change with the transition from the electron-pocket FSs (x < 

0.45) around the X points to hole-pocket FSs (x > 0.45) around the  and M points [72]. The 

localization state [blue regions and green regions in Figs. 9.7(a) and (b)] may relate to the CDW as 

discussed in Section 9.2, although I cannot completely determine the transition temperature of the 

CDW formation. However, I believe that the Tmin or T* may be related to the CDW formation because 

synchrotron XRD observed superlattice reflections below a similar temperature to the Tmin in the 

previous study [92].  

In conclusion, I have investigated the transport properties of the BiCh2-based system LaO1-xFxBiS2-

ySey (x = 0.2 and 0.5, y = 0–1.05). The 𝜌𝑎𝑏 (T) behavior and RH (T) suggest the existence of unique 

localization states. The localization behavior is systematically depressed with increasing Se 

concentration. MR measurements indicate that WAL is realized in the heavily Se-substituted systems. 

The WAL behavior is weakened by the changes in F and Se concentrations. A crossover state of WAL 

and WL may emerge around moderately F-doped and Se-free LaO0.8F0.2BiS2. The change of the MC 

behavior by the F and Se substitution clearly correlates with the results of 𝜌𝑎𝑏  (T) and RH (T). 

Moreover, the localization regions are possibly associated with the CDW. Based on the results shown 

here, I propose that the BiCh2-based system is an excellent platform to study unique localization states, 

electronic ordering, and superconductivity by using the elemental substitution with bulk single crystals.  
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Fig. 9.7. Electronic phase diagrams for (a) x = 0.2 and (b) x = 0.5. Tmin (filled red circles) represents 

the temperature at which the ab(T) above T = 5 K (in the normal states) has a minimum. T* (open blue 

circles) and Tc (filled orange circles) exhibit the sign-change temperature in the Hall coefficient and 

superconducting transition temperature (zero resistivity). T* for x = 0.5 is not displayed in Fig. 9.5(b) 

since the sign change is only observed for y = 0.19. Blue, green, yellow, and orange regions express 

the insulating, weakly insulating, metallic, and superconducting (denoted as SC) states, respectively. 

We depict the WAL-WL crossover, Weak WAL, and WAL in (a) and (b) by referring to the results of 

the MC. (c,d) Se concentration y dependence of the ab (5 K)/ab (295 K), Hall coefficients at T = 5 K 
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(red) and 100 K (blue), and  and l [the inset in (c) and (d)] in the HLN model (Eq. 4.3) at T = 5 K 

(red) and 7.5 K (green) for (c) x = 0.2 (circles) and (d) x = 0.5 (squares), respectively.  
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10. Extremely high upper critical field  

 

10.1. Local inversion symmetry breaking in the BiCh2 layer  

The F-doped (electron-carrier-doped) BiCh2-based superconductor possesses a centrosymmetric 

crystal structure of tetragonal P4/nmm (No. 129, D4h), as introduced in Chapter 8, while the BiCh2 

layer lacks the inversion symmetry with the C4v site point group of Bi and Ch sites. Theoretical studies 

predicted that hidden spin polarization by local RSOI should exist in the REOBiCh2 system [152, 166]. 

The spin polarization attributed to the local inversion symmetry breaking in the BiCh2 layer was 

observed by spin-ARPES (SARPES) for LaO0.55F0.45BiS2 [153]. Especially it has been suggested that 

the Rashba-type spin polarization is realized near the Fermi level. Furthermore, the observed in-plane 

Bc2 for LaO0.5F0.5BiS2 largely exceeds the Pauli limit, which may imply that the local inversion 

asymmetry, i.e., the RSOI, can play a significant role in superconductivity [155]. The orbital pair-

breaking effect can be suppressed in the magnetic field parallel to the ab-plane under the layered 

system and the quasi-2D electronic states (see Chapter 3). However, research focused on local 

inversion asymmetry has not been extensively developed in BiCh2-based compounds. That justifies a 

study to address the influence of the local inversion asymmetry in BiCh2-based systems on the 

superconducting nature by investigating the upper critical fields. In the BiCh2-based superconductors, 

I selected LaO0.5F0.5BiS2-ySey (y = 0.22 and 0.69) as the target materials to purely investigate the 

superconducting properties because the compounds do not contain f-electron elements in the REO 

blocking layer. Figure 10.1 shows the crystal structure of the target system LaO0.5F0.5BiS2-ySey (y = 

0.22 and 0.69), which has a layered structure composed of the LaO blocking layers and BiCh2 

conducting layers. Although the crystal structure possesses global inversion symmetry (the symbol 

indicated with P in Fig. 10.1 shows the global inversion center), the inversion symmetry is locally 

broken in each BiCh2 layer (dashed rectangles show each BiCh2 layer in Fig. 10.1). A partial Se 

substitution for the in-plane S site (Ch1 site) leads to the enhancement of the bulk nature of 

superconductivity [154 and Chapter 9], and a specific heat jump is clearly observed [65]. The in-plane 

chemical pressure effect and carrier concentration have been revealed to be essential for the emergence 

of bulk superconductivity in the REOBiCh2 system [31 and Chapter 2]. The Se concentration y was 

estimated using EDX. The actual atomic ratio is almost consistent with the nominal value. I have 

investigated upper critical fields for the compounds by the resistivity measurements under magnetic 

fields.  
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Fig. 10.1. Two BiCh2 layers and LaO blocking layer. The inversion symmetry is locally broken in 

each BiCh2 layer. The symbol P in the LaO blocking layer denotes the global inversion center for the 

LaO0.5F0.5BiS2-ySey system. The thicknesses of the BiCh2 and blocking layers were evaluated as the 

length between the centers of the two atomics by structural analysis of powder X-ray diffraction. 

 

10.2. Temperature dependence of the ab-plane resistivity under 

magnetic fields  

The resistivity measurements in a static field up to 9 T and 2 K were performed using a PPMS with 

a horizontal rotator probe. Pulsed magnetic field measurements were performed at the Institute for 

Solid State Physics (ISSP) at the University of Tokyo. Figure 10.2 shows the temperature dependence 

of the in-plane resistivity 𝜌𝑎𝑏 at a field strength of the zero field for LaO0.5F0.5BiS2-ySey (y = 0.22 and 

0.69). The Tc defined as the midpoint (zero resistivity) of the transition is 3.18 K (3.0 K) and 4.18 K 

(3.95 K) for y = 0.22 and y = 0.69 to compare the data with the magnetic field. The higher Se 

concentration causes higher Tc in the carrier-doping level of x = 0.5 (see Chapter 9). A weak increase 

in the resistivity was observed in low-temperature regions. The Se substitution suppresses the weak 

increase. The reason for the weak increase and the suppression by the Se substitution is discussed in 

Chapter 9 in detail. 

Figures 10.3(a) and (b) show the temperature dependence of the in-plane resistivity 𝜌𝑎𝑏 for y = 0.22 

at various fields parallel to the ab plane and c axis. The applied electric current was perpendicular to 

the magnetic field in B || c and parallel in B || ab. In the case of B || c, the superconducting states are 

immediately suppressed by the applied field. In contrast, in the case of B || ab, the superconductivity 

is robust against the applied field. Figures 10.3(c) and (d) exhibit the field dependence of the 𝜌𝑎𝑏 for 

y = 0.22 from 3.0 to 2.0 K with B || ab and B || c. The 𝜌𝑎𝑏  (𝐵) data [Figs. 10.3(c) and (d)] show a trend 

similar to 𝜌𝑎𝑏 (𝑇). Figures 10.3(e)–(h) show the y = 0.69 data. The behaviors of both 𝜌𝑎𝑏 (𝑇) and 

𝜌𝑎𝑏 (𝐵) are similar to that of y = 0.22. For y = 0.69 with B || ab, zero resistivity is retained up to 9 T 
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for temperatures below 2.6 K. The temperature and field dependencies of 𝜌𝑎𝑏  show a sizeable 

anisotropic factor 𝛾SC  =  𝐵𝑐2
𝑎𝑏/𝐵𝑐2

𝑐   [see Figs. 10.8(c) and (d)], indicating that the superconductors 

have strong anisotropic (quasi-2D) superconducting characteristics [44, 45]. The upper critical fields 

were estimated from the midpoint of the resistive transition of the 𝜌𝑎𝑏 (𝐵) data; a similar criterion has 

been used in several studies [101, 102, 108, 109, 155]. Moreover, I plotted the Bc2 defined as the 

beginning of the resistive increase from zero resistivity (zero-resistivity criteria) of the 𝜌𝑎𝑏 (𝐵) data 

and from the 𝜌𝑎𝑏 (𝑇) data, in Figs. 10.5(c)–(f). The Bc2 (T) behavior estimated from the 𝜌𝑎𝑏  (𝑇) 

curves [Figs. 10.5(e) and (f)] almost consistent with the values from 𝜌𝑎𝑏  (𝐵) data.  

To investigate the in-plane Bc2 variation at higher fields, we measured the field dependence of 𝜌𝑎𝑏 

for y = 0.22 and 0.69 based on the use of pulsed high fields up to 55 T. Figures 10.4(a) and (b) show 

the 𝜌𝑎𝑏 (𝐵) data acquired by the pulsed fields parallel to the ab plane from 4.2 K to ~0.47 K for y = 

0.22 and 0.69, respectively. Notably, the superconducting states are not completely destroyed up to 55 

T at ~ 0.47 K for both y = 0.22 and 0.69. Moreover, for y = 0.69, the superconducting states survive at 

the highest field of 55 T, even at 1.39 K. The gradient of the 𝜌𝑎𝑏 (𝐵) curves from zero resistivity to 

the normal state became smaller in the low-temperature and high-field regions for both samples. I 

define the normal state resistivity 𝜌𝑛 as the black dashed lines in Figs. 10.4(a) and (b) because it is not 

primarily changed by the scanning field. Thus, the magnitude of Bc2 was estimated from the midpoint 

of zero resistivity and 𝜌𝑛. I also plotted the Bc2 defined as the beginning of the resistive increase from 

zero resistivity (zero-resistivity criteria) of the 𝜌𝑎𝑏 (𝐵) curves by the pulsed field [see Figs. 10.5 (c) 

and (d)]. 

 

 

Fig. 10.2. Temperature dependence of the resistivity in the absence of a magnetic field for (a) y = 0.22 

and (b) y = 0.69. The insets show the enlarged resistivity curves near the superconducting transition. 

The superconducting transition temperature, Tc, is defined as the midpoint (zero resistivity) of the 
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resistive transition and was observed at Tc = 3.18 K (3.0 K) and 4.08 K (3.95 K). 

 

 

Fig. 10.3. In-plane resistivity ab for x = 0.22 and 0.69 in magnetic fields. (a,b) Temperature 

dependence of the in-plane resistivity ab in magnetic fields for y = 0.22 in (a) 𝐵 ∥ 𝑎𝑏 and (b) 𝐵 ∥ 𝑐. 

The arrows denote the direction from low to high fields. (c,d) Field dependence of the ab at different 

temperatures for y = 0.22 in (c) 𝐵 ∥ 𝑎𝑏 and (d) 𝐵 ∥ 𝑐. The arrows denote the direction from low to 

high temperatures. (e–h) ab (T) in (e) 𝐵 ∥ 𝑎𝑏 and (f) 𝐵 ∥ 𝑐, and (g) ab (B) in 𝐵 ∥ 𝑎𝑏 and (h) 𝐵 ∥ 𝑐  for 

y = 0.69. 

 

 

Fig. 10.4. Field dependence of the resistivity by pulsed magnetic fields. (a,b) Field dependence of the 

in-plane resistivity in 𝐵 ∥ 𝑎𝑏 for (a) y = 0.22 and (b) 0.69. The n (black dashed lines) denotes normal 

resistivity in the pulsed-field measurement. The insets show magnified views of the 𝜌𝑎𝑏 (𝐵) curves at 
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T ~ 0.47 K near n. B* is defined as the intersection of the extrapolation of the 𝜌𝑎𝑏  (𝐵) curves and the 

n. 

10.3. Temperature dependence of the upper critical fields 

I summarize the in-plane 𝐵𝑐2
∥  (𝑇) obtained by the static fields (Fig. 10.3) and pulsed fields (Fig. 10.4) 

for y = 0.22 and 0.69 in Figs. 10.5(a)–(d). Figures 10.5(a) and (b) show the midpoint criteria, and 

Figures 10.5(c) and (d) show the zero-resistivity criteria. The pulsed-field data are not so contradictory 

to the static-field data because we used the same single crystal samples. Note that there is uncertainty 

in the field directions in the pulsed-field measurements to deviate slightly from the ab plane because 

we could not use a rotator system in the setup; therefore, we added the error bar to the blue circles in 

Figs. 10.5(a)–(d). The upturn of 𝐵𝑐2
∥  at the low-temperature regions indicates that 𝐵𝑐2

∥  (0) probably 

exceeds our minimum temperature value (T ≈ 0.47 K). Put differently, 𝐵𝑐2
∥  (𝑇) is not saturated even 

at T ≈ 0.47 K.  

There are two distinct origins of upper critical fields, as explained in Chapter 3. I first describe the 

orbital pair-breaking effect. The orbital limit 𝐵𝑜𝑟𝑏 (0) is estimated to be 9.9 T and 0.34 T within the 

in-plane and out-of-plane direction for y = 0.22, and 17.7 T and 0.63 T within the in-plane and out-of-

plane direction for y = 0.69 from the initial slope of Bc2 at Tc (initial 6 points) based on the relation Eq. 

3.5 with A = 0.69 in the dirty limit [97, 98]. The slopes are summarized in Table 10.3. Note that the 

upturn behavior of 𝐵𝑐2
∥  (𝑇) near Tc is not suitable for the WHH model in nature [155]. I will discuss 

the upturn in Section 10.6 in detail. I describe the WHH curves [dashed lines in Figs. 10.5(a)–(d)]. 

The observed 𝐵𝑐2
∥  clearly exceeds the in-plane orbital limit, and the WHH curves are not suitable for 

𝐵𝑐2
∥  at y = 0.22 and 0.69. The out-of-plane upper critical fields 𝐵𝑐2

⊥  (𝑇) data are relatively well-fitted 

by WHH curves, as shown in Fig. 10.6. The black and blue dotted curves in Fig. 10.6 express WHH 

curves from the slopes of the initial 6 points and all points, respectively. The blue curves are almost 

comparable to the 𝐵𝑐2
⊥  (𝑇) data for y = 0.22 in both midpoint and zero-resistivity criteria, while the 

experimental results for y = 0.69 slightly deviate from the WHH curves. Such deviation along the out-

of-plane field direction was observed in previous work [155].  

For the paramagnetic-pair breaking effect, the Pauli limit is estimated from Eq. 3.2. Pauli limit is 

estimated to be 5.9 and 7.6 T for y = 0.22 (Tc = 3.18 K) and 0.69 (Tc = 4.08 K), respectively. These 

values [black diamonds in Figs. 10.5 (a)–(d)] are much lower than the observed 𝐵𝑐2
∥  while much higher 

than 𝐵𝑐2
⊥ . Thus, I expect that the out-of-plane upper critical fields 𝐵𝑐2

⊥  are determined by the orbital 

pair-breaking effect. To evaluate in-plane coherence lengths, I estimated the slopes of 𝐵𝑐2
⊥ (𝑇) 

(
𝑑𝐵𝑐2

𝑑𝑇
|

𝑇=𝑇𝑐

) by initial 6 points and all-data points. I summarized these values in Table 10.2. I discuss 

the case of the slopes of 𝐵𝑐2
⊥ (𝑇) by all-data points for midpoint criteria because the initial slope near 

Tc is assumed in the WHH model [other criteria and estimation are not inconsistent (see Tables 10.2 



74 

 

and 10.3)]. The in-plane coherence length 𝜉∥ was evaluated from temperature-derivative Eq. 3.7. This 

led to 𝜉∥ ≈ 24 and ≈ 18 nm for y = 0.22 and 0.69, respectively. These values are comparable to 

previous work for y = 0 [155]. I summarized in-plane conference lengths estimated from other criteria 

in Tables 10.1 and 10.2. To estimate the out-of-plane coherence length 𝜉⊥, I used the B*, defined as 

the intersection of the extrapolation of the 𝜌𝑎𝑏  (𝐵) curves at the minimum temperature of ~0.47 K and 

n (see the insets of Fig. 10.4). Specifically, B* is expected to be the field that completely destroys the 

superconducting states at ~0.47 K. By using the values of 𝜉∥ and B* at the minimum temperatures, I 

roughly evaluated the out-of-plane coherence length 𝜉⊥  at ~0.47 K from 𝐵𝑐2
∥ = Φ0/2𝜋𝜉∥𝜉⊥ . That 

resulted in 𝜉⊥ ≈ 0.22 and ≈ 0.24 nm for y = 0.22 and 0.69, respectively. The out-of-coherence lengths 

𝜉⊥ are almost comparable to the thickness of the blocking layer. I will discuss the relationship between 

the out-of-plane coherence lengths and the blocking-layer thickness in Section 10.5. 
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Fig. 10.5. Huge in-plane upper critical field for locally non-centrosymmetric superconductor 

LaO0.5F0.5BiS2-ySey (y = 0.22 and 0.69). (a,b) In-plane upper critical fields estimated from the midpoint 

of the resistive transition as functions of temperatures for (a) y = 0.22 and (b) 0.69. Red and blue 

circles show the 𝐵c2
∥ (𝑇) by static field and pulsed field, respectively. I added the error bars to the blue 

circles as it is possible for the applied fields to slightly deviate from the ab plane owing to the lack of 

rotator measurements. Additionally, there is uncertainty related to the stability of temperature. The 
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black dashed curves show the Werthamer–Helfand–Hohenberg (WHH) fits. Black diamonds denote 

the Pauli limit (𝐵𝑃 = 1.86𝑇𝑐). (c,d) Temperature dependence of upper critical fields estimated from 

zero-resistivity criteria for (c) y = 0.22 and (d) 0.69. (e,f) Comparison of Bc2 estimated from ab(T) and 

ab(B) curves. I also show the out-of-plane upper critical fields in the insets of (e) and (f). Temperature 

dependence of the upper critical fields from the ab(T) and ab(B) curves for (e) y = 0.22 and  (f) 0.69. 

The abT0 (red closed circles) shows the in-plane upper critical fields defined as the beginning of the 

resistive increase from zero resistivity of the ab(T) data, the abB0 (red open circles) of the ab(B) data, 

abT50 (blue closed squares) as the midpoint of the resistive transition of the ab(T) and abB50 (blue 

open squares) of the ab(B), respectively. The cT0, cB0, cT50, and cT50 show the out-of-plane upper 

critical fields in the same way as the in-plane upper critical fields. 

 

 

Fig. 10.6. Out-of-plane upper critical fields as functions of temperatures for (a,b) y = 0.22 and (c,d) 
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0.69. The upper critical fields in (a) and (c) [(b) and (d)] were evaluated from the midpoint of the 

resistive transition [zero-resistivity criteria]. The black and blue curves show the WHH curves by the 

initial 6 points and all-data points, respectively.  

 

Table 10.1. Out-of-plane upper critical fields estimated from WHH curves by the beginning of the 

resistive increase from zero resistivity (zero-resistivity criteria) of the ab(B) curves and middle points 

of the resistive transitions, and the in-plane coherence lengths from these criteria. ZR and MP mean 

the zero-resistivity and midpoint criteria, respectively. The 6 and A represent that the initial six points 

and all-data points were used for fitting, respectively.   

 

 

Table 10.2. The slope of the temperature dependence of out-of-plane upper critical fields from the 

initial six and all-data points, and the in-plane coherence length from these slopes. The meaning of 

ZR6, ZRA, MP6, and MPA is the same as in Table 10.1.  

 

 

Table 10.3. The slope of the temperature dependence of in-plane upper critical fields from the initial 

six and all-data points and the orbital limit from WHH curves. The meaning of ZR6, ZRA, MP6, and 

MPA is the same as in Table 10.1. 

 

 

10.4. Theta angular dependence of the upper critical field 

The angular 𝜃 dependence of the Bc2 at T = 2.3 K and 2.5 K for y = 0.22, and T = 3.3 K and 3.5 K for 

y = 0.69 are displayed in Figs. 10.7 (𝜃 represents the angle between the c-axis and the direction of the 

applied magnetic field). 𝐵𝑐2 (𝜃) was estimated from the midpoint of the resistive transition. Generally, 

𝐵𝑐2 (𝜃) for layered superconductors is described by the anisotropic three-dimensional (3D) Ginzburg–

Landau (GL) model or the 2D Tinkham formula. The anisotropic 3D GL model is given as  

 (
𝐵𝑐2(𝜃)cos𝜃

𝐵𝑐2
⊥ )

2

+ (
𝐵𝑐2(𝜃)sin𝜃

𝐵𝑐2
∥ )

2

 =  1. (10.1) 

This formula explains 𝐵𝑐2 (𝜃) for anisotropic 3D superconductors. In contrast, the 2D Tinkham’s 

formula is given as  
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 |
𝐵𝑐2(𝜃)cos𝜃

𝐵𝑐2
⊥ | + (

𝐵𝑐2(𝜃)sin𝜃

𝐵𝑐2
∥ )

2

 =  1. (10.2) 

This relation describes 𝐵𝑐2 (𝜃) in the case of 2D systems. The 2D Tinkham formula exhibits cusp-like 

behavior around the magnetic field parallel to the plane. The observed 𝐵𝑐2 (𝜃) is not contradictory to 

the anisotropic 3D GL model (orange solid curves in Fig. 10.7). The broadening of 𝐵𝑐2 (𝜃) at y = 0.69 

can be attributed to the flux flow and/or tiny single crystals with an inclination of a few degrees [108]. 

The 2D Tinkham formula (black dashed curves in Fig. 10.7) is not favorable for the broad 𝐵𝑐2 (𝜃) 

behavior. We could not perform the angular dependence of the 𝐵𝑐2 at lower temperatures because the 

maximum field in our rotator system (PPMS) is 9 T. Thus, the high-field and low-temperature regions 

might show the 2D nature of the Bc2. Moreover, we may need to use thin-film samples to exactly 

investigate the angular dependence of the upper critical fields, while there have been no reports for 

fabricating thin-film samples for the BiCh2-based compounds at the present stage. I hope that studies 

using thin-film samples will be performed in the future.  
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Fig. 10.7. Three-dimensional (3D) nature of the upper critical field. Angular  dependence of the upper 

critical field at (a) T = 2.3 K and (b) 2.5 K for y = 0.22 and (c) T = 3.3 K and (d) 3.5 K for y = 0.69 

(b).  represents the angle between the c-axis and the direction of the applied magnetic field. The insets 

show magnified views of the region around  = 90°. The orange solid curves denote the anisotropic 

3D Ginzburg-Landau (GL) model (Eq. 10.1). The black dashed curves show the two-dimensional (2D) 

Tinkham formula (Eq. 10.2). 

 

10.5. Suppression of both paramagnetic and orbital pair-breaking 

effects 

The paramagnetic pair-breaking effect and the orbital pair-breaking effect should be suppressed 

because the observed in-plane 𝐵𝑐2
∥  clearly exceeds the Pauli limits and the orbital limits from the WHH 

model in the dirty limit. The strong coupling nature enhances the Pauli limit for the paramagnetic pair-

breaking effect. While I assumed the validity of the weak-coupling limit (black diamonds in Fig. 10.5), 

several experimental results in BiCh2-based superconductors indicate the strong-coupling nature [62, 

63, 64, 84, and Chapter 2]. However, even if we use the reported value of  Δ(0) =  2.25 𝑘𝐵𝑇𝑐 by 

specific heat measurements for the single crystal of LaO0.5F0.5BiSSe (y = 1.0) [65], the Pauli limit is 

much smaller than the observed 𝐵𝑐2
∥ . A previous study proposed that the behavior of in-plane Bc2 for 

LaO0.5F0.5BiS2 (y = 0) can be explained by the two-gap nature [155]. Indeed, 𝜇SR measurements imply 

that the two-gap superconductivity is suitable for the BiCh2-based superconductor [67, 68, and Chapter 

2]. However, multigap-superconductivity candidates, such as MgB2 and Iron-based superconductors, 

have complicated FSs composed of multi-orbitals. In contrast, the BiCh2-based systems have the 

relatively simple FS mainly comprised of Bi-6px/py orbitals, and these orbitals should degenerate in 

the F-doped tetragonal structure. Moreover, specific heat measurements suggested a single gap for the 

LaO0.5F0.5BiSSe (y = 1.0) single-crystal sample [65]. Thus, I speculate that the single-gap scenario is 

probably valid for the present single-crystal samples because the 𝜇SR measurements, suggesting the 

multi-gap scenario, were performed using polycrystalline samples, and the anisotropy between the ab-

plane and c-axis directions may influence the analysis of the 𝜇SR results. Therefore, I suggest that the 

lack of the local inversion symmetry in the BiCh2 layer leads to the large in-plane 𝐵𝑐2
∥ . The RSOI, due 

to the lack of local inversion symmetry, suppresses the paramagnetic pair-breaking effect even in the 

magnetic fields parallel to the ab plane because the spin direction is locked onto the ab plane, and the 

spin texture protects the Cooper pairs from depairing against the applied fields [155]. Strictly speaking, 

the suppression of the paramagnetic pair-breaking effect originates from the Van-Vleck susceptibility 

from the interlayer contribution due to the spin-band splitting, as introduced in Chapter 3. SARPES 

observed the local Rashba-type spin texture near the Fermi level for LaO0.55F0.45BiS2 [153]. Moreover, 

the spin-singlet and spin-triplet states can be mixed in a material by breaking the local inversion 
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symmetry. If the spin-triplet component is the predominant component in the superconductivity in the 

present phases, the paramagnetic pair-breaking effect may be absent in this system. In any case, the 

paramagnetic pair-breaking effect was largely suppressed by the local inversion symmetry breaking 

in the BiCh2 layer. 

The orbital limit should also be enhanced to observe the high in-plane upper critical fields. The 

electronic correlation for the BiCh2-based system is weak since the conduction band is mainly 

composed of Bi 6p orbitals. Thus, the effective mass for the BiCh2-based system is not large [155], 

while the heavy-fermion system has a large effective mass. Indeed, the electronic specific heat 

coefficient is in the order of a few mJ/molK2 for the BiCh2-based compounds [65] despite the order of 

~102–103 mJ/molK2 for heavy-fermion systems [21]. In 2D superconductors, the orbital pair-breaking 

effect along the plane direction is primarily suppressed, as introduced in Chapter 3. The RSOI 

generally weakens the interlayer coupling and increases the 2D nature of the superconductivity [112]. 

This situation allows us to establish the Josephson vortex state in the magnetic fields parallel to the ab 

plane. We can regard the Josephson vortex phase as the CS phase (see Chapter 3). I will discuss this 

in the next section. Under this condition, I deduce that the Josephson vortices penetrate into the LaO 

blocking layer when the out-of-plane coherence length 𝜉⊥  is comparable to the thickness of the 

blocking layer, in which the vortices may induce the orbital pair-breaking effect. However, 𝐵𝑐2 (𝜃) in 

Fig. 10.7 indicates that the 2D nature is not strong because the anisotropic 3D GL model is relatively 

close to the obtained 𝐵𝑐2 (𝜃)  data. Therefore, it is reasonable to expect the crossover of the 

conventional Abrikosov (3D) and Josephson vortex (2D) state to be realized in this system. 

Furthermore, I plotted the temperature dependence of the 𝐵𝑐2
∥ /𝐵𝑐2

⊥  in Fig. 10.8(c) and (d). The values 

from the midpoint criteria for both samples (blue circles) increase with decreasing temperatures, which 

indicates that the 2D nature is enhanced at low-temperature regions. In contrast, the ratio for y = 0.22 

by zero-resistivity criteria [red circles in Fig. 10.8(c)] has no clear dependence on temperatures. I will 

discuss the reason in the next section. To confirm whether the angular-dependent Bc2 is changed by 

temperature, we may need to investigate 𝐵𝑐2 (𝜃) at the lower-temperature regions by using dilution 

systems and/or thin-film samples in future work. Evaluation of the out-of-plane coherence length 𝜉⊥ ≈ 

0.22 (y = 0.22) and ≈ 0.24 nm (y = 0.69) at the minimum temperature are comparable to the LaO 

blocking layer thicknesses ~0.26 nm in the cases of both samples. The blocking layer thicknesses were 

estimated from powder XRD at 298 K (room temperature). I expect that Bc2 could be determined by 

the orbital pair-breaking effect from the Josephson vortices if we could confirm the change from the 

anisotropic 3D GL model to 2D Tinkham’s formula in the lower temperature region and/or by using 

thin-film samples. On the other hand, we must be careful that the GL coherence length should be 

estimated from the temperatures close to Tc. The estimation of the out-of-plane coherence length is 

performed in much lower temperatures (~0.47 K) than Tc, while the in-plane coherence lengths, 

evaluated from the slope of  𝐵𝑐2
⊥  (𝑇) as summarized in Table 10.2, are almost comparable to the 
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estimation by 𝐵𝑐2
⊥  (0) in Table 10.1. The observed in-plane 𝐵𝑐2

∥  (𝑇) has the upturn behavior near Tc, 

and thus it is not practical to use the initial slope since Eq. 3.7 shows that the Bc2 (T) is proportional to 

temperatures. If we assume a 2D superconductor for our system, the Bc2 (T) is proportional to √𝑇 (Eq. 

3.8). Even so, it is difficult to explain the upturn behavior. I discuss the upturn of Bc2 (T) near Tc in the 

next section.  

 

 

Fig. 10.8. Phase diagram of the upper critical fields for (a) y = 0.22 and (b) y = 0.69 with zero-resistivity 

and midpoint criteria. The upper critical fields and temperatures are divided by superconducting 

transition temperature Tc. The insets of (a) and (b) exhibit the out-of-plane upper critical fields. (c,d) 

𝐵𝑐2
∥ /𝐵𝑐2

⊥  as a function of T/Tc by zero-resistivity (red circles) and midpoint (blue circles) criteria for 

(c) y = 0.22 and (d) y = 0.69.  
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10.6. Comparison with theoretical predictions  

Finally, I discuss the unique phenomena in the locally non-centrosymmetric systems under magnetic 

fields: CS phase and PDW state. The CS phase emerges in the magnetic fields parallel to the ab plane 

and is induced by two distinct origins: the staggered RSOI (the paramagnetic pair-breaking effect is 

predominant) and the Josephson vortex state (the orbital pair-breaking effect is predominant) [109, 

115]. In my target materials, I have not completely determined whether the orbital pair-breaking 

effect or the paramagnetic pair-breaking effect dominates in the in-plane field direction. However, if 

the discussion in Section 10.5 is spot-on, the Josephson vortices penetrate into the blocking layer, 

and the vortex state causes the orbital pair-breaking effect. Thus, we can expect that the orbital pair-

breaking effect may lead to the CS phase. However, the upturn behavior of 𝐵c2
∥  near Tc in blue open 

squares in Fig. 10.8(c,d) and red circles in Fig. 10.8(d) seems different from the theoretically 

predicted CS phase [109, 115]. I do not have a crystal-clear explanation about the upturn near Tc at 

the present stage. However, I can show a clue to resolve the problem below. There are not many 

examples of the CS phase. However, as introduced in Chapter 3, the multilayer systems composed 

of Pb (superconducting layers) and Sb (spacer layers) thin films exhibit the phase transition from 

uniform BCS to the CS phase in the magnetic fields parallel to the plane [109]. Interestingly, further 

increasing magnetic fields, another phase transition from the CS phase to the Helical phase was 

observed in the higher magnetic fields [109]. These phase transitions from uniform BCS to the CS 

phase further to the Helical phase originates from the center-of-mass momentum q and the interlayer 

coupling 𝛿 changing by magnetic fields [see Chapter 3]. Moreover, they suggested that the upturn of 

Bc2 (T) at low and high fields corresponds to the transition from the uniform BCS to the CS phase 

and the Helical phase, respectively. Therefore, I speculate that the upturn behavior of the observed 

𝐵𝑐2
∥  (𝑇)  probably relates to the CS or Helical phases. If the orbital pair-breaking effect by the 

Josephson vortex state is predominant for our target materials, the upturn near Tc may be explained. 

That is because the lower critical fields 𝐵𝑐1
∥  are much smaller than the obtained 𝐵𝑐2

∥ . Figure 16.3 

shows the in-plane magnetic field dependence of the magnetization for y = 0.65 (different batch from 

y = 0.69). The minimum value of the magnetization in the low-field region is only below ~20 Oe (~2 

mT) for y = 0.65, which indicates that the 𝐵𝑐1
∥  is the order of ~mT. (Note that the demagnetization 

effect is much small in the in-plane magnetic field direction due to the plate-like single crystals.) The 

vortices can penetrate the blocking layers in much smaller fields than the 𝐵𝑐2
∥ . Therefore, I deduce 

that the CS phase may emerge even near Tc, i.e., the transition fields from BCS to the CS phase may 

be much smaller (the order of mT). If it makes sense, the change in the behavior of 𝐵𝑐2
∥  (𝑇) near Tc 

for y = 0.22 between different criteria [red and blue open circles in Figs. 10.8(a)] is somewhat strange. 

Upturn behavior of 𝐵𝑐2
∥  (𝑇) near Tc should be observed even in zero-resistivity criteria for y = 0.22 if 

the scenario is correct. That is possibly due to the localization region for y = 0.22 (see Chapter 9). In 
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the region of the localization state, the shielding volume fraction is small [see Figs. 9.2(b) and (c)]. 

The bulkiness of the superconductivity might influence the difference between the zero-resistivity 

and midpoint criteria. Next, I comment on the broad resistive transition under higher magnetic fields 

(pulsed fields) for both samples. The broadening of the resistive transition might exhibit the presence 

of the Josephson vortex state since the broadening of the resistivity under magnetic fields is basically 

a common feature in type-II superconductors and can be caused by the motion of the vortices [169]. 

Hence, I speculate that the upturn of the 𝐵𝑐2
∥  (𝑇) near Tc might be related to the CS phase and the 

non-saturated behavior at lower temperatures and higher magnetic fields to the Helical phase. A more 

detailed investigation is necessary to reveal whether the superconducting phases under magnetic 

fields are CS, Helical, or other phases.  

Finally, I briefly comment on the PDW state in the magnetic fields parallel to the c axis. The 

obtained out-of-plane  𝐵𝑐2
⊥  (𝑇) is clearly lower than the Pauli limit [black diamond in Figs. 10.5(a)–

(d)], which implies that the 𝐵𝑐2
⊥  (𝑇) follows the orbital pair-breaking effect. Indeed, the WHH model 

by all-data points (blue curves) is almost consistent with the out-of-plane 𝐵𝑐2
⊥  (𝑇). In this condition, 

the PDW state cannot emerge in the magnetic-filed parallel to the c axis because it is realized under 

the assumption of weak or absent orbital pair-breaking effects [111].  

In conclusion, I have observed extremely high in-plane upper critical fields for the centrosymmetric 

superconductor LaO0.5F0.5BiS2−ySey with local inversion symmetry breaking in the BiCh2 layer. The 

superconducting states are not completely destroyed, even at the field strength of 55 T. The 

paramagnetic pair-breaking effect should be suppressed by the local RSOI, which arises from the 

lack of local inversion symmetry. The orbital limit should also be enhanced by the layered structure 

(quasi-2D-electronic states) and strong local RSOC. Local inversion symmetry breaking may be a 

clue for the solution of the pairing symmetry of superconductivity in the BiCh2-based superconductor 

family. Our results pave the way for exploring superconductors with high upper critical fields and 

lead to an in-depth understanding of the relationship between superconductivity and local inversion 

symmetry breaking. 
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11. In-plane anisotropy of the MR in the superconducting 

state 

 

11.1. Two-fold symmetric MR in the superconducting states  

To further investigate the physical properties, I performed the in-plane anisotropy measurements of 

magnetoresistance in the normal and superconducting states. I expected that the four-fold symmetry 

of the tetragonal structure might be broken because the two-fold symmetric state of the monoclinic 

structure exists in the F-free systems, which is analogous to the electronic nematicity in the iron-based 

superconductors. Moreover, the layered crystal structures, including Bi, are similar to the doped-

Bi2Se3, where nematic superconductivity has been observed. The crystal-structural similarity is a 

trigger that I tried to perform the anisotropy measurements for the BiCh2-based superconductors. I 

used a two-axes rotator to precisely apply the magnetic fields to the plane. The in-plane anisotropy 

measurements were performed as collaborative work with the Institute of Materials Research (IMR), 

Tohoku University. In this study, I measured the c-axis resistivity [see Fig. 11.1(a)] because the 

Lorentz force on the vortices is identical concerning the in-plane angle 𝜙 variations [𝜃 and 𝜙 are 

defined as Fig. 11.1(a)]. Figure 11.1(b) shows the temperature dependence of the c-axis resistivity for 

LaO0.5F0.5BiSSe (This Se concentration is a nominal value). The obtained Tc is similar to the 

LaO0.5F0.5BiS1.09Se0.91 (x = 0.5, y = 0.91) in Fig. 9.1(b), but the magnitude of the c-axis resistivity is 

roughly 100 times larger than the ab-plane value, which implies that the electronic state has quasi-

two-dimensional nature. Figure 11.1 (c) shows the θ angle dependence of the c-axis resistivity at the 

conditions of  𝜙 = 90̊, B = 15 T, and T = 2.5 K. 𝜌min is defined as the minimum c-axis resistivity at 

which the magnetic field is precisely parallel to the ab plane. We performed the 𝜃-angular-dependence 

measurements by changing 𝜙 angles from -180̊ to 180̊. Figure 11.1(d) shows the 𝜙 dependence of 

𝜌min at T = 2.5 K and 5.0 K. The 𝜙 dependence of 𝜌min shows dip at 𝜙 = ± 90̊, indicating two-fold 

symmetry of 𝜌min in the superconducting states (strictly speaking, mixed state). In contrast, the normal 

state at T = 5.0 K does not exhibit a clear correlation on the 𝜙 angular dependence in this scale. Given 

that the rotational symmetry breaking was observed only in the superconducting states, this 

phenomenon may not be close to the electronic nematicity in the normal states, such as iron-based 

superconductors but nematic superconductivity, such as doped-Bi2Se3. We can simply expect that the 

phenomenon is induced by symmetry lowering from tetragonal to monoclinic at low temperatures. On 

the other hand, as introduced in Chapter 8, tetragonal structures are stabilized by the F-substitution 

(electron-carrier doping) effect [38, 39]. Furthermore, the monoclinic distortion 100 × |𝑎 − 𝑏|/(𝑎 +

𝑏) is only ~0.1% for F-free LaOBiSSe and ~0.2% for F-free LaOBiS2 at room temperatures [36, 37] 

while the magnitude of the resistivity anisotropy 100 × |𝜌min
±90  − 𝜌min

0 or ±180|/(𝜌min
±90 + 𝜌min

0 or ±180) at T 



85 

 

= 2.5 K in Fig. 11.1 (d) is ~15%. However, the monoclinic distortion may become large at low 

temperatures. Thus, I expect two-fold symmetry in the superconducting states to be induced by the 

local monoclinic distortion (one-dimensional nature) with a single-component superconductor. I will 

discuss this possibility in Section 11.3.  

 

 

Fig. 11.1. (a) Schematic images and a photo of the experimental setup. 𝜃 is defined as the formed 

angle from the c axis to the ab plane, and 𝜙 is defined as the formed angle from the a axis to the b 

axis. (b) Temperature dependence of the c-axis resistivity for LaO0.5F0.5BiSSe under zero magnetic 

field. The inset of (b) represents enlarged 𝜌𝑐-T curves around the superconducting transition. (c) 𝜃 

dependence of the c-axis resistivity under 𝜙 = 90̊, B = 15 T, and T = 2.5 K. The black arrow represents 

𝜌min where the magnetic field is exactly parallel to the ab plane. (d) 𝜙 dependence of 𝜌min at T = 2.0 

K (pink circles) and T = 5.0 K (gray diamonds) under B = 15 T.  

 

 



86 

 

11.2. Four-fold symmetric MR in the superconducting states 

 To further investigate the in-plane anisotropy of BiCh2-based systems, I performed similar 

measurements to Fig. 11.1(c) and (d) for a different Se concentration from y = 1.0. I used comparable 

measurement systems to Section 11.1 at IMR, Tohoku university. Figure 11.2 (b) shows the 

temperature dependence of the c-axis resistivity for LaO0.5F0.5BiS1.61Se0.39 (y = 0.39). The observed Tc 

≈ 3.3 K is smaller than y = 1 (nominal value), and the magnitude of the c-axis resistivity is in order of 

~Ωcm in spite of ~mΩcm for y = 1.0 [see Fig. 11.1 (b)]. The different behavior by the Se substitution 

effect is consistent with Chapter 9’s results. Figure 11.2(c) shows 𝜃 angular dependence of the c-axis 

resistivity under 𝜙 = -90̊, B = 10 T, and T = 2.45 K (The definition of 𝜃, 𝜙, and 𝜌min is the same as 

Section 11.1). The 𝜃 angular-dependence measurements were performed by changing 𝜙 angle per 10,̊ 

and Fig. 11.2(d) shows 𝜌min as a function of the 𝜙 angle at T = 2.45 K (superconducting states) and T 

= 5 K (normal states). I described the two-fold and four-fold functions in Fig. 11.2(c). These are not 

fitting functions because the slight increase of 𝜌min with increasing 𝜙 angle is not favorable for fitting, 

probably due to the sample shape [see Fig. 11.2(a)]. Thus, these functions are just eye-guided curves. 

The behavior of 𝜌min(𝐵) data is distinct from y = 1.0 in Fig. 11.1(d). From Fig. 11.2(d), we may 

expect that the four-fold component (orange curve) is close to the obtained data, which indicates that 

the four-fold symmetry is predominant in y = 0.39. At least, the one-dimensional order (two-fold-like 

symmetry) is not predominant in this composition as Fig.11.1(d) for y = 1.0 exhibits the peak-like 

behavior along 𝜙 = ±90̊. In contrast, the normal-state behavior has no clear correlation with the 𝜙 

scan, consistent with y = 1.0 in Fig. 11.1(d). In the next section, I will discuss the conceivable reasons 

for the different behavior.  
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Fig. 11.2. (a) Photo of the experimental setup. (b) Temperature dependence of the c-axis resistivity for 

LaO0.5F0.5BiS1.61Se0.39 under zero magnetic field. The inset of (b) represents enlarged 𝜌𝑐 -T curve 

around the superconducting transition. (c) 𝜃 angle dependence of the c-axis resistivity under 𝜙 = -90,̊ 

B = 10 T, and T = 2.45 K. The 𝜌min criterion is the same as Fig. 11.1(c). (d) 𝜙 angle dependence of 

𝜌min at T = 2.45 K (pink circles) and T = 5.0 K (gray diamonds) under B = 10 T. Gray and orange 

curves exhibit two-fold component 0.07cos {2(𝜙 − 90)} + 0.8  and four-fold component 

0.07cos {4(𝜙 − 45)} + 0.8, respectively. These functions are not fit curves since the slight increase 

of 𝜌min with increasing 𝜙 is not suitable for using them as fittings.  
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11.3. Comparison with theoretical expectations 

Finally, I compare the obtained experimental results with theoretical expectations. According to the 

theoretical calculations, the two-fold symmetry of the in-plane upper critical fields can emerge even 

in the conventional s-wave fully gapped superconductors [145, 146]. If we assume a single-component 

superconductor, such as a s-wave superconductor, the in-plane angular dependence of upper critical 

fields shows isotropic behavior in a tetragonal structure, as shown in Fig. 11.3. If there is a uniaxial 

strain in the single-component superconductor, two-fold symmetry of the in-plane upper critical fields 

can be realized. In contrast, when considering a two-component superconductor, the in-plane upper 

critical fields exhibit the four-fold symmetry in a tetragonal structure due to the degeneracy of two 

superconducting states. The uniaxial strain can lead to the two-fold symmetry of the in-plane upper 

critical fields. Therefore, the two-fold symmetry of the in-plane upper critical fields allows the uniaxial 

strain to exist even in either case of the single-component or two-component superconductivity. In the 

doped-Bi2Se3 superconductors, it has been suggested that two-component superconductivity (two-

dimensional Eu representation in trigonal D3d crystals) is realized, and thus the in-plane upper critical 

fields should show six-fold symmetry in trigonal crystals [146, 147]. The almost degenerated state of 

Δ4𝑥 and Δ4𝑦, which is categorized as the two-dimensional Eu representation, is lifted by the uniaxial 

strain, and clear two-fold symmetry of the in-plane upper critical fields was observed [148]. So what 

is the origin of the in-plane anisotropy in the BiCh2-based systems? It is reasonable to assume the 

presence of the uniaxial strain in the BiCh2-based systems. Indeed, such one-dimensional instability 

similar to the uniaxial strain has been suggested in theoretical studies since the early stages [88, 89]. 

Moreover, several experimental results implied that the CDW formation, which is probably related to 

the one-dimensional instability, exists in the BiCh2-based compounds [77, 90]. On the other hand, the 

four-fold-like symmetry of the MR in the superconducting states for y = 0.39 may indicate the presence 

of the two-component superconductivity, such as doped-Bi2Se3. In the tetragonal D4h crystal of the 

target materials, the single-component and two-component superconductivity are summarized with 

superconducting-gap structures and the behavior of the in-plane upper critical fields in Table 11.1. 

Given the previous studies summarized in Table 11.1, the idea of a two-component superconductor is 

probably doubtful. When a two-component superconductor of Eu or Eg representations is realized in 

the BiCh2-based superconductors, the superconducting-gap structures correspond to the 𝑝𝑥- and 𝑝𝑦-

wave or 𝑑𝑥𝑧 - and 𝑑𝑦𝑧 -wave states, respectively. The 𝑝𝑥 - and 𝑝𝑦 -wave state is the spin-triplet 

superconductivity. However, there have been no reports suggesting spin-triplet superconductivity until 

this stage. Furthermore, when the one part of 𝑝𝑥 - or 𝑝𝑦  -wave superconductivity is realized, the 

superconducting-gap node lines are positioned along 𝑘𝑥 = 0 or 𝑘𝑦 = 0 lines. Under this condition and 

FS topology of BiCh2-based compounds, symmetry-protected nodes are detected by bulk probes, such 

as magnetic penetration, specific heat, and thermal conductivity measurements. However, these 
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experiments suggested conventional nodeless s-wave superconductivity [62–65]. In addition, 

considering the 𝑑𝑥𝑧- and 𝑑𝑦𝑧-wave superconductivity, the line nodes should exist along the 𝑘𝑥 = 0 or 

𝑘𝑦 = 0 lines as well. In nature, 𝑑𝑥𝑧- and 𝑑𝑦𝑧-wave superconductivity may not be favorable in the 

quasi-two-dimensional electronic states. Therefore, it is not easy to consider the two-component 

superconductor as the origin of the in-plane anisotropy for the BiCh2-based superconductors. So what 

is the driving force for the four-fold symmetry? Given the previous studies, the single-component 

superconductivity such as fully gapped s-wave, anisotropic s-wave with accidental nodes, or 𝑑𝑥2−𝑦2-

wave states are reasonable as the superconducting-gap structure (see Table 11.1). Therefore, the four-

fold symmetry of the MR in the superconducting states for y = 0.39 may originate from the FS 

topology. Regardless of Lifshitz transition around x ≈ 0.45, the FS topology in the tetragonal may 

generate the four-fold symmetry. Moreover, the Se substitution is similar to the uniaxial strain effect. 

As a consequence, the two-fold symmetry was observed in y = 1. These discussions are the most 

promising explanation for the in-plane anisotropy of the MR in the superconducting states of these 

compounds. However, why the apparent in-plane anisotropy was observed only in superconducting 

states is still an open question. I hope that further studies will be developed in the future. Possibly, the 

lack of local inversion symmetry (Chapter 10) and/or localization (Chapter 9) may be related to the 

in-plane anisotropy. Especially the parity-mixed states may be a clue to reveal the in-plane anisotropy.  

 

 

Fig. 11.3. Schematic images of the in-plane upper critical fields in a tetragonal D4h lattice. The left- 

and right-hand cases show the single-component and two-component superconductivity, respectively. 

These images were described based on Ref. 145 and 146.  
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Table. 11.1. Classification of superconducting-gap structures, in-plane upper critical fields, and 

previous theoretical and experimental studies. The tetragonal crystal D4h is assumed to describe the 

superconducting-gap structures and in-plane upper critical fields. In addition, I displayed several 

references to theoretical calculations and experiments.  
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12. Summary and Conclusion 

I have investigated the transport properties for single-crystal samples of BiCh2-based 

superconductors LaO1-xFxBiS2-ySey. Especially, I focused on the local inversion symmetry breaking 

in the BiCh2 layer and localization behavior in the normal states. Furthermore, I examined crystal 

structures for LaO1-xFxBiS2-ySey using synchrotron X-ray diffraction before investigating these 

phenomena and found that small F-doing (a few%) stabilizes the tetragonal structure in LaO1-

xFxBiSSe.  

Non-centrosymmetric superconductors have been extensively studied for a long time. Recent 

studies have suggested that locally non-centrosymmetric systems exhibit intriguing physical 

properties even in globally centrosymmetric compounds. In particular, several examples of local 

inversion symmetry breaking in layered systems exist. In a bilayer system, when each layer lacks 

inversion symmetry but the bilayer is coupled by interlayer coupling (globally centrosymmetric 

compounds), layer-dependent Rashba-type spin-orbit coupling can exist. The staggered Rashba-type 

spin-orbit interaction can cause unique superconducting properties. More recently discovered 

CeRh2As2 have centrosymmetric tetragonal structure P4/nmm (No. 129, D4h point group) while the 

Ce site lacks the inversion symmetry with the C4v site point group. This superconductor showed huge 

out-of-plane upper critical fields and phase transition under magnetic fields, which is consistent with 

theoretical expectations. The crystal structure of my target superconductors LaO0.5F0.5BiS2-ySey has 

tetragonal P4/nmm, and the Bi and Ch sites lack inversion symmetry with the C4v. Thus, I expected 

large upper critical fields to be observed in the BiCh2-based superconductors. I have investigated the 

in-plane and out-of-plane upper critical fields for LaO0.5F0.5BiS2-ySey (y = 0.22 and 0.69) by resistivity 

measurements under static fields and pulsed high fields. As a consequence, huge in-plane upper 

critical fields were observed for both samples. The in-plane upper critical fields are enhanced by the 

modulated Rashba-type spin-orbit interaction and the quasi-two-dimensional electronic states. Since 

the estimated out-of-plane coherence length is comparable to the thickness of the blocking layer, I 

speculate that the orbital pair-breaking effect by the Josephson vortex state is predominant along the 

in-plane direction. The upturn behavior of 𝐵𝑐2
∥ (𝑇)  near Tc may be related to the theoretically-

predicted CS phase (Josephson vortex phase). At least, I deduce that the local Rashba-type spin-orbit 

interaction plays a significant role in superconducting states in BiCh2-based superconductors. Under 

the inversion asymmetry, the parity-mixed state can be realized. I hope studies focusing on the parity-

mixed state will be developed in future work. In contrast, out-of-plane upper critical fields are much 

smaller than the in-plane direction. The results imply that the orbital-pair breaking effect is 

predominant along the out-of-plane directions because the upper critical fields are suppressed below 

the Pauli limits.  

Weak localization (WL) and weak antilocalization (WAL) have been extensively studied for over 

half a century since Anderson suggested localization in disordered conductor systems in 1958. 
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Constructive and destructive quantum interference causes WL and WAL. In previous reports, 

optimally F-doped and Se-free samples showed that weak increases in resistivity with decreasing 

temperatures were observed, which indicates the presence of any localization states. However, 

magnetoresistance data were not reported in the previous work. Thus, I performed magnetoresistance 

measurements in the normal states for LaO1-xFxBiS2-ySey. I have found that Se-free and moderately 

Se-substituted samples exhibit a crossover of WL and WAL or weak WAL (almost quadratic MR) 

states. Compared with previous studies, the localization states may be related to the charge-density-

wave formation. Moreover, heavily Se-substituted samples present WAL states. As the most 

important point, these magnetoresistance changes in the normal states by the elemental substitution 

are correlated with temperature dependences of resistivity and Hall coefficient. Furthermore, the 

change in localization behavior by Se substitution is probably related to the relative strength of the 

band gap and Fermi level, given the recent theoretical calculations. These results indicate that the Se-

substitution effect suppresses the localization for the BiCh2-based system.  

These results of high in-plane upper critical fields and the localization/antilocalization are related 

to spin-orbit interaction. Therefore, this study has not only found the intriguing physical phenomena 

but also paved the way for the significance of spin-orbit interaction, particularly Rashba-type spin-

orbit interaction in the BiCh2-based systems. Thus, if thin films for the BiCh2-based compounds are 

successfully prepared, studies also in spintronics fields will be developed in the future.  

Finally, in the normal and superconducting states, I performed in-plane anisotropy measurements 

for LaO0.5F0.5BiS2-ySey (y = 0.39, 1.0). Four-fold and two-fold symmetry of the magnetoresistance in 

the superconducting states were observed in small (y = 0.39) and heavy (y = 1.0) Se concentrations, 

respectively. Compared with previous studies, the four-fold symmetry may be related to the FS 

topology, and the uniaxial strain, such as the one-dimensional order, may lead to the two-fold 

symmetry. The Se substitution effect is probably similar to the uniaxial strain. Furthermore, the 

alteration of the in-plane anisotropy by the Se substitution might be related to the local inversion 

symmetry breaking and/or the localization/antilocalization behavior. I hope that comprehensive 

research will be established in the future.  
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16. Appendix 

 

16.1. Electronic band structures 

Electronic band structures for LaO0.5F0.5BiS2-ySey were investigated by collaborative work: the band 

calculations were performed by Dr. Ochi (Osaka University) and Dr. Kuroki (Osaka University) and 

ARPES measurements by Kataoka (Okayama University) and Dr. Yokoya (Okayama University), 

respectively. I briefly introduce these methods here. The results of electronic band structures are 

displayed in Section 9.5.  

We performed first-principles band-structure calculation based on the density functional theory with 

the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation [170] and the 

projector augmented wave (PAW) method [171] as implemented in the Vienna ab initio simulation 

package [172-175]. We used the experimental crystal structures determined by our experiment [176]. 

To represent the O0.5F0.5 occupation in LaO0.5F0.5BiS2 and LaO0.5F0.5BiSSe, one oxygen and one 

fluorine atom are placed in a 10-atom unit cell. For simplicity, we assumed that selenium atoms occupy 

in-plane chalcogen sites in LaO0.5F0.5BiSSe. The core electrons in the PAW potential were [Kr]4d10 

for La, [He] for O and F, [Xe]4f145d10 for Bi, [Ne] for S, and [Ar]3d10 for Se, respectively. The spin-

orbit coupling was included. We took 500 eV of the cutoff energy for the wave function, a 14×14×4 

k-mesh, and 0.15 eV of the Gaussian smearing width.  

 ARPES measurements were performed at BL-9A in the Hiroshima Synchrotron Radiation Center 

(HiSOR) using a R4000 electron analyzer (Scienta Omicron) with p-polarized light. The total energy 

resolution was set to approximately 30 meV for hν = 30 eV. All samples were cleaved in-situ on the 

(001) plane in an ultrahigh vacuum of less than 5 × 10-9 Pa. All the measurements were performed at 

the same temperature of 13 K. The binding energies of the samples were determined by referencing 

the Fermi energy (EF) of gold electronically contacted with samples.  

 

16.2. Characteristic physical parameters 

I summarized several physical parameters in Table 16.1. First, lower critical fields Bc1 are estimated 

from the M-H curves [see Figs. 16.1(a–c)]. We need to correct the observed values by considering the 

demagnetization effect. Thus, Bc1 is evaluated from the following relation  

𝐵𝑐1 =
𝐵𝑎

1 − 𝑁
. (16.1) 

Ba is estimated as the fields which deviate from the linear M (H) (Note that I estimated the Ba as the 

minimum values of the magnetization for LaO0.5F0.5BiS1.61Se0.39). The demagnetization factor N has 

already been summarized in Table 9.1. Figures 16.1(d–f) show the temperature dependence of the 

corrected Bc1. Furthermore, Bc1 (0) is estimated from the formula 𝐵𝑐1(𝑇) = 𝐵𝑐1(0)[1 − (𝑇/𝑇𝑐)2] 
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[solid black curves in Fig. 16.1(d–f)]. Magnetic penetration depth is evaluated from the Bc1 (0) by the 

following formula  

𝐵𝑐1 =
Φ0

4𝜋𝜆∥
ln (

𝜆∥

𝜉∥
) . (16.2) 

The in-plane coherence lengths are necessary for estimating magnetic penetration depth. The in-plane 

coherence length 𝜉∥ can be evaluated from out-of-plane upper critical fields by Eq. 3.7. The in-plane 

coherence length 𝜉∥ for LaO0.5F0.5BiS2-ySey (y = 0.22, 0.69) are shown in Chapter 10. I also measured 

the out-of-plane upper critical fields for LaO0.5F0.5BiS1.14Se0.86 and LaO0.8F0.2BiSSe (nominal values) 

by resistivity measurements under magnetic fields [see Figs. 16.2(a) and (b)]. Figures 16.2(c) and (d) 

show the temperature dependence of the out-of-plane upper critical fields for LaO0.5F0.5BiS1.14Se0.86 

and LaO0.8F0.2BiSSe, respectively. The in-plane coherence lengths are estimated by the Bc2 (T) slope 

(all-data points). The obtained values of lower critical fields and magnetic penetration depth are almost 

consistent with the previous studies [64]. I also summarized the GL parameter 𝜅 = 𝜆∥(0)/𝜉∥(0) in 

Table 16.1. The values  vastly exceed 1/√2, indicating that the BiCh2-based compounds are typical 

type II superconductors. The mean free path can be obtained from the relation 

ℓ =
ℏ𝑘𝐹

𝜌0𝑛𝑒2
. (16.3) 

The residual resistivity 0 is defined as the values at T = 5 K in this study. Carrier density n is obtained 

from the Hall coefficient (see Chapter 9). I also used the values n at T = 5 K for estimating the mean 

free path. Assuming a single cylindrical Fermi surface, the Fermi wave vector kF can be written as the 

formula 𝑘𝐹 = √2𝜋𝑛𝑐, where c is the lattice constant and has already been displayed in Chapter 8. The 

obtained ℓ∥ is smaller than the 𝜉∥ (see Table 16.1), implying that the BiCh2-based superconductors are 

in the dirty limit. The dirty superconductivity in the doping level of x = 0.5 may support the fully 

gapped s-wave or extended s-wave state with accidental nodes. Bulk physical properties measurements 

may observe fully gapped s-wave behavior under the dirty superconductivity even when the extended 

s-wave state is realized. 
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Fig. 16.1. (a–c) Zero-field-cooled M-H curves for (a) LaO0.5F0.5BiS1.06Se0.94, (b) LaO0.5F0.5BiS1.61Se0.39, 

and (c) LaO0.8F0.2BiS0.94Se1.06. Applied magnetic fields are parallel to the c-axis direction. The dashed 

lines are visual guides. (d–f) Temperature dependence of the lower critical fields for (a) 

LaO0.5F0.5BiS1.06Se0.94, (b) LaO0.5F0.5BiS1.61Se0.39, and (c) LaO0.8F0.2BiS0.94Se1.06. The solid lines 

represent the formula 𝐵𝑐1(𝑇) = 𝐵𝑐1(0)[1 − (𝑇/𝑇𝑐)2]. The Se concentration is estimated from the 

EDX. 

 



105 

 

 

Fig. 16.2. (a–b) Temperature dependence of the resistivity under magnetic fields parallel to the c-axis 

direction for (a) LaO0.5F0.5BiS1.14Se0.86 and (b) LaO0.8F0.2BiSSe (Se concentration is nominal value). 

(c–d) Temperature dependence of the out-of-plane upper critical fields for (a) LaO0.5F0.5BiS1.14Se0.86 

and (b) LaO0.8F0.2BiSSe. The solid lines represent the WHH curves.  
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Table 16.1. Characteristic parameters of BiCh2-based superconductors LaO1-xFxBiS2-ySey.  

 

(a) Nominal Se concentration is 0.25.  
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Fig. 16.3. M-H curve in the low-field region at T = 1.8 K for LaO0.5F0.5BiS1.35Se0.65. Applied magnetic 

fields are parallel to the ab plane. The inset shows the enlarged figure around the lower-field region. 

 

16.3. Low-temperature resistivity  

I investigate the temperature dependence of the resistivity by several models. The T-1/2 or 1/lnT [119] 

dependence of the resistivity has been reported in the weak-localization states at low temperatures. 

Hence, I display the low-temperature (from 50 K to 10 K) resistivity as functions of T-1/2 and 1/lnT in 

Figs. 16.4 (a–f). The regions, which are close to the dashed lines, possibly indicate the localization 

states. In addition, we can confirm that the T-1/2 or 1/lnT increases in resistivity are suppressed by Se 

substitution. Moreover, the low-temperature (from 50 K to 10 K) resistivity for the nonmetallic 

behavior follows variable range hopping (VRH) in wide temperature regions [see Figs. 16.4 (g–i)], 

which implies the presence of disorder. The VRH behavior is also suppressed by Se substitution, which 

is consistent with previous crystal-structural analysis suggesting that local disorder in the Ch1 sites 

was suppressed by Se substitution [31]. 
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Fig. 16.4. Low-temperature resistivity (from 50 K to 10 K) ab as a function of T-1/2 for (a) 

LaO0.8F0.2BiS2 (red circles) (b) LaO0.8F0.2BiS2-ySey [y = 0.24 (blue circles), 0.72 (orange circles), and 

1.05 (purple circles)] and (c) LaO0.5F0.5BiS2-ySey [y = 0 (red squares), 0.65 (orange squares), and 0.91 

(purple squares)]. (d–f) ab vs. 1/lnT for (a) LaO0.8F0.2BiS2 (red circles) (b) LaO0.8F0.2BiS2-ySey [y = 

0.24 (blue circles), 0.72 (orange circles), and 1.05 (purple circles)] and (c) LaO0.5F0.5BiS2-ySey [y = 0 

(red squares), 0.65 (orange squares), and 0.91 (purple squares)]. The dashed lines are visual guides. 

lnab as a function of T-1/4 for (g) LaO0.8F0.2BiS2 (red circles) (h) LaO0.8F0.2BiS2-ySey [y = 0.24 (blue 

circles), 0.72 (orange circles), and 1.05 (purple circles)] and (i) LaO0.5F0.5BiS2-ySey [y = 0 (red squares), 

0.65 (orange squares), and 0.91 (purple squares)]. The dashed lines are visual guides.  
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16.4. References to the history of superconductors   

 I have summarized the references to the history of superconductors (see Figs. 1.1 and 3.1) in Table 

16.2. 

 

Table 16.2. Reference to the history of superconductors.  

 

 

 

 


