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CHAPTER 1

Introduction

One of the recent interests in the field of solid state and condensed matter physics
is related to noncentrosymmetric compounds [1]. Typical examples of noncentrosym-
metric crystal structures, which lack a center of inversion, are of the so-called Rashba-
type and chiral nature. In these crystal structures, the antisymmetric spin-orbit inter-
action acts on the conduction electrons as an effective (emergent) magnetic field. The
term α(n × p) · σ (where α is the strength of the spin-orbit interaction, n is the unit
vector for the crystalline potential gradient ∇V(r), p (= ℏk, k : wave number) is the
momentum of conduction electrons, and σ is the Pauli matrix of the up and down spin
states) is added to the Hamiltonian for conduction electrons;

εp± =
p2

2m∗
+ α(n× p) · σ.

The corresponding Fermi surface thus splits into two Fermi surfaces with topology very
similar to each other but different volumes. This splitting of the Fermi surfaces appears
in the absence of an external magnetic field and introduces a characteristic momentum
p-dependent spin texture to the electronic states.

For example, the Fermi surfaces of LaIrGe3, LaRhGe3, and LaCoGe3 with the tetrag-
onal Rashba-type structure (I4mn, No. 107) are split into two Fermi surfaces, where the
crystal structure lacks inversion symmetry along the tetragonal [001] direction and the
caliper length of two split Fermi surfaces along the [001] direction, 2kz, is unchanged
between the two split Fermi surfaces because of n = [001] [2, 3]. The splitting energy
∆ε for a main Fermi surface is 1090 K in LaIrGe3, 510 K in LaRhGe3, and 460 K in
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LaCoGe3. The splitting energy is larger in the Ir-5d conduction electrons than in the
Rh-4d and Co-3d electrons, reflecting the magnitude of spin-orbit coupling. Further-
more, the spins of conduction electrons are rotated in the direction of the effective field,
n × p, clockwise in the kz plane for one Fermi surface and counterclockwise for the
other Fermi surface.

The present spin texture of conduction electrons produces a huge upper critical field
µ0Hc2(0) ≃ 45 T in a heavy fermion superconductor CeIrSi3 with the same crystal struc-
ture as LaIrSi3 mentioned above despite the low superconducting transition temperature
Tsc = 1.6 K [3]. This is because all the spins of conduction electrons are perpendicular
to the external magnetic field direction for H ∥ [001], and the spin susceptibility for
H ∥ [001] does not change below Tsc, revealing no paramagnetic suppression in Hc2.

The magnetic skyrmion is now a well-known spin texture of magnetic ions observed
in MnSi and EuPtSi with the cubic chiral structure (P213, No. 198) [4, 5, 6]. This struc-
ture has neither spatial inversion symmetry nor mirror symmetry, and chiral (left- and
right-handed) structures are allowed for these compounds. The 3d electrons in MnSi
are itinerant and become conduction electrons. Correlations between these conduction
electrons are reflected in a relatively large electronic specific heat coefficient and cy-
clotron effective masses, together with the magnetic ordering and magnetic moment.
Meanwhile, the 4 f electrons in a rare earth compound EuPtSi are localized, and the
RKKY interaction plays a predominant role in magnetism. Therefore, the mutual mag-
netic interaction between the 4 f electrons occupying different atomic sites cannot be
direct, such as in 3d-magnetism, but should be indirect, which occurs via the spins of
the conduction electrons. As the crystal structure of MnSi and EuPtSi lacks the inver-
sion symmetry, canting of spins or helical magnetic structure could be realized owing to
an additional magnetic exchange term of the Dzyaloshinskii-Moriya interaction at zero
magnetic field [7, 8]. The skyrmion phase is induced in a limited magnetic field and
temperature regions.

The Fermi surface in the chiral structure also splits into two different Fermi surfaces,
as in VSi2, NbSi2, and TaSi2 with the hexagonal chiral structure, where VSi2 and TaSi2
belong to P6422, while NbSi2 only belongs to P6222 [9]. The splitting energy of the
main Fermi surface is 490 K in TaSi2, 210 K in NbSi2 and 39 K in VSi2. It is known in a
simple spherical Fermi surface centered at the Γ point (center in the Brillouin zone) that
the spins of conduction electrons are directed from the Γ point to outside for one Fermi
surface, as in Fermi velocity, while spins are centered in the Γ pint for the other Fermi
surface. Very recently, these chiral compounds are found to exhibit a spin-polarized
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state when the charge current is injected into the crystal [10]. Namely, a spin-polarized
transport occurs in a linear regime of the current-voltage characteristics. The spin-
polarized currents propagate over 10 µm.

In the present thesis, we studied the electronic states and Fermi surface properties
from the electrical resistivity, specific heat, magnetoresistance, and de Haas-van Alp-
phen experiments using the high-quality single crystals of α-IrSn4, α-RhSn4, IrGe4,
and RhGe4 with the trigonal chiral structure. Characteristic angular dependences of the
dHvA frequencies were observed in the present study, reflecting the present trigonal
chiral structure, together with the anisotropic upper critical fields in superconductivity.

In Chapter 2, we will give a review of the fundamental electronic properties for
noncentrosymmetric compounds including the chiral compounds. In Chapter 3, we will
introduce the single crystal growth and the experimental methods including de Haas-van
Alphen (dHvA) effect. In Chapter 4, we present the experimental results with analyses
and discussion. Finally, the present study is summarized and concluded in Chapter 5.



CHAPTER 2

Review on Noncentrosymmetric Crystal Structures and Electronic
States

2.1 Noncentrosymmetric crystal structures

In intermetallic compounds, a vast number of elements are regularly arranged. The
smallest unit is a unit cell. For example, the unit cell of Cu is shown in Fig. 2.1(a) [11].
A ball corresponds to the Cu element. These units are regularly arranged to form a
crystal. Some compounds have the structure shown in Fig. 2.1(b). This is the tetragonal
crystal structure of CePt3Si [12]. The Si atom, which is represented as the red ball, is
not symmetrical with respect to the z = 1/2 plane. This is one of the noncentrosymmet-
ric crystal structures, so-called the Rashba-type. Furthermore, some compounds, such
as Te, have a chiral structure as shown in Fig. 2.1(c) [13]. Thus, intermetallic com-
pounds have various structures, and the symmetry of crystal structures greatly affects
their electronic properties. CePt3Si has been studied for unconventional superconduc-
tivity caused by the inversion symmetry breaking [12, 14]. In Te, the non-reciprocal
electrical resistivity, which is different between the left- and right-handed crystals, is
observed [15].

11
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31 32 P3121 (No. 152) Mirror P3221 (No. 154)

Left-handed crystalRight-handed crystal

(a) (b)

(c)

Ce

Pt(1)

Pt(2)

Si

Figure 2.1: Crystal structures of (a) Cu, (b) CePt3Si, and (c) Te.

Lattice systems and Bravais lattice

In a crystal, a large number of atoms are arranged regularly. Therefore, there are
points that have exactly the same surrounding environment. These points are called
lattice, which is connected to another lattice by translation operations. Note that the
lattice is a point with identical surroundings, but not necessarily an atom there. The
parallelepiped, which is formed by lattice, is the unit cell, and there are 14 indepen-
dent unit cells in three dimensions. These independent unit cells are called Bravais
lattice as shown in Fig. 2.2(a) [16]. The lattice systems is a classification of Bravais
lattices by symmetry, and there are seven types of lattice systems: triclinic, monoclinic,
orthorhombic, rhombohedral, hexagonal, tetragonal, and cubic. Fig. 2.2(b) shows the
group-subgroup relationship of Bravais lattice in the three dimensions [17].
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cubic hexagonal

tetragonal

orthorhombic

monoclinic triclinic

Figure 2.2: (a) 14 types of Bravais lattice in three dimensions, cited from ref. [16].

Figure 2.3: Group-subgroup relationship of Bravais lattice, cited from ref. [17].
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crystal systems and geometric crystal classes

The Bravais lattices are classified by the translational symmetry of the lattice. When
discussing the electronic properties of the compound, for example, the electrical resis-
tivity, it is not necessary to consider translational symmetry. It is sufficient to consider
the symmetry within the unit lattice, i.e., the symmetry of the atoms in the unit lat-
tice. The symmetry of the internal structure is described by point symmetry operations
such as rotation, mirror, or inversion around a certain point, representing point groups.
By using only the rotation operations, seven independent basic elements, as shown in
Fig. 2.4, are obtained in three dimensions, which compose crystal systems. Adding
further rotation operations, mirror, and inversion operations, 32 independent elements
are obtained, which compose geometric crystal classes. Geometric crystal classes cor-
respond to crystal point groups. The group-subgroup relations of each point group are
shown in Fig. 2.5 [18]. Of the 32 crystal point groups, 11 types of point groups without
inversion center compose Laue groups. Symmetries of a Laue picture can be described
by the symmetry of the Laue group with the Friedel’s rule, meaning that the intensities
of the (h, k, l) and (h̄, k̄, l̄) reflections are equal.

cubic tetragonal hexagonal trigonal

orthorhombic monoclinic triclinic

Figure 2.4: 7-types of crystal systems.
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Figure 2.5: Group-subgroup relations of crystal point groups, cited from ref. [18].

crystallographic space groups

Lattice systems are classified by the translational symmetry of the lattice, and crys-
tal systems are classified by the point symmetry in the unit cell. By combining these
two types of operations, the symmetry of a crystal can be expressed. Both 14 types
of Bravais lattices and 32 types of crystal point groups yield 73 independent closed
groups, which are called arithmetic crystal classes. In addition to the above symmetry
operations, some crystals have partial translation operations such as spiral and glide
operations. Considering these symmetrical operations, 230 independent elements are
composed of crystallographic space groups. The crystallographic space groups, which
correspond to one-to-one to arithmetic crystal classes, are called symmorphic space
groups, and the others are classified as nonsymmorphic space groups. The summary of
the classification is shown in Fig. 2.6.
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6 crystal families

7 lattice systems 7 crystal systems

14 Bravais lattices 32 point groups

73 arithmetic crystal classes

219 (affine) space groups

230 (crystallographic) space groups

(73 symmorphic space group)

Figure 2.6: Classifications of space groups.

Noncentrosymmetric crystal structures

Performing an inversion operation on an object means performing a point symmetry
operation on a point. The center of a point symmetry operation is called the inversion
center. If the inversion center is the origin, then inversion operation P is expressed
as P : (x, y, z, ) → (−x,−y,−z). A crystal structure without an inversion center is
defined as the noncentrosymmetric crystal structure. Figures 2.7(a) and 2.7(b) show
the centrosymmetric crystal structure of ThCr2Si2-type with an inversion center [19]
and the noncentrocymmetric crystal structure of BaNiSn3-type without an inversion
center [20], respectively. The ThCr2Si2-type structure is not changed by the inversion
operation, whereas the BaNiSn3-type is changed after the inversion operation. Whether
a crystal structure has an inversion center or not can be determined by the space group
to which the crystal belongs. There are 138 space groups without inversion centers in
the 230 space groups, which are summarized in Table 2.2.
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TrCr2Si2-type   I4/mmm BaNiSn3-type   I4mm

La

Ir

Si

(a) Centrosymmetric (b) Noncentrosymmetric

(x, y, z) (-x, -y, -z) (x, y, z) (-x, -y, -z)

Figure 2.7: Crystal structures of (a) ThCr2Si2-type with an inversion center and (b) BaNiSn3-type without
an inversion center.
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Table 2.2: Summary of 230 types of crystallographic space groups together with their short and full
international symbols and also with the Schenfiels symbols. They are divided into 92 centrosymmetric
space groups (their space group numbers are shown in black) and 138 noncentrosymmetric ones (in red).
Suffix c of the space group number represents the chiral structure, courtesy of A. Teruya.



20



21

2.2 Chiral crystal structures

Chirality is the geometric property of an object, which does not overlap with its mir-
ror image. An object having chirality is called chiral, while the opposite term is achiral.
Figures 2.8(a) and 2.8(b) show an achiral molecule and a chiral molecule, respectively.
In the case of an achiral molecule, the mirror image, which is rotated by 180◦, overlaps
with the real image. On the other hand, in the case of a chiral molecule, even if the
mirror image is rotated by 180◦, it does not overlap with the real image. Of course,
no matter how we rotate the molecule, the mirror image will not overlap with the real
image. Namely, the achiral molecule has a mirror symmetry, while the chiral molecule
does not have a mirror symmetry. Inversion, rotoinversion, and glide operation in ad-
dition to the mirror operation compose the symmetry operations of second kind, while
translations, rotations, and screw rotation operations compose symmetry operations of
first kind. In the language of symmetry operation, an achiral object has symmetry op-
erations of second kind, while a chiral object has only symmetry operations of first
kind. In the case of a crystal structure, whether the structure has chirality or not can be
determined by the space group to which it belongs.

Mirror

Mirror

(a) Achiral

(b) Chiral

Figure 2.8: (a) Achiral molecule and (b) chiral molecule.

The space group of chiral crystals belongs to Sohncke groups which contain only
symmetry operations of first kind. Among the 230 types of crystallographic space
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groups, 65 are Sohncke types. Hermann-Mauguin symbols, which only contain num-
ber symbols, belong to Sohncke group. Figure 2.9 shows the classification of crystal-
lographic space groups in terms of chirality. The space groups are divided into two
groups: a chiral space group, whose Euclidean normalizer contains only symmetry op-
erations of first kind, and the achiral space group, whose Euclidean normalizer contains
symmetry operations of second kind. Among the 230 types of crystallographic space
groups, 22 belong to the chiral space group, and the others 208 belong to the achiral
space group. The 22 types of chiral space group form 11 enantiomorphic pairs. A
crystal belonging to the chiral space group is definitely a chiral structure, but a crystal
belonging to the achiral space group is not necessarily an achiral structure. The 208
types of achiral space groups are further classified into two groups: 43 space groups
that have only symmetry operations of first kind and 165 space groups that include the
symmetry operations of second kind. A crystal belonging to these 165 space groups
shows achiral nature. On the other hand, a crystal belonging to these 43 space groups
has a chiral structure. In summary, a crystal included in 65 (= 22 + 43) space groups is
defined as a chiral crystal.

• P41 -P43
• P41 22-P4322
• P41 212-P43212
• P31 -P32
• P31 12-P3212
• P31 21-P3221
• P61 -P65
• P62 -P64
• P61 22-P6522
• P62 22-P6422
• P41 32-P4332

230 crystallographyc space groups

22 chiral space groups
(11 enantiomorphyc pairs)

208 achiral space group

165 types containig
operations of 

the second kind

43 types containig
only operations of 

the first kind

65 Sohneke types

Chiral crystal structureAchiral crystal structure

Figure 2.9: Classification of the 230 types of crystallographic space group in terms of chirality.

Te is presented as an example of a compound with a chiral structure, as shown in
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Fig. 2.1. The crystal structure of Te is again shown in Fig. 2.10 and belongs to space
group P3121 (No. 152) or P3221 (No. 154) [13]. The screw axis corresponds to the
c-axis direction of the unit cell, and each Te atom takes a helical structure around the
screw axis, rotating by 120◦ and translating by 1/3 of the lattice period. When a right-
handed helix is defined as a helix that rotates clockwise in the direction of translation,
the symmetry operation 31 corresponds to a right-handed helix and 32 corresponds to a
left-handed helix. In the present Thesis, structures with right-handed helices are defined
as the right-handed crystal, while structures with left-handed helices are defined as the
left-handed crystal.

31 32 
P3121 (No. 152)

Mirror
P3221 (No. 154)

Left-handed crystalRight-handed crystal

Figure 2.10: Chiral crystal structure of Te.

Determination of the left-handed and right-handed structures

The Flack parameter is useful to determine the chirality of the noncentrosymmetric
structure by the single crystal X-ray diffraction analyses under consideration of the
resonant scattering (the anomalous dispersion effect) [21, 22]. The Flack parameter x is
defined by the following structure-amplitude equation

G2(h, k, l, x) = (1 − x)|F(h, k, l)|2 + x|F(−h,−k,−l)|2, (2.1)

where G2 is the square of the scaled observed structure factor, and |F(h, k, l)2| is the
scattering intensity from the crystal structure. For a twinned crystal, x gives a measure
of the relative amounts of the structure and its increase in the crystal.
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2.3 Antisymmetric spin-orbit interaction and split Fermi surfaces

Spin-orbit coupling

The energies characterizing the band structure are of the order of 2-10 eV. The band
splitting energy is, however, much smaller than 1 eV. A well-known case is that the
splitting of the band is caused by the spin-orbit coupling of electrons.

Let us consider the case that the energy levels of an electron moving in the elec-
trostatic potential V(r) of ions prove to be degenerate. Usually, this occurs in those
points of the space of the reciprocal lattice that has a high symmetry. The degeneracy
might be lifted due to a peculiar relativistic effect called the spin-orbit coupling. This
arises from the fact that in a coordinate system moving together with the electron, a
small magnetic field is added to the electric field; it appears to be of order (v/c)∇V(r),
where v is the electron velocity, c is the velocity of light, 3 × 1010 cm/s, and V(r) is
the periodic electrostatic potential of the lattice. This magnetic field interacts with the
magnetic moment of the electron and may alter the electronic energy spectrum such as
the band splitting mentioned above. The relative value of the correction to the energy
is of order (v/c)2 f (Z), where f (Z) is an increasing function of the atomic number Z.
Since v ∼ 108 cm/s, these enegries are usually of the order of 10−3 ∼ 10−2 eV.

To understand the spin-orbit coupling, it might be easier to consider the motion of
electrons in the vicinity of the nucleus. Consider the velocity of an electron in the 1s
orbital of an atom with the atomic number Z. If the orbital radius is r of the electron,
the following equation is obtained by considering the balance between the centrifugal
force and the Coulomb force. That is

m
v2

r
=

Ze2

r2 . (2.2)

The Bohr postulate for the 1s electron (the principal quantum number n = 1) is

mvr = ℏ. (2.3)

The orbital radius and velocity are thus obtained as

r =
1
Z

ℏ2

me2 =
aB

Z
, (2.4)

v
c
= Z

e2

cℏ
=

Z
137
. (2.5)
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Applying to Cu (Z = 29) provides v/c = 0.21, and therefore relativistic effects are no
longer ignored.

The orbital motion of the electron rotation around the nucleus generates an orbital
magnetic moment −µB l. On the other hand, in a coordinate system centered on the
electron, the nucleus with charge +Ze rotates around the electron. The motion of nu-
cleus generates a magnetic field HZ at the electron’s position and HZ is expressed by
Biot-Savart law as follow;

HZ =
Ze
c

r × v
r3 (2.6)

=
ℏ

mc
Ze
r3

[
r × p

]
. (2.7)

The Zeeman energy for the electron due to this magnetic field is expressed as

Hso = gµBs · HZ (2.8)

=
ℏ2e2

m2c2

Z
r3 s · l, (2.9)

where the spin momentum is µs = −gµBs and the Zeeman energy is −µs ·HZ. As can be
seen from the sign, this energy is lower when s and l are antiparallel. This interaction
between the spin angular momentum s and the orbital angular momentum l is called the
spin-orbit coupling. The value of eq. (2.9) is larger than the actually observed value by
a factor of 2. With relativistic corrections, it is correctly expressed as follows;

Hso =
ℏ2e2

2m2c2

Z
r3 s · l. (2.10)

The electric field E acting on the electron is

E =
Ze
r3 r. (2.11)

By using the E, the spin-orbit interaction can be transformed as follows,

Hso = −
ℏe

2m2c2 s ·
[
p× E

]
. (2.12)

More generally, the spin-orbit interaction is given by

Hso =
ℏ

2m2c2

∑
i

si ·
[
∇V(ri) × pi

]
, (2.13)
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where si, ri, and pi is the spin, the coordinate, and the momentum of the i-th electron,
respectively, and V(ri) is the potential acting on the i-th electron. Consider an isolated
atom with the total spin angular momentum S =

∑
i si and the total orbital angular

momentum L =
∑

i li. If we simplify the potential V(ri) = −Ze2/|ri| with the atomic
number Z, the equation (2.13) can be written as follows.

Hso =
ℏ

2m2c2

∑
i

Z
r3

i

si ·
[
ri × pi

]
(2.14)

=
ℏ2

2m2c2

∑
i

Z
r3

i

si · li (2.15)

This expression is equivalent to the semi-classically obtained expression of eq. (2.9)
with relativistic corrections. Defining the expectation value of Z/r3 as λ for the radial
wave function rφ(r), we obtain

λ =
ℏ2

2m2c2

〈 Z
r3

〉
(2.16)

=
ℏ2

2m2c2

∫ ∞

0

Z
r3 |rφ(r)|2 dr. (2.17)

Generally expressing, it is as follows;

λ =
ℏ2

2m∗2c2

∫ ∞

0

1
r

dV(r)
dr
|rϕ(r)|2dr, (2.18)

where V(r) is the sum of the nucleus potential and the classical Coulomb and exchange-
correlation potentials. The spin-orbit interaction Iso is calculated from following inte-
gral,

|Hso| = Iso(r) =
ℏ2

2m∗2c2

∫ r

0

1
r′

dV(r′)
dr′
|r′ϕ(r′)|2dr′. (2.19)

Here we calculate the spin-orbit interaction for the d electrons, not in the lattice but
in the isolated atom, following the method presented by Koelling and Harmon [23].
The Z is 45, 77, 32, and 50 for Rh, Ir, Ge, and Sn, respectively. Figure 2.11 shows
the radial atomic number wave function rϕ(r). The coupling constant of the spin-orbit
coupling r2dV/dr, and spin-orbit coupling ISO for each atom are shown in Figs 2.12(a)
and 2.12(b), respectively. The spin-orbit coupling is obtained to be 12.8 mRy (2020 K)
in Rh-4d, 38.0 mRy (6000 K) in Ih-5d, Fig 2.11(c) show that the spin-orbit coupling



27

reaches the constant value at rconst. = 0.37 a.u. for Rh, 0.11 a.u. for Ir, indicating the
spin-orbit coupling is determined near the nucleus atom. On the other hand, the rϕ(r)
function possesses a maximum value at r = 0.11 a.u. for Rh, 0.37 a.u. for Ir, which cor-
responds to the rconst. The present calculations indicate that the radial wave function of
Ir-5d electrons possesses a large distribution at the distance close the center, compared
with those of Rh-4d, Ge-4p, and Sn-5p electrons, which produces the relatively large
value of the spin-orbit coupling in Ir. Intuitively, it can be understood that the closer the
electron is to the nucleus, the faster it is accelerated by the Coulomb potential, resulting
in increasing the relativistic effect and the spin-orbit coupling.

Figure 2.11: Radial wavefunction rϕ(r) as a function of the distance r for Ir-5d, Rh-4d, and Co-3d
electrons in the isolated atoms, cited from ref. [2].
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Figure 2.12: (a) Coupling constant of the spin-orbit interaction
(
d2V(r)/dr2

)
r2, and (b) the spin-orbit

interaction ISO as a function of the r for Ir-5d, Rh-4d, and Co-3d electrons in the isolated atoms, cited
from ref. [2]. Simply thinking, r2dV(r)/dr, corresponds to the effective atomic number Zeff in the potential
V(r) = −Zeff/r. Zeff at r = 0 is very close to the atomic number Z in the nuclear potential V(r) = −Z/r,
where Z is 77, 45, and 27 for Ir, Rh, and Co, respectively.

Figure 2.13 shows the value of λ, or ζcal as a function of atomic number Z. λ of p
electrons are larger than those of d and f electrons. This is because the orbital wave
function rϕ of p electron has a large value near the atomic center compared to those of
d and f electrons. In other words, the spin-orbit coupling is larger when l is smaller.
Comparing the elements with the same main quantum number n and azimuthal quantum
number l, the larger Z is, the larger the spin-orbit coupling is.
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Figure 2.13: Spin-orbit interaction ζcal as a function of atomic number Z. Note that ζcal corresponds to λ
in eq. (2.18), cited from ref. [24].

Antisymmetric spin-orbit interaction

The result of spin-orbit interaction for isolated atoms mentioned above is also ap-
plicable to the crystalline lattice with noncentrosymmetric symmetry. In this case, the
magnitude of the antisymmetric spin-orbit interaction that alters the degenerate Fermi
surface into two Fermi surfaces is roughly proportional to the spin-orbit interaction in
eq. (2.19). Since the band structure calculation uses, in principle, the same potential
V(r) as mentioned above. When the antisymmetric spin-orbit interaction, mentioned
above very frequently, is at work, the splitting of Fermi surfaces with very similar
topology to each other but with different volumes occurs. The following therm of the
antisymmetric spin-orbit interaction

Hso = −
ℏ

4m∗2c2 (∇V(r) × p) · σ (2.20)

= α (n× p) · σ, (2.21)

where α is the strength of the spin-orbit interaction, n is the unit vector for the ∇V(r) di-
rection, and σ is the Pauli matrix, is added to the Hamiltonian for conduction electrons,
as follows;

εp =
p2

2m∗
+ α (n× p) · σ, (2.22)
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where p = ℏk. Here, α (n× p) · σ is described as αg(k).
With the splitting of the band, the Fermi surface also splits into two Fermi surfaces

due to the antisymmetric spin-orbit interaction. The spin direction of each band is an-
tisymmetric with respect to k. This strong coupling between spin and momentum is
called spin-momentum locking, and the wave number dependence of the spin on the
Fermi surface is called spin texture. The spin texture is also described by αg(k). Fig-
ure 2.14(c) shows Fermi surfaces with Rashba-type antisymmetric spin-orbit interaction
appearing in the polar point groups C3v, C4v and C6v. On the Fermi surface with con-
stant kz, the spins rotate clockwise and counterclockwise, corresponding to up-spin and
down-spin, respectively. Figure 2.14(d) shows the spin texture appearing in the point
group D3 to which this research object of TrX4 systems belongs. The spin direction is
perpendicular to the Fermi surface and shows inward and outward directions, respec-
tively. This spin texture is called the hedgehog or Zeeman type. Note that the Fermi
surface for the centrosymmetric compound is degenerated under H = 0, as shown in
Fig. 2.14(a), but splits into two Fermi surfaces with up (↑) and down (↓) spin states in
magnetic field, as shown in Fig 2.14(b). The splitting of the Fermi surface is described
next.
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(d)

Figure 2.14: (a) Spherical Fermi surface with generated up (↑) and down (↓) spin state, and (b) the Fermi
surface and the corresponding energy band split into two components depending on the up- and down-
spin states when the magnetic field H is applied to the material. The maximum cross-sectional areas S F

are also split into two components as a function of the magnetic field, well known as Zeeman splitting.
The Fermi surface and the corresponding energy band are split into two components depending on the
up- and down-spin states due to (c) the Rashba-type and (d) the hedgehog type of the antisymmetric
spin-orbit interaction even when H = 0. The field dependence of the maximum cross-sectional areas S F−

and S F+ are also shown in the noncentrosymmetric structure, after courtesy of Y Ōnuki and cited from
ref. [9].
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Splitting of Fermi surface

Figure 2.14(a) is a spherical Fermi surface with up- and down-spin states degenerated
at zero magnetic field for the centrosymmetric compound. Under an external magnetic
field, the energy band and corresponding the Fermi surface splits into majority and
minority spin states in the magnetic field, as shown in Fig 2.14(b).

In the noncentrosymmetric compound, the Fermi surface splits into two Fermi sur-
faces at zero magnetic field, as shown in Figs. 2.14(c) and 2.14(d), which is based on
the antisymmetric spin-orbit interaction. The dHvA frequency F also splits into F+ and
F−. From the relations m∗ =

(
ℏ2/2π

)
∂S/∂ε, S = (2πe/cℏ) F, we have the following

∆ε =
ℏ2

2πm∗
∆S

=
ℏe

m∗c
∆F

=
ℏe

m∗c
|F+ − F−|. (2.23)

Here, ∆ε is the magnitude of the antisymmetric spin-orbit interaction and can be deter-
mined from the dHvA frequencies and the cyclotron effective masses of the split Fermi
surfaces.

Fermi surface properties and the magnitude of the antisymmetric spin-orbit inter-
action for LaTrGe3 (Tr: Co, Rh, Ir) were investigated [2]. LaTrGe3 crystallizes in the
BaNiSn3-type structure, as shown in Fig. 2.7(b), whose space group is I4/mm (No. 107)
and crystal point group is C4v. Similar to CePt3Si, there is no mirror symmetry in the
c-axis direction. The angular dependences of dHvA frequencies of the Fermi surface
are essentially the same among LaTrGe3 (Tr: Co, Rh, Ir), as shown in Fig. 2.15. This
is plausible because the valence electron configuration of LaTrGe3 is 3d74s2 for Co,
4d85s1 for Rh, and 5d9 for Ir, with no difference in the number of valence electrons.
The dHvA frequency of the main branch α for LaCoGe3 is, however, slightly smaller
than those of LaRhGe3 and LaIrGe3, namely, the Fermi surface of LaCoGe3 is slightly
smaller in volume than those of LaRhGe3 and LaIrGe3. Moreover, it should be noted
that the width of the split dHvA frequency |F+−F−| of the branch α for LaIrGe3 is larger
than those for LaCoGe3 and LaRhGe3. Therefore, the antisymmetric spin-orbit interac-
tion ∆ε in LaIrGe3 is larger than those in LaCoGe3 and LaRhGe3. Here, the magnitude
of ∆ε of branch α is 460 K for LaCoGe3, 510 K for LaRhGe3, and 1090 K for LaIrGe3.
A large antisymmetric spin-orbit interaction of LaIrGe3 due to both the characteristic
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radial wave function ϕ(r) of the Ir-5d electrons near the nuclear center and the relatively
large effective atomic number Z of Ir [2].
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Figure 2.15: Angular dependences of dHvA frequencies in LaCoGe3, LaRhGe3, and LaIrGe3, cited from
ref. [2].

In the noncentrosymmetric crystal structures, typical examples are of the Rashba-
type mentioned above and chiral nature. The spins in the chiral structure are directed
from the Γ point (center of the Brillouin zone) to outside for one Fermi surface, as in
Fermi velocity, while spins are centered in the Γ point for the other Fermi surface, as
shown in Fig 2.14(d) [9]. Note that this is applicable to a special case. Namely, the
Fermi surface is spherical and exists in the Γ point in the Brillouin zone.

Next, we present three cases. The first case is the hexagonal chiral structure. CrSi2,
VSi2, and TaSi2 belongs to P6422, while only NbSi2 belongs to P6222, as shown in
Fig. 2.16. Note that the crystal structure in Fig. 2.16(c) for TaSi2 and VSi2 and the
structure in Fig. 2.16(d) for NbSi2 are mirror-symmetryc.
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Figure 2.16: Crystal structure of (a) TaSi2, VSi2, and CrSi2 (P6422), (b) VSi2 (6222), (c) Ta (V, Cr) atoms
in TaSi2 (VSi2, CrSi2) for simplicity and (d) Nb atoms in NbSi2, rotated the crystal structure by 180◦

along the [0001] direction, cited from ref. [9].
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Figure 2.17: Angular dependences of the dHvA frequencies in (a) TaSi2, (b) NbSi2, and (c) VSi2 and (d)
the theoretical Fermi surfaces in TaSi2, cited from ref. [9]

Figure 2.17 shows the angular dependences of dHvA frequencies in TaSi2, NbSi2,
and VSi2 and the corresponding theoretical Fermi surfaces. A magnitude of the spin-
orbit interaction or a splitting energy between two main Fermi surfaces named α(α′) is
experimentally determined to be 493 K in TaSi2, 209 K in NbSi2, and 19 K in VSi2.
The splitting energy is large in Ta-5d conduction electrons than those in the Nb-4d and
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V-3d electrons.
Since the crystal point group D6(222) provides g(k) = α1(kx x̂ + kyŷ) + α2kzẑ, the

hedgehog-like spin texture is expected to realize near the Γ point. The spin textures
of conduction electrons are theoretically calculated, as shown in Fig 2.18. We remark
the cross-sections of the bands 103- and 104- hole Fermi surfaces at the K point in the
hexagonal basal plane. The directions of the spins are approximately opposite each
other between two split Fermi surfaces, but the direction of the band 104-hole Fermi
surface do not simply directed toward the K point, This is because the corresponding
cross-section is not a circle but a triangle.

Figure 2.18: Cross-section and the spin structure in the kz = 0 plane calculated for the Fermi surfaces of
TaSi2, cited from ref. [25]

The next case is the cubic chiral structure in EuPtSi, which is known to exhibit
the magnetic skyrmion as in MnSi. The crystal structure of EuPtSi is the ullmannite
NiSbS-type or LaIrSi-type chiral structure (space group: P213, No. 198, T 4), described
later [26, 27]. Since this crystal structure has neither spatial inversion symmetry nor
mirror symmetry, chiral (left- and right-handed) structures are allowed for this com-
pound. As for NiSbS, the left panel of Fig 2.19(a) shows the crystal for as-grown
single-crystalline sample, meaning that there was no mixing of both-handed crystals.
Figures 2.19(b) and 2.19(c) show the crystal structures of MnSi and as-grown EuPtSi
single-crystalline samples, respectively. These compounds belong to the same space
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group in the crystal structure. As for EuPtSi, the four Eu atoms form a tetrahedron,
and the four Si atoms also form a similar tetrahedron, and they are combined, as shown
in Fig 2.19(c). Eight Pt atoms are at the corners of the cubic structure, and three Pt
atoms are located very close to the fcc atomic sites. The fourfold symmetry in the {100}
plane is lost, but there is threefold rotational symmetry around the ⟨111⟩ direction in
this chiral cubic structure.

Figure 2.19: (a) Crystal structures of right-handed and left-handed NiSbS. (b) structure of MnSi, and (c)
structure of EuPtSi where red spheres labeled a, b, c, and d represent Eu atoms, gray ones are Pt atoms,
and blue ones are Si atoms, cited from ref. [28].

Fermi surface properties are characteristic in EuPtSi. In the previous studies on
NiSbS and PdBiSe with the same ullmannite-type crystal structure as EuPtSi, it was
found that each Fermi surface splits into two different Fermi surfaces. This splitting of
the Fermi surface is due to the noncentrosymmetric (cubic chiral) crystal structure of
these compounds. The energy difference between two splits of nearly spherical Fermi
surfaces named α, and α′ was estimated to be 200 K for NiSbS and 1050 K for PdBiSe
for H ∥ [100] or [001]. Note that the splitting energy is highly different, depending
on the compound. This difference can be explained by the difference in the spin-orbit
coupling of the constituent elements. The spin-orbit interactions for Ni-3d, Sb-5p, and
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S-3p electrons in NiSbS are smaller than those for Pd-4d, Bi-6p, and Se-4p electrons
in PdBiSe.

Figure 2.20(a) and 2.20(b) show typical dHvA oscillations for H ∥ [001] and the
corresponding FFT spectrum in EuPtSi, respectively [29, 28]. The dHvA frequency
F(= cℏS F/2πe) is proportional to the maximum or minimum cross-sectional area S F of
the Fermi surface, which is expressed as a unit of the magnetic field. The main dHvA
branches were identified as α, α′, β′2, β(β′1), and so forth, by comparing with theoretical
Fermi surfaces for the non-4 f reference compound SrPtSi shown in Fig 2.20(d) and
2.20(e). The angular dependences of the dHvA frequency were studied by rotation of a
single-crystalline sample with respect to the magnetic field. Figure 2.20(c) show exper-
imentally observed angular dependences of dHvA frequency. The dHvA branches were
observed in the whole field direction. This means that all the observed dHvA branches
correspond to closed Fermi surfaces, namely, the Fermi surfaces are corrugated but
nearly spherical. These dHvA branches are theoretically explained for SrPtSi, as shown
in Figs. 2.20(d) and 2.20(e).

The cyclotron effective mass for each dHvA branch was determined from the tem-
perature dependence of dHvA amplitude. The cyclotron effective masses were 0.96
m0 for branch α and 0.88 m0 for branch α′. The energy difference ∆ε for two split
dHvA branches α and α′ (or two split Fermi surfaces) was estimated to be ∆ε =
(ℏe/m∗cc)|F+ − F−| = 1200 K.

The spintexture of conduction electrons in EuPtSi is theoretically calculated. Here,
we focus on the main band-121 and band-122 electron Fermi surfaces (α and α′) at
the Γ point in Figs. 2.20(f) and 2.20(g). Colors on the Fermi surface indicate the spin
orientation. Color values of red, green, and blue correspond to the magnitudes of S x,
S y, and S z, respectively. Spins on these Fermi surfaces are complementary, exhibiting
the opposite spin hedgehog structure, as shown in Figs. 2.20(f) and 2.20(g). These
spin structures can be seen more clearly in the cross-sectional views of α and α′ Fermi
surfaces, as shown in Figs. 2.20(h)-(k). In these figures, direction and magnitude of
spins are projected in the (001) and (111) planes. In the (001) plane, spins on the Fermi
surface of branch α point to the Γ point, whereas spins on the Fermi surface of branch
α′ point to outside. These are ideal cases for the chiral structure.

On the other hand, spin directions for H ∥ [111] are similar to those of the Rashba-
type spin texture, as shown in Figs 2.20(j) and 2.20(k). Spins on the Fermi surface of
branch α circulate counterclockwise with rotations, while spins on the Fermi surface of
branch α′ circulate clockwise with rotations [30].
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Figure 2.20: (a) dHvA oscillations for H ∥ [001] and (b) the corresponding FFT spectrum for EuPtSi.
(c) Detected angular dependences of the dHvA frequency, (d) theoretical angular dependences of dHvA
frequency for SrPtSi, and (e) corresponding theoretical Fermi surfaces and spin textures for (f) band-121
(branch α) and (g) band-122 (branch α′) Fermi surfaces, (h) and (i) cross-sectional views of the spin
texture in the (001) plane, and (j) and (k) those in the (111) plane for SrPtSi, cited from ref. [30].
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Spin textures on the Fermi surface can be observed using spin angle-resolved pho-
toemission spectroscopy (SARPES). Recently, the research for Te has been studied ex-
tensively [31, 32]. The crystal structure of Te is shown in Fig. 2.10. The space group
belongs to P3121 (No. 152) or P3221 (No. 154), and the crystal structure is a chiral
structure. A calculated the Fermi surface on the basis of the result of SARPES show the
spin orientations is opposite between left- and right-handed crystal: In the left-handed
crystal, the spin orientation is outward from the center, whereas in the right-handed sys-
tem, the spin orientation is inward to the center. The crystal point group of Te is D3,
giving αg(k) = α1(kx x̂ + kyŷ) + α2kzẑ, which is consistent with the experimental result.

2.4 Superconductivity, magnetic, and transport properties of Non-
centrosymmetric compunds

Noncentrosymmetric compounds exhibit characteristic superconductivity, magnetic,
and transport properties such as the huge upper critical field Hc2 in CeIrSi3, magnetic
skyrmion in MnSi and EuPtSi, and magnetochiral anisotropy.

Huge upper critical field Hc2 in CeIrSi3 amd related compounds

The BCS theory of superconductivity, which was proposed by Barden, Cooper, and
Schrieffer in 1957, is based on the following idea [33]. When an attractive interaction
between fermions is present, the stable ground state is no longer the degenerate Fermi
gas but a coherent state in which the electrons are combined into pairs of spin-singlets
with zero total momentum (k ↑,−k ↓: Cooper pairs). The conduction electrons distort
the lattice by moving in the lattice and attracting the positive ion. This distortion attracts
another conduction electron. Namely, the interaction between two electrons mediated
by the phonon forms the Cooper pair of the two electrons. A BCS-type superconductor
has an isotropic superconducting gap which is opened over the entire Fermi surface.
Superconductivity was regarded as one of the well-known many-body problems. The
BCS-supercinductivity has been, however, altered in heavy fermion superconductors.
The pairing mechanism is not due to phonons. These alternative mechanisms are as
follows: pairing mechanism correlated with antiferromagnetism (or antiferromagnetic
fluctuations), ferromagnetism vs superconductivity, quadrupole interaction vs super-
conductivity, and a nobel pairing state in the noncentrosymmetric crystal structure. Here
we describe the superconductivity in CeIrSi3.

First, we summarize the BCS-superconductivity. In the superconducting state, the
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Fermi surface shrinks by

∆ = 2ℏωDe−
1

D(εF)V , (2.24)

where ωD (ℏωD = kBθD, θD; Debye temperature of about 102 K) is the Debye cutoff
frequency, D(εF) is the density of states at Fermi energy εF of about 104 K, and the
interaction of the two electrons V is attractive (V > 0). Following the BCS theory, a
superconducting energy gap 2∆ is produced at 0 K

2∆ = 4ℏωDe−
1

D(εF)V . (2.25)

This means that depaired electrons occupy the electronic states separated by ∆ from the
Fermi energy, or by 2∆ from the highest energy levels of the Fermi surface.

The superconducting transition temperature Tsc in the BCS theory is obtained for
∆(T = Tsc)→ 0,

kBTsc = 1.13ℏωDe−
1

D(εF)V . (2.26)

The Debye cutoff frequency ωD is proportional to M−1/2 (M: atomic mass). The well-
known isotope effect is naturally explained by the BCS theory, namely, Tsc ∼ M−1/2.
Since 2∆ in eq. (2.25) and kBTsc in eq. (2.26) have the same form, the ratio is indepen-
dent of D(εF) and V , revealing the parameters free value

2∆
kBTsc

= 3.53. (2.27)

The temperature dependence of the specidic heat C and the nuclear spin-lattice re-
laxation rate 1/T1, obeys the exponential law. The electronic specific heat based on
Ce = γT in the normal state possesses a jump at Tsc, ∆C is expressed as

∆C
C(T = Tsc)

=
∆C
γTsc

= 1.43. (2.28)

This is a result of the weak coupling BCS theory. Note that the BCS superconductivity
is based on the weak coupling of the electron-phonon interaction, which produces a
relation of 2∆/kBTsc = 3.53 and ∆C/γTsc = 1.43. In the exact superconductor, the
electron-phonon coupling is not always weak. Strong-coupling superconductors exists:
Pb, for example, CeIrSi3 shown later.

The temperature dependence of the electronic specific heat Ce below Tsc is

Ce ∼ T−
3
2 e−∆/kBT (T < 0.1Tsc) (2.29)

Ce ∼ e−∆
′/kBT (0.2 < T < 0.5Tsc), (2.30)
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where eq. (2.29) is an expression based on the BCS theory at T << Tsc, but eq. (2.30)
is an empirical one. The gap ∆′ in eq. (2.30) is not the same as ∆ but is close to ∆. The
nuclear spin-lattice relaxation rate 1/T1 is expressed below Tsc as

1
T1
∼ e−

∆
kBT . (2.31)

Heavy fermion superconductors are known not to display an exponential dependence
as predicted by the BCS theory but to follow the power law for Ce and 1/T1 [34],

Ce =


∼ T 3 (axial type, point node)
∼ T 2 (polar type, line node)
∼ T (gapless)

(2.32)

1
T
=


∼ T 5 (axial type, point node)
∼ T 3 (polar type, line node)
∼ T (gapless)

(2.33)

This indicates the existence of an anisotropic gap, namely the existence of a node in
the energy gap. When we compare the phonon-mediated attractive interaction based on
the BCS theory with the strong repulsive interaction among the heavy fermions, it is
theoretically difficult for the former interaction to overcome the latter one. To avoid a
large overlap of the wave functions of the paired particles, the heavy fermion system
would rather choose an anisotropic channel, like a p-wave spin triplet or a d-wave spin
singlet state, to form Cooper pairs.

Typical superconductors of compounds are not pure compounds with elemental su-
perconductors. When decreasing the magnetic field for these superconductors, super-
conductivity will spontaneously nucleate at H = Hc2,

Hc2 =
h/e∗

2πξ2
=
ϕ0

2πξ2
=
√

2κHc, (2.34)

where e∗ = 2e, κ = λ/ξ is a Ginzburg-Landau (GL) parameter [35], λ is the London
penetration depth, ξ is the width of the superconducting order parameter, called the co-
herence length, and Hc is the thermodynamic critical field. If κ > 1/

√
2, Hc2(> Hc)

is realized and the corresponding superconductor is called the type-II, while the type-I
is in the case of κ < 1/2. The type-II superconducting properties are the main subject
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of this thesis. The type-II superconductor is in the vortex state for Hc1 < H < Hc2.
Below the lower critical field Hc1, the magnetic field is expelled as in the type-I super-
conductor. The vortex is a normal phase with a cylindrical shape of radius ξ. As for
the upper critical field Hc2, we note the conventional analyses. From the slope of the
upper critical field (−dHc2/dT )T=Tsc

, we can estimate the Hc2(0) value. The temperature
dependence of µ0Hc2(T ) was theoretically discussed by Werthamen, Helfand, and Ho-
henberg (known as WHH) [36, 37]. The upper critical field at T = 0 K, Hc2(0), can be
described using the WHH formula:

µ0Hc2(0) = 0.7
∣∣∣∣∣dHc2

dT

∣∣∣∣∣
Tsc

· Tsc. (2.35)

Here we described briefly the superconducting properties of CeIrSi3 with the Rashba-
type tetragonal structure [38, 39]. We show in Fig. 2.21 the pressure dependence of (a)
the Néel temperature TN and the superconducting transition temperature Tsc, (b) the
jump in specific heat at Tsc, and (c) the superconducting upper critical field Hc2(0)
at 0 K for the [001] direction in CeIrSi3 [38, 39]. The critical pressure at which TN

becomes 0 K is estimated to be Pc = 2.25 GPa. On the other hand, Tsc reaches its
maximum at about 2.6 GPa. At the same time, the jump in specific heat at Tsc is very
large, ∆Cac/Cac(Tsc)=5.8 at 2.58 GPa, indicating strong-coupling superconductivity, as
shown in Fig. 2.21(b). Note that in BCS theory ∆C/C(Tsc) = ∆C/γTsc = 1.43. Also,
as shown in Fig. 2.21(c), the upper critical field Hc2(0) for H ∥ [001] is maximum at
P∗c = 2.63 GPa.
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The superconducting properties in magnetic fields are highly anisotropic, as shown
in Fig. 2.22 [38]. For example, as mentioned above, the upper critical field around P∗c ≃
2.6 GPa is Hc2(0) = 450 kOe for H ∥ [001], while Hc2(0) = 95 kOe for H ∥ [110].
Also, the slope (−dHc2/dT )T=Tsc at Tsc ≃ 1.6 K is 170 kOe/K for H ∥ [001], whereas it
is 145 kOe for H ∥ [110]. The striking difference between H ∥ [001] and [110] is not
only the value of the upper critical field at 0 K but also its temperature dependence. The
upper critical field Hc2(T ) for H ∥ [110] is suppressed by the spin polarization based on
the Zeeman splitting, namely Pauli paramagnetic suppression with decreasing temper-
ature. Indeed, the orbital limiting field Horb(= −0.73(dHc2/dT )Tsc) estimated from the
slope of Hc2 at Tsc is to be 170 kOe [36, 37] and is much larger than Hc2(0)=95 kOe,
indicating the strong Pauli paramagnetic suppression. On the other hand, the upper crit-
ical field Hc2(0) ≃ 450 kOe for H ∥ [001] is not suppressed by the Pauli paramagnetic
limiting. Moreover, Hc2(T ) exhibits an upward behavior with decreasing temperature,
reflecting strong-coupling superconductivity. This is because all the spins of the con-
duction electrons are perpendicular to the magnetic field direction for H ∥ [001], as
shown in Fig. 2.14(c), and therefore the spin susceptibility for H ∥ [001] does not
change below Tsc.
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Thus, we conclude that in CeIrSi3, due to the combined effects of the strong coupling
superconductivity and the spin-orbit interaction working in a system without inversion
symmetry, the field-robust superconducting state with the huge Hc2(0) ≃ 450 kOe is
realized despite the low superconducting transition temperature Tsc = 1.6 K. We sum-
marize in Table 2.3 the superconductivity properties for chiral superconductors, which
are mainly non-magnetic superconductors.

Table 2.3: Chiral superconductors
crystal point space transition upper critical
system material group group temperature (K) field Hc2 (T)

Monoclinic BiPd [40] 2 (C2) P21 3.8 0.8

Trigonal
NbRh2B2 [41] 3 (C3) P31 7.6 18.0
TaRh2B2 [41] 3 (C3) P31 5.8 11.7

Hexagonal TaSi2 [42] 622 (D6h) P6222 0.35 0.003

PdBiSe [43] 23 (T ) P213 1.5
BeAu [44] 23 (T ) P213 3.3 0.034

LaRhSi [45] 23 (T ) P213 4.35
LaIrSi [45] 23 (T ) P213 2.3

Mo3Al2C [46, 47, 48] 432 (O) P4132 9.2 15.1
Cr2Re3B [49] 432 (O) P4132 9.2 10.0

Cubic Li2Pd3B [50, 51, 52, 53] 432 (O) P4332 7.2 4.5
Li2Pt3B [50, 51, 52, 53] 432 (O) P4332 2.6 1.9

W3Al2C[54, 55] 432 (O) P4132 7.6 13.1
Mo3Rh2N [56] 432 (O) P4132 4.6 7.32
Mo7Re13B [57] 432 (O) P4132 8.3 15.4
Mo7Re13C [57] 432 (O) P4132 8.1 14.8
W7Re13B [58] 432 (O) P4132 7.1 11.4
W7Re13C [58] 432 (O) P4132 7.3 12.6

magnetic skyrmion in EuPtSi and MnSi

Since EuPtSi has a characteristic chiral crystal structure, it has been studied as a
frustrated magnet from the theoretical viewpoints [59, 60, 61]. The magnetic long-
range ordering in geometrically frustrated magnets with the lattices such as triangular,
honeycomb, Kagomé, and pyrochlore lattices is known to be suppressed to unusually
low temperatures, and interesting phenomena often appear at low temperatures. Eu-
PtSi is a new type of geometrically frustrated magnetic system, in which Eu atoms
form a corner-sharing equilateral triangular lattice named trillium lattice, as shown in
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Fig. 2.19(c). A macroscopically degenerated trillium spin-ice state was suggested from
the local ferromagnetic Ising model for Eu spins on the trillium lattice [61], and a first-
order magnetic transition was predicted on the basis of the Heisenberg model on the
trillium lattice [59, 60].

Figure 2.23: Simplified (a) ferromagnetic, (b) antiferromagnetic, and (c) helical magnetic structures.

EuPtSi shows an antiferromagnetic order which is mediated by the RKKY inter-
action, as in the usual divalent Eu compounds. We show in Fig. 2.23 the simplified
ferromagnetic, antiferromagnetic, and helical magnetic structures, where the lattice pa-
rameter along the z-direction is c. Here, it was assumed that the magnetic moments
in the xy-plane (c-plane) are arranged ferromagnetically. Figure 2.23(a) shows the
ferromagnetic structure with the magnetic easy-axis along the y-direction. The an-
tiferromagnetic propagation vector for the antiferromagnetic structure in Fig. 2.23(b)
is q = (0, 0, 1), while the magnetic propagation vector for the helical structure in
Fig. 2.23(c) is q = (0, 0, 1/6).

The ground state magnetic structure of EuPtSi at H = 0 kOe was found to be he-
lical. When the magnetic field is applied for the ⟨111⟩ direction, a skyrmion lattice
phase is induced in a limited magnetic field and temperature region. The skyrmion can
be expressed by a superposition of three helical states or a triple-q order which satis-
fies the equation of q1 + q2 + q3 = 0. The ground state helical magnetic structure is
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closely related to the crystal structure. As mentioned above, since the crystal struc-
ture of EuPtSi lacks the inversion symmetry, canting of spins could be realized owing
to an additional magnetic exchange term; the Dzyaloshinskii–Moriya (DM) interac-
tion HDM = D ·

(
Si × S j

)
, where D is related to both the exchange interaction and the

spin-orbit interaction [7, 8]. When two spins S1 and S2 are situated at the sites with-
out inversion symmetry, a magnetic exchange term S1 × S2 leads to complex magnetic
states such as the helical magnetic structure [7, 8, 62, 63, 64]. We show later clarified
the existence of the magnetic skyrmion phase in the antiferromagnetic phase of EuPtSi,
which is highly different from the well-known skyrmion phase of MnSi.

The magnetization at T = 2 K for H ∥ [111] increases almost linearly as the magnetic
field is increased, exhibiting two small anomalies at HA1 = 9.2 kOe and HA2 = 13.8 kOe,
and saturates at Hc = 26.6 kOe, as shown in Fig. 2.24(a). The corresponding differen-
tial magnetization dM/dH has two peaks at HA1 and HA2. In this narrow field region
between HA1 and HA2, the ac susceptibility, χac, and the Hall resistivity, −ρH, exhibit
characteristic dips, as shown in Figs. 2.24(b) and 2.24(c), respectively. The magnetic
field versus temperature H–T phase diagram for H ∥ [111] is shown in Fig. 2.24(d). The
present magnetic-field-induced phase between HA1 and HA2 was found to be closed in
the H–T plane, ranging from T = 0.5 to 3.6 K. The A-phase for MnSi, however, only
exists as a small phase pocket in the vicinity of the magnetic ordering temperature of
29.5 K [65].
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Figure 2.24: (a) Magnetization curve for H ∥[111]and field derivative of magnetization dM/dH, (b) ac
susceptibility χac, (c) Hall resistivity −ρH, and (d) magnetic phase diagram for EuPtSi, cited from [28].

The ground state magnetic structure below TN in EuPtSi was revealed as a helical
structure with the propagation vector q= (0.2, 0.3, 0) at zero magnetic field by the recent
neutron and resonant X-ray scattering experiments [6, 66]. In addition, the A-phase
of EuPtSi for H ∥ [111] was clarified as the skyrmion lattice phase with the triple-q
order of q1 = (−0.09,−0.2, 0.29), q2 = (−0.2, 0.29,−0.09), and q3 = (0.29,−0.09,−0.2).
These magnetic wave vectors are three-fold symmetric around the [111] direction and
perpendicular to H ∥ [111].

We consider the large additional (topological) Hall resistivity ∆ρH = 0.12 µΩ·cm at
T ≃ 1 K for EuPtSi, which is compared with ∆ρH = 0.005 µΩ·cm for MnSi [65]. It is
speculated that the large additional Hall resistivity for EuPtSi might be due to the small
size of the skyrmion, 18 Å. This value is 10 times as small as that of 180 Å in MnSi,
as shown schematically in Fig. 2.25. The size of the skyrmion ξ = 18 Å for EuPtSi
was estimated using relations ξ = 2π/|q| and |q|= 0.36(2π/a) with the magnetic wave
vector q= (0.2,0.3,0) and the lattice constant a= 6.4336 Å. The present |q| value is quite
reasonable for the rare-earth compounds. In these compounds, the magnetic ordering
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is mediated by the RKKY interaction, and the Friedel oscillation is strongly damped as
the distance between rare-earth atoms is increased. As for the skyrmion of 3d-electron
systems, the helical propagation vector is small in magnitude, q= (0.017, 0.017, 0.017)
for MnSi. The size of the skyrmion is estimated to be 180 Å for H ∥ [111] [63, 67, 4].
By a simple calculation, the number of skyrmions in the unit area in EuPtSi is 100
times as large as those in MnSi. Large numbers of skyrmions might induce a large
emergent magnetic field in EuPtSi, leading to a large ∆ρH. It should be mentioned that
MnSi shows spin-fluctuating magnetism owing to itinerant 3d-electrons, which is highly
different from the localized magnetism of 4 f -electrons based on the RKKY interaction
for EuPtSi.

H

H

(c) EuPtSi

H

(a) MnSi (b)

Figure 2.25: Schematic representations of a skyrmion for (a) MnSi and (c) EuPtSi. The large circle in (b)
shows the size of the skyrmion for MnSi (180 Å), while the small circles indicate the size of the skyrmion
of EuPtSi (18 Å) in the A-phase for H ∥ [111], cited from ref. [28].
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chiral soliton lattice

There exist two kinds of magnets with helical magnetic structures. One is a Yoshimori-
type or symmetric helimagnet, as shown in Fig. 2.26. In this case, the nearest exchange
interaction J1 is ferromagnetic (J1 > 0), while the next nearest exchenge interaction
J2 is antiferromagnetic (J2 < 0). The pitch angle in this helical magnetic structure is
defined as tan−1 (−J1/2J2). When the magnetic field is applied for the helical axis, the
magnetic structure is changed from ”helical” to ”conical” and finally become a field-
induced ferromagnetic state. On the other hand, the field is perpendicular to the helical
axis, the magnetization indicates a metamagnetic transition at a certain field and the
magnetic structures changes into a fan structure, finally changing into a field-induced
ferromagnetic state, as shown in Fig. 2.26.

If the crystal structure is chiral, the other type of a helimagnet might be realized
due to the Dzyaloshinskii-Moriya (known as DM) interaction, where the antisymmetric
exchange interaction is the source of the chiral helimagnet, as shown in Fig. 2.26. In
this case, the pitch angle is defined as tan−1 (D/J), where the DM interaction is defined
as D · Si × S j, D is directed along the helical axis, and the exchange interaction J
between Si and S j is ferromagnetic (J > 0). The pitch angle is small because D is by
one order smaller than J, revealing a long period of L = 480 Å in CrNb3S6, for example.
When the magnetic field is applied perpendicularly to the herical axis, a chiral soliton is
realized as shown schematically in Figs. 2.27(a) and 2.27(b). The period of the soliton
L(H) becomes large as a function of the magnetic field H.
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Figure 2.26: Basic properties of symmetric and chiral helimagnets, cited from ref. [68].

Figure 2.27: Left- and right-handed helimagnetic structures and soliton lattices, cited from ref. [68].

In 1983, Miyadai et al. measured the magnetization of Cr1/3NbS2 and observed
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the characteristic magnetization curve for H ⊥ c-axis, as shown in Fig. 2.29 [69].
Cr1/3NbS2 was a layered compound, where the mother crystal of NbS2 with the hexag-
onal structure is metallic, and Cr is intercalated among the van der Waals gap of S and S
layers. At present, Ce1/3NbS2 is altered in the unit cell of the crystal structure, as shown
in Fig. 2.28 [70]. The corresponding compound is CrNb3S6, where a localized spin of
S = 3/2 in Cr3+, forms a helimagnet (Tc = 127 K). A saturation field Hs at 4.2 K is
Hs =20 kOe or 2 T fot H ∥ c-axis, whereas Hc is extremely small for H ⊥ c-axis, Hc =

1.4 kOe = 0.14 T. This is mainly based on the small value of J and D, although each Cr
layer is ferromagnetic and this exchange interaction is very strong.

(b)(a)

Figure 2.28: (a) Crystal structure of CrNb3S6 and (b) atomic configuration around Cr, cited from ref. [70].
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Figure 2.29: Magnetization curves in c-plane (H ⊥ c) at various temperatures. (b) A typical example of
the metamagnetic behavior observed at 77 K with a Foner-type magnetometer, cited from ref. [69].

The chiral soliton lattice was experimentally found in 2012 for this compound [71].
Figure 2.30 indicates Lorentz Fresnel micrographs in CrNb3S6 at 110 K under 0 Oe
and 2.08 kOe. L(H) increases from 48 nm at 0 Oe to 92 nm at 2.08 kOe. Note that Hs

value is enhanced when the size of the crystal becomes small. Namely, a small size of
the sample is used in this experiment.
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Figure 2.30: Lorents Fresnel micrographic of the chiral helimagnet and chiral soliton lattice in CrNb3S6

at 110 K in (a) 0 Oe and (b) 2.08 kOe, cited from ref. [68].

Magnetochiral anisotropy

Magnetochiral anisotropy is a phenomenon in which the physical properties of chiral
compounds differ between left-handed and right-handed crystals on the basis of the chi-
rality of the crystal under the magnetic field. Optical magnetochiral anisotropy, which
exhibits a different response in the absorption and refraction of unpolarized light prop-
agating parallel or antiparallel to the magnetic field in a chiral medium, was predicted
theoretically in the 1960s [72].

This magnetochiral anisotropy has been studied not only in optical physics but also
in a wide range of fields such as sound propagation [73, 74, 75, 76, 77], photochem-
istry [78, 79], electrochemistry [80]. In the case of intermetallic compounds, electrical
magnetochiral anisotropy, in which the electrical resistivity in magnetic fields is differ-
ent between left-handed and right-handed crystals, has been studied extensively. One
of the origins of electrical magnetochiral anisotropy with chiral compounds is reflected
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in magnetoresistance, which is induced by the helical motion of conduction electrons.
In a chiral structure, atoms are arranged in a helical configuration; therefore, the con-
duction electron, as it were, moves in a spiral motion through the crystal. By analogy
with a solenoid, a spontaneous magnetic field Bint is generated by the conduction elec-
trons in a spiral motion at zero external magnetic field. When the external magnetic
field Bext is applied to the herical crystal, the magnetic field B becomes B = Bint + Bext

and contributes to the magnetoresistance, as shown in Fig. 2.31. The direction of the
spontaneous magnetic field Bint changes with the direction of the atomic helix; namely,
left-handed crystals generate magnetic fields with a different orientation compared to
the right-handed crystals. This is because the electrical resistivity is different between
the right-handed and left-handed systems.

R(I, B) = R(-I, B)
R(I, B) = R(I, -B)

R(I, B) ≠ R(-I, B)
R(I, B) ≠ R(I, -B)

Achiral material Chiral material

B
I

B
I

Bint

Left-handed Right-handed

Bint

R(I, B) = R0(1+µ
2B2) R(I, B) = R0(1+µ

2B2+γΒΙ)

(a) (b)

e e

Figure 2.31: (a) Illustration of electrical resistances of achiral and chiral conductors and (b) illustration
of the internal magnetic fields which are produced from the helical motion of the conduction electrons in
left- and right-handed crystals.

Regarding the theory of electrical magnetochiral anisotropy, Rikken generalized On-
sergar’s reciprocal theorem into the nonlinear regime, and obtained the following equa-
tion;

RD/L = R0

[
1 + µ2B2 + γD/LB · I

]
, (2.36)

where µ is the mobility of the conduction electron, and γD and γL are the magnetochi-
ral coefficient corresponding to the right-handed and left-handed crystals, respectively,
satisfying γD = −γL. In eq. (2.36), the first term represents the electrical resistivity
at zero field, the second term represents the normal magnetoresistance, and the third
term represents the magnetoresistance due to the electrical magnetochiral anisotropy.
The first report of electrical magnetochiral anisotropy was conducted by Rikken using
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single crystals of twisted Bi [81]. The crystal structure of Bi belongs to the space group
R3̄c (No.167). Although the crystal structure is an achiral structure, twisting the crystals
to right and left rotation gives chirality to the crystals. The field dependence of the elec-
trical magnetochiral anisotropy was studied in Bi helix, namely ∆R ≡ R(I, B)−R(−I, B)
for two samples (L-torsion and D-torsion samples), where correspond to the left-twisted
and right-twisted samples, respectively. The L-torsion sample has a positive correlation
to the magnetic field, while the D-torsion sample has a negative correlation.

The electrical magnetochiral anisotropy was also observed in Te, a semiconductor
with a chiral structure [82]. The angular dependence of the electrical magnetochiral
anisotropy was studied in Te. ∆R/R = 4V2ω/V , or VEMChA, where V2ω is the second
harmonics of the voltage when a an alternating current Iω = I0sinωt is applied to the
sample, is expressed as follow;

VEMChA = IREMChA (2.37)

= γD/LR0BI2 (2.38)

= γD/LR0BI2
0sin2ωt (2.39)

=
γD/L

2
R0BI2

0

[
1 − sin

(
2ωt +

π

2

)]
. (2.40)

The last variant of the equation is based on the double angle formula. The magnitudes
of VEMChA shows approximately the same value in the right- and left-handed crystals,
while the signs of VEMChA are different. Namely, the electrical magnetochiral anisotropy
has opposite responses in the right- and left-handed crystals in Te. The temperature
dependence of ∆R/R in Te was studied for the left-handed crystal. The temperature
range is approximately from 260 K to 340 K. The ∆R/R increases with decreasing
temperature. Rikken discussed this behavior using the electrical conductivity σ derived
from the Boltzmann equation;

σi j =
q2τ

4π3ℏ2

∫ (
∂ε(k)
∂ki

)2
∂ f
∂ε

d3 k, (2.41)

where f is the distribution function, q is the charge, τ is the scattering lifetime, m∗ is the
effective mass, and for Maxwell-Boltzmann statistics, ∂ f /∂ε = − f /kbT . By assuming
the splitting of the Fermi surface to be ∆ε = χD/L k·B⊥, the energy dispersion around the
H point is expressed as ε(k) = ℏ2 k2/2m∗ + χD/L k · B⊥, and then eq. (2.41) is expressed
as
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where
γD/L = m∗χD/L/NqℏkbT (2.42)

and N is the carrier density. Using the carrier density of Te, the temperature dependence
of γD/L is obtained as T−

5
2 exp(Eg/2kBT ), which is in good agreement with the experi-

mental results. Semiconductors and semimetals are extremely small in the m∗ of order
0.01 m0 and then γD/L is enhanced for these materials with high-quality and longer τ
values.

The electrical magnetochiral anisotropy requires both inversion and time-reversal
symmetry breaking. In a non-magnetic chiral crystal, the inversion symmetry is broken,
but the time-reversal symmetry is preserved. Therefore, applying an external magnetic
field breaks the time-reversal symmetry in the crystal. On the other hand, ferromagnetic
and antiferromagnetic materials break the time-reversal symmetry, and it is expected to
show a large electrical magnetochiral anisotropy. MnSi crystallizes in the cubic chiral
structure with space group P213 (No. 198), in which the helical and skyrmion phases
exist below Tc = 35 K. The electric magnetochiral anisotropy was studied for MnSi,
together with the chiral helimagnetic compound CrNb3S6 [83, 84].



CHAPTER 3

Exprimantal

3.1 Single crystal growth

High-purity samples are essential for physical properties experiments. Physical
properties, especially at low temperatures, are often strongly affected by impurities
and lattice distortions, which mask essential phenomena. In particular, as described
in Chaper 3, the dHvA signal is greatly attenuated by impurity scattering, so that the
purity of the single crystal is of utmost importance. In this study, we synthesized sin-
gle or polycrystalline crystals and succeeded in obtaining high-quality single crystals
through trial and error.

Single crystals of α-RhSn4 and α-IrSn4 were synthesized by the flux method. Single
crystals of IrGe4 were synthesized by the Czochralski method. Moreover, the polycrys-
tals of RhGe4 were synthesized by the high-pressure method. The crystal growth will
be introduced in this section.

Previous report

IrSn4

Three types of crystal structure have been reported: low temperature phase of α-
IrSn4, high temperature phase of β-IrSn4, and high pressure phase of IrSn4. α-IrSn4

crystallizes in a trigonal IrGe4-type structure with space group either P3121 (No. 152)
or P3221 (No. 154), as shown in Fig. 3.2(a). The first synthesis of α-IrSn4 was reported
by Lang [85]. Single crystals of α-IrSn4 were obtained by annealing the transition

59
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metals with tin in the atomic ratio 1 : 10 in evacuated silica tubes at 550 ◦C for 2 days,
followed by 5 days at 300 ◦C and subsequent quenching in water. The largest dimension
of single crystals is approximately 0.5 mm. The residual resistivity ratio RRR is 1.5,
indicating a low-purity single crystal. Recently, Omura succeeded in synthesizing high
quality of single crystals by the Sn self-flux method [86]. The synthesis method is as
follows: Ir powder (99.99% (4N)) and an excessive amount of Sn (5N) at an atomic
ratio of Ir : Sn = 1 : 10 were loaded into a quartz tube and sealed under vacuum.
The sealed quartz ampoule was heated up to 800 ◦C, maintained at this temperature for
100 h, cooled down to 200 ◦C at a rate of 6 ◦C/h, and furnace cooled down to RT. The
RRR value is 628, attesting to the high quality of the crystal. However, the size of the
single crystals is approximately 0.3 mm, which is too small to determine the orientation
and to detect the dHvA effect.
β-IrSn4 crystallizes in a tetragonal MoSn4-type structure with space group I41/acd

(No. 141), as shown in Fig. 3.2(b). The first synthesis of β-IrSn4 was reported by
Nordmark in 2002 [87]. The synthesis method is as follows: Starting materials were
powder of Ir (3N) and Sn (5N) which were mixed in a molar ratio of 1 : 10. The
reactants were pressed into pellets and loaded into quartz ampoules, which were sealed
under vacuum. The quartz ampoules were heated to 800◦C, annealed for 24 h and
subsequently quenched in water. In addition, they reported that α-IrSn4 was synthesized
at temperatures below 600 ◦C and β-IrSn4 at temperatures above 700 ◦C.

HP-IrSn4 crystallize in a tetragonal PtSn4-type structure with space group Aba2
(No. 42), as shown in Fig. 3.2(c). The first synthesis was reported by Larchev in
1984 [88]. The synthesis method is as follows; Ir powder (3N) and Sn powder (4N)
at a molar ratio of Ir : Sn = 1 : 4 were compressed and heated at temperatures of
900-1100 at pressures above 6.0 GPa for 30 min.
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Figure 3.1: Crystal structure of αIrSn4. (a) and (b) correspond to the top view from [0001] and the crystal
structure with space group of No. 152, respectively. (c) Left and right figures show the spiral structure of
Ir-atoms based on the crystal structure. Upper figures of (c) show the 3-fold screw axis 31 for P3121 and
32 for P3221 with graphical symbols.

RhSn4

As for RhSn4, two types of crystal structures have been reported: a low temperature
phase of α-RhSn4 and a high temperature phase of β-RhSn4. α-RhSn4 crystalizes in a
trigonal IrGe4-type structure same as α-IrSn4, as shown in Fig. 3.2(a). The first synthe-
sis of α-RhSn4 was reported by Lang [85]. Single crystals of α-RhSn4 were obtained
by annealing the transition metals with tin in the atomic ratio 1 : 10 in evacuated silica
tubes at 550 ◦C for 2 days, followed by 5 days at 300 ◦C and subsequent quenching in
water. The largest dimension of single crystals is approximately 0.5 mm. The residual
resistivity ratio RRR is approximately 10, indicating a low-purity single crystal.
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β-RhSn4 crystallizes in the tetragonal MoSn4-type structure same as β-IrSn4, as
shown in Fig. 3.2(b). The first synthesis of β-RhSn4 was reported by Xing in 2002 [89].
The synthesis method is as follows; Rh powder (4N) and Sn grains (4N) were mixed in
a molar ratio of Rh : Sn = 1 : 20, sealed in an evacuated quartz tube, and then heated up
to 1050 ◦C. Subsequently, the sample was slowly cooled down to 650 ◦C over 7 days
and cooled to RT.

IrGe4

Unlike the case of IrSn4 and RhSn4, only one structure of IrGe4 has been reported so
far by Panday in 1969 [90]. The crystal structure is shown in Fig.3.2(a). The detailed
synthesis method is not described.

RhGe4

Polycrystal growth of RhGe4 under high pressure was reported by Larchev in 1984 [88].
Rh powder (3N) and Sn powder (4N) at a molar ratio of Rh : Sn = 1 : 4 were compressed
and heated at temperatures of 1000-1300 at pressures above 2.5 GPa for 30 min. The
superconducting transition was reported in Ref. [88]. The superconducting transition
temperature is Tsc = 2.5 K determined by zero resistivity, described only by sentence
without any figures. Crystal structures for TrX4 are summarized in Table. 3.1
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Figure 3.2: Crystal structure of (a) IrGe4-type structure, (b) MoSn4-type structure, and (c) PtSn4-type
structure.

Table 3.1: Crystal structures for TrX4
IrGe4-type structure MoSn4-type structure PtSn4-type structure

P3121 (No. 152) or P3221 (No. 154) I41acd (No. 41) Aba2 (No. 68)

IrSn4
α-IrSn4 [85] β-IrSn4 [87] HP-IrSn4 [88]

(low temperature phase) (high temperature phase) (high pressure phase 6.0 GPa)

RhSn4
α-RhSn4 [85] β-RhSn4 [89]

(low temperature phase) (high temperature phase)

IrGe4 IrGe4 [90]

RhGe4
RhGe4 [88]

(high pressure phase 5.0 GPa)

Phase diagram

Phase diagram is a graphical representation of the physical states of a substance un-
der different conditions of temperature, composition, and pressure. A typical phase
diagram of a binary alloy system consists of temperature along the y-axis and composi-
tion along the x-axis under ambient pressure. A phase diagram is essentially important
for material syntheses.

Figures 3.3(a) and (b)3.3 show phase diagrams of Rh-Sn and Rh-Ge, respectively [91].
The red arrows in the figure indicate where the composition ratios of Rh to Sn and Rh to
Ge are 1 : 4. The purple area at the top of the figure indicates the liquid phase, while the
lines in the white area indicate the solid phase. The Rh-Sn binary phase diagram shows
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that RhSn4 is an incongruent melting, indicating that RhSn4 cannot be synthesized with
a composition of Rh : Sn = 1 : 4. Two types of RhSn4 have been reported: the low
temperature phase of α-RhSn4 which crystallizes in the IrGe4-type structure with space
group of P3121 (No. 152) and the high temperature phase of β-RhSn4 which crystal-
lizes in the β-IrSn4-type structure with space group of I41/acd (No. 140). Note that
their phase boundaries have not been shown in Fig. 3.3(a). As for RhGe4, the Rh-Ge
binary phase diagram shows that RhGe4 does not exist under ambient pressure. For
Ir-Sn and Ir-Ge binary systems, no phase diagrams have been reported.

(a) (b)

Rh : Sn = 1 : 4

Rh : Ge = 1 : 4

Figure 3.3: Phase diagrams of (a) Rh-Sn and (b) Rh-Ge, cited from ref. [91].

Thermal Gravity-Differential Thermal Analyses

The phase diagram is essential to synthesize the high quality of single crystals. In
the case of RhSn4, the boundary between the low-temperature phase α-RhSn4 and high-
temperature phase β-RnSn4 has not been reported. As for Ir-Sn and Ir-Ge binary sys-
tems, there have been no reports for a phase diagram. To investigate the binary phase
diagrams, we carried out thermal gravity-differential thermal analyses (TG-DTA). TG
measurement is a technique to measure the weight change of a sample when it is heated
and cooled at a constant rate or held at a constant temperature. DTA is an analysis
method that measures the temperature difference between a sample and a thermally in-
ert reference while heating and cooling them at a constant rate. When the temperature
difference is plotted as a function of temperature (DTA curve), the temperature differ-
ence shows a peak structure at an endothermic or exothermic phase transition such as
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crystallization or melting. Figures 3.4(a) and 3.4(b) show the DTA curves when a sam-
ple melts and crystallizes, respectively, together with the TG curves. Since melting is
an endothermic reaction, the DTA curve has a minimum value. The melting tempera-
ture Tm is defined by the temperature at which the DTA curve begins to change. On the
other hand, since crystallization is an exothermic reaction, the DTA curve has a maxi-
mum value, and the coagulation temperature Tc is defined by the temperature at which
the DTA curve begins to change. The TG curve is constant when the sample melts or
crystallizes.

DTA

Temperature

TG

Tm

DTA

Temperature

TG

Tc

(a) (b)

Figure 3.4: Schematic examples of DTA curves for (a) melting (b) crystallizing of samples, together
with TG curves. Tm and Tc represent the melting temperature and coagulation temperature, respectively.
Tm is defined with temperature increasing measurement and Tc is defined with temperature decreasing
measurement.

TG-DTA was measured using a STA 2500 Regulus (NETZSCH), as shown in Fig.
3.5(a). Figure 3.5(b) shows a photograph of the balance which measures the weight
of the sample. The sample and reference are put in an almina cup and placed on the
balance. A thermocouple is placed under the balance to measure the temperature of the
sample and the reference. Figure 3.5(c) shows the almina cup and Pt reference. The
sample is single crystals of powdered α-IrSn4 and α-RhSn4. TG-DTA measurements
were performed by increasing the temperature from room temperature to 900 (1200) ◦C
at 10 ◦C/min, keeping for 10 min under 900 (1200) ◦C, then decreasing to room tem-
perature at 10 ◦C/min for α-RhSn4 (α-IrSn4).
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(a) (b)
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sample Pt
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Figure 3.5: Pictures of (a) TG-DTA apparatus of STA 2500 Regulus (NETZSCH), (b) the balance for
TG, and (c) almina cups and Pt references.

Figure 3.6(a) shows the temperature dependence of TG-DTA measurement for α-
RhSn4. The left axis represents the DTA, and the right axis represents the TG. In a
temperature-increasing measurement, there are two minimums corresponding to the
endothermal reaction. The temperatures at which the DTA curve begins to change are
450 ◦C and 500 ◦C. 450◦ might correspond to the boundary between α-RhSn4 and β-
RhSn4. 500 ◦C is also written in the reported phase diagram. The result of temperature
increasing measurement is different from that of decreasing measurement, indicating
that β-RhSn4 is an incongruent melting. Based on the reported phase diagram of Rh-
Sn binary system and the present TG-DTA results, the phase diagram of Rh-Sn binary
system can be deduced, as shown in Fig. 3.6(c). Figure 3.6(b) shows the temperature
dependence of TG-DTA measurement for α-IrSn4. In the temperature-increasing mea-
surement, there are two minima corresponding to the endothermal reaction at 610 ◦C
and 770 ◦C. 660 ◦C might correspond to the boundary between α-IrSn4 and β-IrSn4.
With reference to the phase diagram of Rh-Sn binary system, the phase diagram of
Ir-Sn binary system can be deduced, as shown in Fig. 3.6(c).
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Figure 3.6: Temperature dependences of DTA and TG for (a) α-RhSn4 and (b) α-IrSn4, and deduced
phase diagrams for (c) Rh-Sn binary systems and (d) Ir-Sn binary systems.

Flux method: α-RhSn4 and α-IrSn4

The flux method is a kind of single crystal growth method, which corresponds
to a slow-cooling process of the premelted components, taken in non-stoichiometric
amounts [92]. The advantages of this technique are shown below:

1. Single crystals can be grown often well below their melting points, and this often
produces single crystals with fewer defects and much less thermal strain.

2. Flux minerals offer a clean environment for growth since the flux getters impurities
which do not subsequently appear in the crystal.

3. There are no stoichiometric problems caused, for instance, by oxidation or evapo-
ration of one of the components. Single crystal stoichiometry ”controls” itself.
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4. This technique can be applied to the compounds with high evaporation pressure
since the crucible is sealed in the ampoule and the flux prevents evaporation.

5. No special technique is required during the crystal growth, and it can be done with
a simple and inexpensive equipment. This is a season why the flux method is
sometimes called ”poor man’s” technique.

(a)

(b)

(c)

(d)

Ir : Sn = 1 : 20

Ir
Sn

start end

melting
α-IrSn4 crystal

flux

(e)

Figure 3.7: (a) Schematic figure of flux methods and (b) the synthesis condition for α-IrSn4. Pictures of
(c) a prepared quartz tube for crystal growth, (d) a box furnace of FUW232PA (ADVANTEC), and (e) a
centrifuge of H-19α (KOKUSAN).

There are, to be sure, a number of disadvantages to the technique. The first and
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foremost is that it is no always an applicable method: an appropriate metal flux from
which the desired compound will crystallize may not be found. In addition, difficulties
are encountered with some flux choices, when the flux enters the crystal as an impurity,
Excessive nucleation causes small crystals, which takes place either due to a too fast
cooling rate, or supercooling of the melt by subsequent multiple nucleations and fast
growth of large but imperfect crystals usually containing inclusions. The contamina-
tion from the crucible cannot be ignored, when reactions with materials occur at high
temperatures. Finally, the ability to separate crystals from the flux at the end of growth
needs special considerations.

Single crystals of α-RhSn4 and α-IrSn4 were grown by the Sn-self flux method.
Starting materials of 4N (99.99 % pure)-Ir powder and 5N-Sn with the composition of
Ir : Sn = 1 : 10 were inserted in an alumina crucible, which was sealed in a quartz
tube under vacuum (less than 1 × 10−5 torr), as shown in Fig. 3.7(c). The sealed quartz
tube was heated to 800 ◦C, maintained at this temperature for 100 h, cooled slowly to
200 ◦C at a rate of −6 ◦C/h, and cooled rapidly to room temperature, as in our previous
study [86]. The Sn-flux was removed by spinning the ampoule in a centrifuge at 300 ◦C.
The synthesis condition is shown in Fig. 3.7(b). The excess Sn-flux on the sample was
further removed by dissolving the sample into diluted HCl.

We also grew single crystals of α-IrSn4 by the Sn-flux method with a temperature
gradient in a horizontal two-zone electric furnace. This modified flux method was re-
ported to be useful for high-quality single crystal growth [93]. Ir and Sn materials with
the composition of Ir : Sn = 1 : 15 were inserted in a 15 cm-long quartz tube and
sealed under vacuum, which was heated to 675 ◦C at zone 1 (starting materials zone)
and 600 ◦C at zone 2 (single crystals zone), maintained at these temperatures for 168 h,
and cooled to 325 ◦C and 250 ◦C, respectively, with a rate of −0.5◦C/h. The obtained
single crystals are later shown in the inset of Fig. 3.14(a). In the case of RhGe4 and
IrGe4, single crystals were not synthesized using the Sn-, Pb-, and Bi-flux methods.
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(a) (b)

Figure 3.8: (a) Hirizontal two-zone furnace and (b) the synthesis condition for α-IrSN4.

Czochralski method: IrGe4

The Czochralski method is a crystal growth technique that starts with the insertion
of a seed crystal or tungsten rod into melting materials in a crucible, pulling the seed
upwards to obtain a single crystal. A high-frequency furnace or arc furnace is used
to melt the raw materials. The pull-up speed is set at about 10 - 15 mm/h, and each
synthesis takes only a few hours - 10 hours. The advantage is that materials with high
melting points can be reacted such as Ir (melting point: 2,446 ◦C) and large single crys-
tals can be synthesized in a short time. The schematic view of the arc furnace is shown
in Fig. 3.9(a). The tungsten torches are used for melting the materials using arc melting.
There are four torches to improve the stability of the temperature of the melted mate-
rial. A Cu-hearth corresponds to the crucible and is a water-cooled one. Arc melting
was conducted under a high-quality (6N) argon gas atmosphere. Before synthesizing a
single crystal, a homogeneous polycrystal sample was synthesized. The procedure of
synthesizing the polycrystal was repeated several times to ensure sample homogene-
ity. The Czochralski method is only applicable to compounds with low-vapor pressure.
When we pull up a single crystal from the melting raw materials, it is important to
control the diameter of the crystal, the pulling speed, and the power of the torches. A
typical necking diameter is about 1 mm, while the single crystal ingot has 3 ≃ 4 mm in
diameter. The growth rate is 10 - 15 mm/h to avoid stacking faults in the sample.
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(a) (b)

(c)

(d)

Figure 3.9: (a) Illustration of the tetra-arc furnace, after courtesy of Y Ōnuki. (b) Schematic picture of
Czochralski method. Picture of (c) tetra-arc furnace (TCA4-6P, TECHNO SEARCH CORP.) and (d) a
single crystal of IrGe4 in growth.

Starting materials of IrGe4 ware powder of 4N-Ir and ingot of 6N-Ge with a compo-
sition ratio of Ir : Ge = 1 : 4 and the total weight is 10 g. Ir-powders were pressed to
make pellets for easier handling. Ir-pellets and Ge-ingots were melted using the arc fur-
nace to ensure sample homogeneity. Since Ge has a low melting point Tm (= 938.2 ◦C)
compared to Ir (Tm = 2.448◦C), we first melted Ge, and then melted Ir. After melting the
homogeneous material, the single crystal was pulled up at the speed of 15 mm/h. The
photographs of single crystals are later shown in the inset of Fig. 3.14(b). As described
later, one ingot is found to be an enantiopure crystal of the trigonal structure with space
group P3121 (No. 152), while the other ingot belongs to the chiral P3221 (No. 154).

High-pressure syntheses: RhGe4

High-pressure synthesis is a crystal growth method with applying ultra-GPa pressure
to a sample. The high-pressure syntheses can produce materials that cannot be real-
ized under ambient pressure; synthesizing polycrystalline diamond [94] and exploring
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new superconductors such as iron-based superconductors [95, 96, 97]. In our labora-
tory, we have succeeded in resolving the rare-earth ion deficiency in filled skutterudite
compounds using high-pressure syntheses method, leading to the elucidation of their
essential physical properties [98].

(a)

(b)

5 mm

(c)

(e)(d)

(f)
Cubic pyrophylite

Carbon heater

BN crucible

Mo sheet

Pytophylite lids

BN lids

Mo sheet

Cubic pyrophylite

BN crucible

BN lid
Pytophylite lid

Pytophylite lid

Mo sheet

BN lid

Sample

Carbon heater

Figure 3.10: (a) Cubic-anvil high-pressure apparatus and (b) enlarged view of the cubic-anvil cell. (c),(d)
Cell components of high-pressure synthesis. (e) Synthesis conditions of RhGe4 and (f) synthesized crystal
of RhGe4.

Figure 3.10(a) shows a high-pressure syntheses apparatus of ”Piglet II” in our labo-
ratory. This apparatus makes high pressure by a static method using a piston-cylinder
and a cubic anvil cell and apply a maximum load of 700 tons. Figure 3.10(b) shows an
enlarged view of the cubic anvil. The sample cell is placed in the center of the anvil
system. The sample cell consists of a pyrophyllite cell, a graphite heater, Mo sheets for
electrodes, and a BN crucible as shown in Fig. 3.10(c) and 3.10(d). The sample space is
6.5ϕ × 5.5 mm3, which is relatively larger than that of normal high-pressure syntheses
apparatus. The sample cell is set in the anvil system, and then the pressure is applied to
the cell, where the maximum pressure is about 6 GPa. The sample is heated up using
the carbon heater, where the maximum temperature is about 1600 ◦C. A current flows
the carbon heater through the Mo electrode sheet attached to the top and bottom of the
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sample cell. After the heating process under high pressure, the sample cell was taken
out from the apparatus. The sample cell becomes smaller after high-pressure treatment.

The characteristic feature of the present high-pressure syntheses apparatus is as fol-
lows. It can keep high temperatures under maximum pressure for one week. Therefore,
in addition to the usual crystal syntheses in the solid state of the material, it is possible to
perform the flux method under high pressure. We have succeeded in growing many sin-
gle crystals such as filled skutterudite compounds of PrFe4Sb12 [98], YbOs4Sb12 [99],
the pyrite compounds of CuS2 and CuSe2 [29], and so on. In particular, the crystal
quality of CuS2 and CuSe2 was high enough to detect the dHvA signals [29].

In the case of RhGe4, polycrystalline samples were synthesized using the present
cubic-anvil-type high-pressure apparatus. Starting materials of Rh and Ge with a sto-
ichiometric ratio were placed in a cylindrical BN crucible, which was compressed to
4 GPa, heated to 1200 ◦C under 4 GPa, maintained for 24 h, cooled to 700 ◦C in 3 days,
and quenched to room temperature, as shown in Fig. 3.10(e). The polycrystalline sam-
ple was found to consist of tiny single crystals with a size of less than 1 mm. The
photograph of a RhGe4 is shown in Fig. 3.10(f).

3.2 Analyses of crystal structures

Powder X-ray analyses

Powder X-ray diffraction is a widely used technique to obtain information on crystal
structures, such as the identification of crystalline phase and determination of lattice
constant, and so on. Powder X-ray diffraction is based on Bragg’s law;

2dhklsinθ = nλ, (3.1)

where dhkl is the lattice spacing of the crystal plane with the Miller index (h k l), λ
is the wavelength of the X-ray, and n is the order of the diffraction. Figure 3.11(a)
shows a schematic picture of powder X-ray diffraction. The incident X-rays hits the
sample. The angle of the incident X-ray with the sample plane is θ, while the angle with
the diffracted X-ray is 2θ, therefore, the detector is placed at the angle of 2θ with the
incident X-rays (θ/2θ-scan). Analyzing a graph that plots the intensities of the detector
as a function of the 2θ provides various information about the crystal structure. The
basic information obtained from powder X-ray diffraction is the lattice constant. In the
case of the hexagonal lattice, The dhkl is expressed using the lattice constant and the
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Miler index as follows;

dhkl =
1√

4
3

(h2+hk+k2)
a2 + l2

c2

. (3.2)

Since dhkl is obtained from eq. (3.1) using the peak position, it is essential to read the
peak position accurately. Differentiating eq. (3.1) by θ gives the following equation,

∆d
d
= −∆θcotθ. (3.3)

As θ approaches 90◦ (high angle region), the error of the lattice constant ∆θ/θ decreases.
The lattice constant is obtained by extrapolating to 2θ = 180◦, where the angle error is
the smallest. X-ray powder diffraction measurements were performed using a Rigaku
SmartLab with Cu-Kα radiation.

θ 2θ

sample

DetectorX-ray

Figure 3.11: Schematic illustration of θ-2θ-scan of powder X-ray diffraction.

Figures 3.12(a), 3.12(b), 3.12(c), and 3.12(d) show the powder X-ray diffraction pat-
terns for α-IrSn4, α-RhSn4, IrGe4, and RhGe4, respectively. No impurities were found
in α-IrSn4, α-RhSn4, and IrGe4 within the experimental accuracy, while Ge impurities
were present in RhGe4, as shown by the arrows in Fig. 3.12(d). The lattice constants
determined from the powder X-ray are summarized in Table 3.2.
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Figure 3.12: Powder X-ray diffractions of (a) α-IrSn4, (b) α-RhSn4, (c) IrGe4, and (d) RhGe4.



76

Table 3.2: Atomic coordinates and thermal parameters of (a) α-IrSn4, (b) α-RhSn4, (c) IrGe4, and (d)
RhGe4 at 300 K determined by single-crystal X-ray diffraction measurements (2θmax = 54.9 ◦). R1 and
wR2 are the reliability factors and Beq is the equivalent isotropic atomic displacement parameter.

(a) α-IrSn4

P3121 (No. 152), a = 6.8017(9) Å, c = 8.5769(15) Å, V = 343.63(9) Å3, Z = 3
Position

Atom Site x y z Beq(Å2) occ
Ir 3b (.2.) 0.31214(11) 0 5/6 0.46(2) 1

Sn(1) 6c (2) 0.23332(2) 0.4980(3) 0.4330(9) 0.71(3) 1
Sn(2) 3a (.2.) 0.08990(2) 0 1/3 0.69(3) 1
Sn(3) 3a (.2.) 0.63130(2) 0 1/3 0.69(2) 1
R1 = 2.86 %, wR2 = 5.89 %, Flack parameter = 0.04(4)
(b) α-RhSn4

P3121 (No. 152), a = 6.7836(7) Å, c = 8.6159(10) Å, V = 343.31(8) Å3, Z = 3
Position

Atom Site x y z Beq(Å2) occ
Rh 3b (.2.) 0.3111(4) 0 5/6 0.48(2) 1

Sn(1) 6c (2) 0.2364(9) 0.5001(10) 0.4299(7) 0.75(1) 1
Sn(2) 3a (.2.) 0.0912(9) 0 1/3 0.78(2) 1
Sn(3) 3a (.2.) 0.6305(11) 0 1/3 0.75(2) 1
R1 = 2.25 %, wR2 = 4.56 %, Flack parameter = 0.05(4)
(c) IrGe4

P3121 (No. 152), a = 6.209(8) Å, c = 7.779(10) Å, V = 259.8(6) Å3, Z = 3
Position

Atom Site x y z Beq(Å2) occ
Ir 3b (.2.) 0.3177(2) 0 5/6 0.39(2) 1

Ge(1) 6c (2) 0.22030(2) 0.48590(2) 0.44788(14) 0.68(2) 1
Ge(2) 3a (.2.) 0.07839(3) 0 1/3 0.66(3) 1
Ge(3) 3a (.2.) 0.61759(7) 0 1/3 0.63(3) 1
R1 = 2.58 %, wR2 = 5.14 %, Flack parameter = 0.03(2)

(d) RhGe4

P3121 (No. 152), a = 6.1941(11) Å, c = 7.8035(16) Å, V = 259.28(8) Å3, Z = 3
Position

Atom Site x y z Beq(Å2) occ
Rh 3b (.2.) 0.3172(2) 0 5/6 0.38(2) 1

Ge(1) 6c (2) 0.2232(2) 0.4883(8) 0.4451(10) 0.68(2) 1
Ge(2) 3a (.2.) 0.0771(2) 0 1/3 0.71(3) 1
Ge(3) 3a (.2.) 0.6159(2) 0 1/3 0.65(3) 1
R1 = 2.98 %, wR2 = 5.99 %, Flack parameter = 0.04(4)
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Analyses of single crystal structures

The crystal structural analyses are a technique to determine the crystal information,
such as lattice parameters, positional parameters, thermal parameters, and so on. The
X-ray diffraction intensity from the crystal plane dhkl is proportional to the structural
factor, which gives information about the structure. The structural factor is related to
the electron density distribution ρ(r) in the unit cell and is expressed as follows;

F(k) =
∫

unit cell
ρ(r)e2πik·rd3r. (3.4)

The inverse Fourier transforming of the structural factor provides the charge density
distribution in the unit cell;

ρ(r) =
1
V

∫
Σ

F(k)e−2πik·rd3 k, (3.5)

where V is the volume of the unit cell and Σ is the entire reciprocal lattice space. The
parameters of the atomic coordinates are adjusted to minimize the difference between
the measured value |F0(hkl)| and the calculated value |Fc(hkl)|. The degree of agreement
between |F0(hkl)| and|Fc(hkl)| is given by two factors called the R factor and wR2 factor
(reliability factor);

R1 =

∑
hkl(|F0(hkl)| − |Fc(hkl)|)∑

hkl |F0(hkl)|
(3.6)

wR2 =


∑

hkl w(hkl)
{
|F0(hkl)|2 − |Fc(hkl)|2

}2∑
hkl w(hkl)|F0(hkl)|4


1
2

. (3.7)

In the case of the chiral structure, the Flack parameter is useful to determine the chi-
rality of the noncentrosymmetric structure by the single crystal X-ray diffraction anal-
yses under consideration of the resonant scattering (the anomalous dispersion effect) as
described in Sect. 2.2.

Single crystal X-ray diffraction analyses were also performed using a Rigaku XtaL-
ABmini with graphite monochromated Mo-Kα radiation, as shown in Fig. 3.13(b). A
small single crystal with a size of 0.13 mm3 was selected to minimize the absorption as
well as a secondary extinction effect. Every single crystal was mounted on a glass fiber
with epoxy, as shown in Fig. 3.13(a). The structural parameters were refined using the
program SHELXL-97 [100].
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Figure 3.13: (a) Prepared single crystal sample for single crystal structural analyses and (b) single crystal
structural analyses apparatus of XtaLABmini (Rigaku).

Tables 3.2(a), 3.2(b), 3.2(c), and 3.2(d) indicate the crystallographic parameters of
α-IrSn4, α-RhSn4, IrGe4, and RhGe4, respectively. Note that we succeeded in carrying
out the single crystal X-ray diffraction analyses of RhGe4.

Figure 3.14(a) shows the determined Flack parameters for twelve single crystalline
pieces of α-IrSn4. It was found that the values of x fall into two groups: −0.035 < x <
0.01 for P3121 and 0.95 < x < 0.99 for P3221. For both groups, the absolute deviation
from x = 0 is smaller than 0.05, which is the typical criterion for the sufficiently precise
determination of the absolute structure. This fact strongly indicates that each crystal is
not twinned and is composed of a single phase categorized into either P3121 (No. 152)
or P3221 (No. 154). Similar results were also obtained for IrGe4 single crystal ingots
grown using the Czochralski method, as shown in Fig. 3.14(b).
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Figure 3.14: Flack parameters x based on P3121 and P3221 determined by the single-crystal X-ray
diffractions for twelve α-IrSn4 single crystals and (b) sixteen IrGe4 single crystals.

Crystal orientation: Laue method

It is necessary to process the sample for various measurements properly. In par-
ticular, the determination of the sample orientation is the most important. The crystal
orientation was determined using the back reflection Laue method. White X-rays are
incident on a fixed crystal from a fixed direction. Reflections from each crystal plane
are enhanced when Bragg’s law is satisfied, producing Laue spots. Since the Laue spots
correspond one-to-one with the lattice planes, the obtained Laue photograph is related
to the orientation of the crystal.

Figures. 3.16(a)-(c) show simulation of Laue photograph of α-IrSn4 for the ⟨0001⟩,
⟨112̄0⟩, and ⟨101̄0⟩ directions. Since the Laue group of α-IrSn4 is D3d (3̄m), there
are 3̄ rotoinversion axis parallel to ⟨0001⟩, 2 rotation axis parallel to ⟨112̄0⟩, and a
mirror plane perpendicular to ⟨112̄0⟩. The simulation satisfies the symmetry of the Laue
group. The 4-axis representations of the Hexagonal lattice are shown in Fig. 3.17(c) and
3.17(b).
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Figure 3.15: (a) Schematic picture of back reflection Laue method.
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Figure 3.16: Simulation of Laue photographs of α-IrSn4 for (a) ⟨0001⟩, (b) ⟨112̄0⟩, and (c) ⟨101̄0⟩
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Figure 3.17: 4-axis representation of Hexagonal lattice in (a) real space and (b) reciprocal space.

3.3 Experimental method

Electrical resistivity

Electrical resistivity is a physical property of a material that measures how strongly
it resists the electric current. In the electric field Ex along the x-axis, which is parallel
to the direction of the current J, the average velocity of a conduction electron vx is
expressed as

m∗
dvx

dt
= −eEx −

m∗vx

τ
, (3.8)

where −m∗vx/τ is the frictional or dumpling force and τ is the scattering lifetime. In a
steady state where dvx/dt = 0, Ohm’s law is obtained using the expression for a steady
current Jx = −nevx (n: carrier density);

Jx =
ne2τ

m∗
Ex = σEx =

1
ρ

Ex, (3.9)

ρ =
m∗

ne2τ
, (3.10)

where ρ is the electrical resistivity and σ(= 1/ρ) is the electrical conductivity.
The electrical resistivity ρ(T ) in non-magnetic intermetallic compounds consists of

three contributions: the electron scattering due to non-magnetic impurities and crys-
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talline defects ρ0, the electron-phonon scattering ρph(T ), and the electron-electron scat-
tering ρe−e(T ),

ρ(T ) = ρ0 + ρph(T ) + ρe−e(T ). (3.11)

This yields Mattiessen’s rule.
The ρ0 value is constant with temperature variation. This value is important for

one to know the quality of a sample, which is estimated by determining the residual
resistivity ratio (RRR = ρRT/ρ0, ρRT: resistivity at room temperature). A large value of
RRR indicates a high-quality sample which corresponds to a low ρ0 value.

The temperature dependence of ρph is based on the well-known Grüneisen’s formula.
It is proportional to T above the Debye temperature θD and proportional to T 5 far below
the Debye temperature. Grüneisen’s formula is

ρph(T ) =
C

MθD

(
T
θD

)5 ∫ θD/T x5

(1 − e−x)(ex − 1)
dx (3.12)

=

∝ T
(
T ≥ θD2

)
∝ T 5 (T ≪ θD),

(3.13)

where C is constant and independent of the compound, and M is the mass of the com-
pound.

The electron-electron scattering contribution ρe−e(T ) at low temperatures is expressed
as

ρe−e(T ) = AT 2, (3.14)

where the coefficient
√

A is proportional to the effective mass. In a simple metal, ρe−e

is much smaller than ρph.
The electrical resistivity ρ is measured using a very simple technique but contains

abundant information about the sample under consideration. The electrical voltage V
between two lead wires on the sample, with a length l, is measured for a rectangle sam-
ple, with a cross-sectional area S in a current I. The electrical resistance R is obtained
via Ohm’s law, where R = V/I. We usually consider the electrical resistivity ρ = (S/l)R
instead of R, as it is independent of the sample dimensions and geometry.

Magnetoresistance

The electrical resistivity ρ under magnetic field H is called magnetoresistance ρ(H).
The transverse magnetoresistance in the configuration of J ⊥ H provides important
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information about the Fermi surface. The longitudinal magnetoresistance in the config-
uration of J ∥ H is also measured to determine the effect of the magnetic field on the
sample. We consider a non-magnetic metal with two kinds of carriers with electron and
hole Fermi surfaces. H is parallel to the kz direction H = (0, 0,H) and J is parallel to
the kx direction J = (Jx, 0, 0). The relationship between the current Jx and the electric
field Ex is expressed as

Jx =


(
n1q1

µ1
+

n2q2

µ2

) ( c
H

)2
+

(n1q1 + n2q2)2

n1q1

µ1
+

n2q2

µ2

 Ex. (3.15)

Under the high field condition α = µH/c = ωcτ ≫ 1, the magnetoresistance varies
depending on whether the sample is a compensated metal with an equal carrier number
of electrons and holes, ne = nh, or an uncompensated metal, ne , nh, and whether
an open orbit exists or not. Here, ωcτ = qH/m∗cc is the cyclotron frequency, τ is the
scattering lifetime, m∗c is the cyclotron effective mass, and ωcτ/2π is the number of
cyclotron motions performed by the carrier without being scattered.

(I) only closed orbit under high field limit condition (α ≫ 1)

a) compensated metal (ne = nh)
In the case of a compensated metal of n1q1 + n2q2 = 0, namely q1 = +e,
q2 = −e, and n1 = n2 = n, the magnetoresistance is expressed as

ρ(H) =
1

n1q1

µ1
+

n2q2

µ2

(H
c

)2

(3.16)

b) uncompensated metal (ne , nh)
The magnetoresistance is expressed as

ρ(H) =

(n1q1 + n2q2)2

n1q1
µ1
+

n2q2
µ2

−1

, (3.17)

where n1q1 + n2q2 , 0. Namely, ρ(H) saturates under the high field.

Schematic figures of the magnetoresistance with only closed orbits are shown in
Fig. 3.18.
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Figure 3.18: Magnetoresistance with only closed orbits in the case of (a) an uncompensated metal and
(b) a compensated metal.

(II) existence of open orbit under high field condition (α ≫ 1)
The magnetoresistance is independent of the state of compensation and increases
quadratically as

ρ(H) ∼ H2cos2ϕ, (3.18)

where ϕ is the angle between the current and open orbit direction in k-space.
Figure 3.19 shows the transverse magnetoresistance behavior for a metal with a
partially cylindrical Fermi surface whose cylinder axis is in the kz-plane and de-
viates by an angle Φ from the kx-axis. The current J is directed along the kx-axis
and the magnetic field H rotates in the kx-plane. In this case, the transverse mag-
netoresistance increases as Hn(1 < n ≤ 2) for the general direction of the field.
When the magnetoresistance saturates for a particular field direction, some open
orbits exist with directions parallel to J×H; ϕ = π/2 in k-space. Experimentally,
the current direction is fixed with respect to a crystal symmetry axis of the sample
which is slowly rotated in a constant magnetic field perpendicular to the current
direction. The presence of open orbits is revealed through the presence of spikes
against a low background for the uncompensated metal and dips against a large
background for the compensated metal, as shown in Figs. 3.19(c) and 3.19(d),
respectively.
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Figure 3.19: Schematic pictures of the transverse magnetoresistance with a open orbit in uncompensated
and compensated metals.

specific heat

The specific heat (heat capacity) C is measured by the quasi-adiabatic heat pulse
method. We give a heat pulse∆Q to the sample and measure a change of the temperature
∆T , then

C =
∆Q
∆T
=

I · V · ∆t
∆T

, (3.19)

where I and V are the current and the voltage flowing to the heater, respectively, ∆t is
the duration of heating. At low temperatures, the specific heat is written as the sum of
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electronic, lattice, magnetic and nuclear contributions,

C = Cel +Cph +Cnuc (3.20)

= γT + βT 3 +
A
T 2 (3.21)

A =
ℏ2γ2

n

3k2
B

I(I + 1)H2
in, (3.22)

where A, γ and β are the constants.
The electronic term Ce is linear in T . If we can neglect the magnetic and nuclear

contributions, it is convenient to exhibit the experimental values of C as a plot of C/T
versus T 2:

C
T
= γ + βT 2. (3.23)

Then we can estimate the electronic specific heat coefficient γ. Using the density of
states D(EF), the coefficient can be expressed as

γ =
2π2

3
k2

BD(EF). (3.24)

Since D(EF) is proportional to the electron mass, γ possesses an extremely large value
in the heavy fermion compound.

Next, we consider Cph based on the Debye T 3 law;

Cph = 9NkB

(
T
θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2 dx (3.25)

≃
12π4NkB

5

(
T
θD

)3

(3.26)

≡ βT 3
(
T <
θD
50

)
(3.27)

where θD is the Debye temperature and N is the number of atoms. For the actual lattices,
the temperatures at which the T 3 approximation holds are quite low. Temperatures
below T = θD/50 may be required to get a reasonably pure T 3 law, where θD is usually
in the range 150-400 K.
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de Haas-van Alphen (dHvA) effect

Under a strong magnetic field, the orbital motion of conduction electrons is quan-
tized and forms Landau levels. A sharp change in the free energy of the electron system
appears when a Landau level crosses the Fermi energy EF. Thereby, various physical
quantities show a periodic variation as a function of H−1. In a three-dimensional system,
this sharp structure is observed when a Landau level is just across the extremal areas of
the Fermi surface, perpendicular to the field direction and enclosed by the Fermi energy
because the density of states also becomes extremal. From the field and temperature
dependences of the oscillations in the various physical quantities, we can obtain the
extremal area S , the cyclotron mass m∗c and the scattering lifetime τ for the cyclotron
orbit, and is called the de Haas-van Alphen (dHvA) effect. It provides one of the best
tools for the investigation of Fermi surfaces of metals.

The theoretical expression for the oscillatory component of magnetization Mosc due
to the conduction electrons was given by Lifshitz and Kosevich as follows [101, 102],

Mosc =
∑

r

∑
i

(−1)r

r3/2 Aisin
(
2πrFi

H
+ βi

)
, (3.28)

Ai = FH1/2

∣∣∣∣∣∣∂2S i

∂k2
H

∣∣∣∣∣∣−1/2

RTRDRS, (3.29)

RT =
αrm∗ciT/H

sinh(αrm∗ciT/H)
, (3.30)

RD = exp(−αrm∗ciTD/H), (3.31)
RS = cos(πgirm∗ci/2m0), (3.32)

α =
2π2kB

eℏ
. (3.33)

Here, the magnetization is periodic in 1/H with a dHvA frequency Fi;

Fi =
ℏc
2πe

S i (3.34)

= 1.048 × 10−8[Oe · cm2] · S i,

which is directly proportional to the i−th extremal (maximum or minimum) cross-
sectional area S i (i = 1, . . . , n). The extremal area in a spherical Fermi surface is shown
as a mesh plane in Fig. 3.20(a). On the other hand, three extremal areas exist in a
dumbbell-shaped Fermi surface, as shown in Fig. 3.20(b).
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Figure 3.20: Simulations of the cross-sectional area and its dHvA signal for a simple Fermi surface.
There is one dHvA frequency in (a), while there are three different frequencies in (b).

The factor RT in the amplitude Ai is related to the thermal damping at finite temper-
ature T . The factor RD is related to the Landau level broadening kBTD. Here, TD is due
to both the lifetime broadening and inhomogeneous broadening caused by impurities,
crystalline imperfections, or strains. TD is called the Dingle temperature and is given
by

TD =
ℏ

2πkB
τ−1 (3.35)

= 1.22 × 10−12[K · sec] · τ−1.

The factor RS is called the spin factor and is related to the difference of phase between
the Landau levels due to the Zeeman split. When gi = 2 (free electron value) and
m∗c = 0.5m0, this term becomes zero for r = 1, and fundamental oscillations vanish for
all values of the fields. This is called oscillation cancel out, and this can be useful for
determining the value of gi. Note that in this situation the second harmonics for r = 2
should give a full amplitude.

The quantity
∣∣∣∂2S/∂k2

H

∣∣∣−1/2
is called the curvature factor. The rapid change of the

cross-sectional area around the extremal area along the field direction diminishes the
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dHvA amplitude for this extremal area.
The detectable conditions of dHvA effect are as follow;

1. The distance between the Landau levels ℏωc must be larger than the thermal broad-
ening width kBωc ≫ kBT (high field, low temperature).

2. At least one cyclotron motion must be performed during the scattering, namely,
ωcτ/2π > 1 (high-quality sample).

3. The fluctuation of the static magnetic field must be smaller than the field interval
of one cycle of the dHvA oscillation (homogeneity of the magnetic field).

Shape of Fermi surface

The angular dependence of dHvA frequencies gives important information about the
shape of Fermi surface. As a volume of Fermi surface corresponds to a carrier number,
we can obtain the carrier number of metal directly.

We show the typical Fermi surfaces and their angular dependences of dHvA frequen-
cies in Fig. 3.21. In a spherical Fermi surface, the dHvA frequency is constant for any
field direction. On the other hand, in a cylindrical Fermi surface such as in Fig.3.21(a),
it takes a minimum value for the field along the z-axis. These relatively simple Fermi
surfaces can be determined only by the dHvA experiment. However, exact information
from an energy band calculation is needed to determine a complicated one.
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Figure 3.21: Angular dependences of the dHvA frequencies in three typical Fermi surfaces (a) sphere,
(b) cylinder, and (e) ellipsoid.

Cyclotron effective mass

We can determine the cyclotron effective mass m∗ci from measurements of the tem-
perature dependence of a dHvA amplitude. Equation (3.30) is transformed into;

ln
{

Ai

[
1 − exp

(
−2λm∗ciT

H

)]
/T

}
=
−λm∗ci

H
T + const. (3.36)

From the slope of a plot of ln
{
Ai

[
1 − exp

(
−2λm∗ciT

H

)]
/T

}
versus T at a constant field H,

the effective mass can be obtained.
Let us consider the relation between the cyclotron mass and electrical specific heat

γ. Using a density of states D(EF), γ is written as

γ =
π2

3
k2

BD(EF). (3.37)
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In the spherical Fermi surface, γ can be written as

γ =
π2

3
k2

B ·
V

2π2

(
2m∗ci

ℏ2

)3/2

E1/2
F

=
kBV
3ℏ2 · m

∗
c · kF, (3.38)

where V is molar volume and kF = (S/π)1/2, then

γ =
k2

Bm0

3ℏ2

(
2e
ℏc

)1/2

·
m∗c
m0

F1/2 (3.39)

= 2.87 × 10−6[mJ/K2mol · (cm3/mol) · Oe] · V
m∗c
m0

F1/2

In the case of the cylindrical Fermi surface,

γ =
π2

3
k2

B
V

2π2ℏ2 m∗ckz (3.40)

=
k2

BV
6ℏ2 m∗ckz, (3.41)

where the Fermi wave number kz is parallel to an axial direction of the cylinder. If
we regard simply the Fermi surfaces as sphere, ellipsoid or cylinder approximately and
then we can calculate them.

Dingle temperature

The Dingle temperature TD is estimated by measuring field dependence of a dHvA
amplitude;

ln
{

AiH1/2
[
1 − exp

(
−2λm∗ciT

H

)]}
= −λm∗ci(T + TD) ·

1
H
+ const. (3.42)

From the slope of a ln
{
AiH1/2

[
1 − exp

(
−2λm∗ciT

H

)]}
plot versus 1/H at a constant T ,

the Dingle temperature can be obtained. Here, the cyclotron effective mass must have
already been obtained.

We can estimate the mean free path l or the scattering lifetime τ from the Dingle
temperature. The relation between an effective mass and lifetime takes the form

ℏkF = m∗cvF, (3.43)
l = vFτ. (3.44)
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Then eq. (3.35) is transformed into

l =
ℏ2kF

2πkBm∗cTD
(3.45)

When the extremal area is approximated as a circle approximately, using eq. (3.45), the
mean free path is expressed as

l =
ℏ2

2πkBm0

(
2e
ℏc

)
· F1/2

(
m∗c
m0

)−1

T−1
D (3.46)

= 0.776 [Å · Oe−1/2 · K] · F1/2
(
m∗c
m0

)
T−1

D

The magnetic torque measurement was carried out using the membrane-type surface
stress sensor (MSS) chip (Nano World, SD-MSS) [103]. In this torque measurement
method, a piezoresistive MSS chip was used, as shown in Fig 3.22(a). The mea-
surement technique is similar to torque magnetometry using a piezoresistive micro-
cantilever [104, 105, 106].

A Wheatstone bridge was constructed to detect the quantum oscillations, as shown
in Fig 3.22(c). A part of on-chip interconnections was disconnected and two middle
wires were short-circuited to cancel out the magnetoresistance of the piezo element, as
shown in Fig. 3.22(b). In the modified circuit, only the piezo elements R1 and R2 are
active. R1 and R2 are connected to the external resistor (500 Ω) and the variable resistor
to form the Wheatstone Bridge, as shown in Fig 3.22(c). In zero field, the bridge is
balanced using the variable resistor. The output voltage ∆Vout of Wheatstone bride can
be described as:

∆Vout ∝ (∆R2 − ∆R1)I. (3.47)

When a magnetic torque is applied to the sample plate, the strain applied to the piezo
elements R1 and R2 are in opposite directions. Therefore, the output voltage is increased
as in eq. 3.47.
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Figure 3.22: Picture of the membrane-type surface stress (MSS) sensor. (b) Schematic view of the MSS
sensor. (c) Schematic diagram of the Wheatstone bridge circuit.

The output voltage was measured using a Lock-in amplifier (SR-830, Stanford Re-
search Systems). The angular dependence of magnetic torque was measured using the
TeslatronPT (Oxford Instruments) with the rotator probe (Niki Glass).

Figure 3.23: (a) Picture of TeslatronPT. (b) Schematic diagram of the circuit for dHvA measurements.



CHAPTER 4

Experimental Results and Discussion

We present the experimental results of electrical resistivity, specific heat, magne-
toresistance, and de Haas-van Alphen (dHvA) effect for α-IrSn4, α-RhSn4, IrGe4, and
RhGe4, together with the results of energy band calculations.

4.1 Electrical resistivity

Figures 4.1(a), 4.1(b), 4.1(c), and 4.1(d) show the temperature dependences of elec-
trical resistivities ρ in α-IrSn4, α-RhSn4, IrGe4, and RhGe4 for the current J along the
[0001] and [112̄0] directions, respectively. The resistivities show slight convex features
in their temperature dependences, namely, d2ρ/dT 2 < 0, which suggests a contribution
of Rh-4d and Ir-5d electrons to conduction electrons. The residual resistivities ρ0 are
very small in α-IrSn4, α-RhSn4, and IrGe4, indicating high-quality single crystals. The
residual resistivity and residual resistivity ratio RRR (= ρRT/ρ0) are ρ0 = 0.052 µΩ · cm
and RRR = 1250 for J ∥ [0001] and ρ0 = 0.192 µΩ·cm and RRR = 867 for J ∥ [112̄0] in
α-IrSn4; ρ0 = 0.098 µΩ · cm and RRR = 430 for J ∥ [0001] and ρ0 = 0.115 µΩ · cm and
RRR = 540 for J ∥ [112̄0] in α-RhSn4; ρ0 = 0.76 µΩ · cm and RRR = 90 for J ∥ [0001]
and ρ0 = 2.49 µΩ ·cm and RRR = 90 for J ∥ [112̄0] in IrGe4; and ρ0 = 13.7 µΩ ·cm and
RRR = 8.5 in RhGe4. Note that the previous single crystal of α-IrSn4 was grown by the
usual flux method, revealing ρ0 = 0.1 µΩ · cm and RRR = 628. The present single crys-
tal shown in Fig. 4.1(a) was grown by the modified flux method in a horizontal furnace,
with extremely high quality. As shown in insets of 4.1(c) and 4.1(d), superconductivity
was observed at 1.12 K in IrGe4 and 2.28 K in RhGe4.

94
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Figure 4.1: Temperature dependences of electrical resistivities in (a) α-IrSn4, (b) α-RhSn4, (c) IrGe4, and
(d) RhGe4.

We noticed similar anisotropy of the resistivities in these compounds. The resis-
tivities for J ∥ [112̄0] are larger than those for J ∥ [0001] in magnitude. If a Fermi
surface is spherical as expressed in εF = (ℏ2/2m∗)k2

F = (ℏ2/2m∗)(k2
x + k2

y + k2
z ), there

exists no anisotropy in the electrical resistivity ρ, where εF is the Fermi energy and
kF = (kx, ky, kz) is the Fermi wave vector of conduction electrons. If a Fermi surface is
cylindrical as in εF = (ℏ2/2m∗)(k2

x + k2
y), the resistivity along the cylindrical axis is infi-

nite in magnitude, although the resistivity perpendicular to the cylindrical axis is finite,
revealing a two-dimensional electronic state. If instead, the conduction electrons can
move only along the z-axis [εF = (ℏ2/2m∗)k2

z ], the topology of the Fermi surface can
be changed into two plates. A flat ellipsoid of revolution might correspond to a simple
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Fermi surface in the present compounds, where the plate Fermi surface is expanded
along the z-axis. The Fermi surface and effective mass are further discussed later.

4.2 Specific heat

We measured the low-temperature specific heat C of α-IrSn4, α-RhSn4, IrGe4, and
RhGe4, as shown in Figs. 4.2(a), 4.2(b), 4.2(c), and 4.2(d), respectively. The specific
heat consists of electronic and lattice contributions: C = Cel + Cph = γT + βT 3, where
γ is the electronic specific heat coefficient and β is related to the Debye temperature θD.
Figures 4.2(a)-4.2(d) represent the C/T vs T 2 plot. The γ and θD values were obtained
from these plots as 3.46 mJ/(K2·mol) and 255 K in α-IrSn4, 5.50 mJ/(K2·mol) and 270 K
in α-RhSn4, 3.93 mJ/(K2· mol) and 362 K in IrGe4, and 4.16 mJ/(K2·mol) and 340 K in
RhGe4.

As shown in Figs. 4.2(c) and 4.2(d), superconductivity was observed at 1.12 K in
IrGe4 and 2.55 K in RhGe4. The specific heat jump was ∆C/γTsc = 1.23 in IrGe4 and
∆C/γTsc = 1.44 in RhGe4, which are close to the weak-coupling BCS value of 1.43.

Figures 4.2(d) and 4.2(f) represent the temperature dependences of electronic spe-
cific heats in the form of Cel/T in IrGe4 and RhGe4, respectively. Solid lines, which fit
to the experimental data by adjusting superconducting energy gaps ∆ in the BCS theory,
represent 2∆ = 3.70 K in IrGe4 and 2∆ = 8.93 K in RhGe4 [107, 108].
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Next, we measured the specific heats under several magnetic fields to obtain the up-
per critical field µ0Hc2 in IrGe4 and RhGe4, as shown in Figs. 4.3(a)-6(d) and Figs. 6(e)
and 6(f), respectively. Superconducting transition temperatures under magnetic fields
for H ∥ [112̄0] in IrGe4, for example, are defined by arrows, as shown in Fig. 6(a).
Thus, the obtained data were used in the temperature dependence of µ0Hc2, as shown
in Figs. 6(d) and 6(f). Solid lines connecting the data in Figs. 4.3(d) and 6(f) are based
on the so-called WHH theory [36, 37]. The upper critical field µ0Hc2 at 0 K is small in
value,: µ0Hc2(0) = 11.5 mT for H ∥ [112̄0] and [101̄0] or µ0Hc2 (H ⊥ c) = 11.5 mT and
µ0Hc2 (H ∥ c) = 25.5 mT in IrGe4, and µ0Hc2(0) = 72.5 mT in RhGe4.

Anisotropy of µ0Hc2(H ∥ c) and µ0Hc2(H ⊥ c) in IrGe4 is simply explained on the
basis of the effective mass model because of µ0Hc2(0) = ϕ0/2πξ2 and ξ−1 ∼

√
m∗, where

ϕ0 is the fluxoid or flux quantum and ξ is the coherence length [109]. We assumed an
ellipsoidal Fermi surface of revolution as in

εF =
ℏ2k2

x

2m∗a
+
ℏ2k2

y

2m∗a
+
ℏ2k2

z

2m∗c
. (4.1)

µ0Hc2(H ∥ c) ∼ m∗a and µ0Hc2(H ⊥ c) ∼
√

m∗am∗c are obtained from relations of dS/dε
= 2πm∗a/ℏ2 for H ∥ c and dS/dε = 2π

√
m∗am∗c/ℏ2 for H ⊥ c, where S correspond to the

cross-sectional area of the Fermi surface, namely, SF (H ∥ c) = πk2
a = (2πεF/ℏ2)m∗a ∼

µ0Hc2(H ∥ c) and SF (H ⊥ c) = πkakc = (2πεF/ℏ2)
√

m∗am∗c ∼ µ0Hc2(H ⊥ c) were ob-
tained, representing relations of ka : kc =

√
µ0Hc2(H ∥ c) : µ0Hc2(H ⊥ c)/

√
µ0Hc2(H ∥ c)

≃ 9 : 4 or m∗a : m∗c = µ0Hc2(H ∥ c) : µ0Hc2(H ⊥ c)2/µ0Hc2(H ∥ c) = 92 : 42. From
these relations, the flat ellipsoidal Fermi surface of revolution was obtained as shown in
the inset of Fig. 4.3(d). Table 4.1 summarizes the superconducting properties obtained
from the specific heat experiments for IrGe4 and RhGe4. The present Fermi surface is
consistent with the anisotropy of electrical resistivities mentioned above.
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in the inset of (d).
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Table 4.1: Superconducting properties of IrGe4 and RhGe4, where c corresponds to the c-axis or [0001]
direction.

parameters IrGe4 RhGe4.
T sc (K) 1.22 2.55

γ (mJ/K2-mol) 3.93 4.16
µ0Hc2 (mT) 25.5 (H ∥ c)

72.5
11.5 (H ⊥ c)

ξ (Å) 2540 (H ∥ c)
367

1140 (H ⊥ c)
∆C/γTsc 1.23 1.44
2∆(K) 3.70 8.93

4.3 Magnetoresistance

We measured the transverse magnetoresistances in the configuration of J ⊥H, where
J is along the [112̄0] and [0001] directions, together with the longitudinal magnetore-
sistances for J ∥ H ∥ [0001] and J ∥ H ∥ [112̄0], as shown in Fig. 4.4. Note that the
directions in this trigonal structure are later shown in Fig. 4.13(b).

In Fig. 4.4(a), the transverse magnetoresistance ρ(H)/ρ(0)= { ρ(H)−ρ(H = 0)}/ρ(H =
0) in α-IrSn4 is extremely large in magnitude for J ∥ [112̄0] and H ∥ [1̄100] and increases
for as Hn (n ≃ 1.6) above 6 T, indicating that open orbits exist along J × H, namely the
[0001] direction. This is because α-IrSn4 is an uncompensated metal. Valence elec-
trons are 5d9 in the Ir atom and 5s25p2 in the Sn atom, and the primitive cell contains
three molecules of α-IrSn4 (Z = 3), as shown in Table 3.2(a), representing 75 valence
electrons in total.

For a given field direction, when all of the cyclotron orbits are closed, the trans-
verse magnetoresistance saturates (∆ρ/ρ ∼ H0) for the uncompensated metal. If the
transverse magnetoresistance increases as Hn(1 < n ≤ 2) for a particular field direc-
tion, often a symmetrical direction, some open orbits exist with the direction parallel to
J×H. In the present configuration of J ∥ [112̄0] and H ∥ [1̄100] for α-IrSn4, open orbits
should exist along [0001]. Similar magnetoresistances are observed in Fig. 4.4(b) for
α-RhSn4, and in Fig. 4.4(c) for IrGe4.
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Figure 4.4: Transverse and longitudinal magnetoresistances in (a) α-IrSn4, (b) α-RhSn4, and (c) IrGe4,
where the temperature is shown by color in the first figure in α-IrSn4.

For the longitudinal magnetoresistances in the configurations of J ∥ H ∥ [112̄0]
and J ∥ H ∥ [0001], the magnetoresistances are small in magnitude compared with
the transverse magnetoresistances. If the Fermi surface is spherical, the longitudinal
magnetoresistances should be zero. The present magnetoresistances are mainly due to
a non-spherical and multiply-connected Fermi surface, which are described next.

Temperature dependences of magnetoresistances under the magnetic field µ0H = 9 T
are studied for these compounds, as shown in Fig. 4.5. The vertical axis corresponds
to the logarithmic scale of the magnetoresistances. An extremely large change of the
electrical resistivity in the magnetic field of 9 T is observed in the high-quality sample
of α-IrSn4, reflecting the open orbits along the [0001] direction. Open orbits are ob-
served not only for [0001] but also another direction. This is reflected in the angular
dependences of transverse magnetoresistances in Fig. 4.6.
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Figure 4.6: Angular dependences of electrical resistivities at 2 K under 9 T (a) and (b) α-IrSn4, (c) and
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4.4 de Haas-van Alphen effect

A main Fermi surface is a flat ellipsoidal Fermi surface from the results of the upper
critical field Hc2 in IrGe4, as mentioned above. However, the Fermi surface is multiply-
connected with open orbits, at least along the [0001] direction, from the results of mag-
netoresistances. To clarify the Fermi surface properties, we carried out the de Haas-van
Alphen (dHvA) experiments for α-IrSn4, α-RhSn4, and IrGe4.

Figure 4.7 shows the typical dHvA oscillations and corresponding fast Fourier
transformation (FFT) spectrum for H ∥ [0001] in α-IrSn4. The dHvA frequency F
(= cℏS F/2πe), which is proportional to the maximum or minimum cross-sectional area
S F of the Fermi surface, is expressed as a unit of magnetic field µ0H. The dHvA fre-
quency F ranges from 0.049 kT to 0.432 kT, which are very small in value. The corre-
sponding Fermi surfaces are very small in cross-sectional area. Typical dHvA branches
are named ε, ε′, ζ, ζ′, together with their harmonics. We also show in Fig. 4.8 the dHvA
oscillations and the corresponding FFT spectrum for the field direction of θ = 9◦, where
θ = 9◦ means that the direction of the magnetic field is close to [112̄0] but is tilted by
9◦ from [112̄0] to [011̄0] in the basal plane. Relatively large dHvA branches named
α (3.693 kT) and α′(3.901 kT), together with branches γ and δ, were observed. Fig-
ures 4.9 and 4.10 show the typical dHvA oscillations and corresponding FFT spectra
for H ∥ [112̄0] in α-RhSn4 and for H ∥ [0001] in IrGe4, respectively.
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We determined the cyclotron effective mass m∗c from the temperature dependence of
dHvA amplitude for α-IrSn4. The cyclotron masses are in the range from 0.36 to 1.55
m0 (m0 : rest mass of an electron), which are summarized in Table 4.2(a) for typical
three directions.

We measured the angular dependences of dHvA frequencies by rotating the sample,
as shown in Fig. 4.11. In Figs. 4.11(a) and 10(b), the magnetic field is directed from
[0001] to [112̄0] and furthermore to [0001̄]. All the dHvA branches are symmetric for
H ∥ [112̄0] in the angular dependences of dHvA frequencies. The dHvA frequencies
are, however, asymmetric in the angular range from [0001] to [101̄0] and furthermore
to [0001̄], as shown in Fig. 4.11(c). This is based on the present trigonal system with
the point group of 321. ”3” in 321 indicates three-fold symmetry for the [0001] di-
rection, ”2” indicates two-fold symmetry for the [112̄0] direction, and ”1” indicates no
symmetry for the [101̄0] direction. The present point group symmetry is reflected in the
angular dependences of dHvA frequencies. In the basal plane, the angular dependences
of dHvA frequencies are symmetric for H ∥ [011̄0], as shown in Fig. 4.11(d).

We noticed that each dHvA branch is split into two branches, for example, α vs
α′, β vs β′, η vs η′, ε vs ε′, and ζ vs ζ′, reflecting the noncentrosymmetric (chiral)
structure of α-IrSn4. Namely, the dHvA frequency F is split into two dHvA frequencies
F+ and F−, depending on the up(+) and down(-) spin states. Using the relations of
m∗ = (ℏ2/2π)dS/dε and S F = (2πe/cℏ)F, we obtain

∆ε =
ℏ2

2πm∗
∆S

=
ℏe

m∗c
|F+ − F−|. (4.2)

Here, ∆ε corresponds to the magnitude of the antisymmetric spin-orbit interaction men-
tioned in section 2.3. In the dHvA experiments, m∗ in eq. (4.2) is the average of two
cyclotron masses m∗c for two split dHvA brances. The splitting energy ∆ε between two
split Fermi surfaces is 190 K for branches α and α′ and is 280 K for branches ζ (F =
0.049 kT and m∗c = 0.37 m0) and ζ′ (0.124 kT and m∗c = 0.36 m0), as summarized in
Table 4.2(a).
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Table 4.2: dHvA frequencies F, cyclotron effective masses m∗c, and splitting energies ∆ε for typical field
orientations in α-IrSn4, α-RhSn4, and IrGe4.

(a) α-IrSn4

H ∥ [0001] H ∥ [101̄0] θ = 9◦ tilted from [112̄0] to [011̄0]
Branch F(kT) m∗c ∆ε(K) Branch F(kT) m∗c ∆ε(K) Branch F(kT) m∗c ∆ε(K)

β′ 2.922 1.1
}

750
α′ 3.901 1.48

}
190

β 2.322 1.0 α 3.693 1.39
γ 1.588 1.55

ε′ 0.368 0.87
}

120
η′ 0.328 0.77

}
320

δ 0.444 0.58
ε 0.302 0.66 η 0.167 0.59 η 0.236 1.00
ζ′ 0.124 0.36

}
280

ζ 0.049 0.37 ζ 0.083 0.45 ζ 0.140 0.67
(b) α-RhSn4

H ∥ [0001] H ∥ [101̄0] H ∥ [112̄0]
Branch F(kT) m∗c ∆ε(K) Branch F(kT) m∗c ∆ε(K) Branch F(kT) m∗c ∆ε(K)
ε 0.263 0.45 η’ 0.424 0.48

}
220

η’ 0.505 0.46
}

180
η 0.345 0.43 η 0.449 0.42

ζ′ 0.188 0.27
}

350
ζ 0.121 0.24 ϕ 0.226 0.42
φ 0.067 0.30 φ 0.038 0.18 φ 0.041 0.19

(c) IrGe4

H ∥ [0001] H ∥ [101̄0] H ∥ [112̄0]
Branch F(kT) m∗c ∆ε(K) Branch F(kT) m∗c ∆ε(K) Branch F(kT) m∗c ∆ε(K)
ζ′ 0.233 0.52

}
260

ζ 0.137 0.46
φ 0.059 0.38 φ 0.056 0.40 φ 0.064 0.37

We simply considered that the detected dHvA branches are identified as follows:

1. Branches α (α’) and most likely β (β’) with relatively large dHvA frequencies
correspond to main orbits of the flat ellipsoidal Fermi surfaces mentioned above,
as shown in Fig 4.12(a). Here, one of two split ellipsoidal Fermi surfaces, namely,
branch α is illustrated in Fig. 4.12(a) from the results of the flat ellipsoidal Fermi
surface obtained by anisotropic Hc2 in superconductivity and the dHvA frequency
of branch α. Note that the center of the flat ellipsoidal Fermi surface is sited at
the A point in the Brillouin zone from the result of the energy band calculations,
later shown in Fig 4.13(a). The volume of the corresponding Fermi surface is
2.37 × 1023 cm−3, approximately 33 % of the Brillouin zone in occupation. Here,
the volume of the Brillouin zone VB is VB = 7.22×1023 cm−3. The dHvA branches
α and α′ are observed in the field angle from −50◦ to 50◦, having a minimum at
±30◦ in the angular dependences of dHvA frequencies. It is simply suggested that
the flat ellipsoidal Fermi surface is slightly corrugated and not closed, but multiply
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connected by other Fermi surfaces.

2. Branches ε (ε’) are hyperboloidal along the [0001] direction, as shown in Fig.
4.12(b). We considered that the hyperboloidal Fermi surfaces are connected to the
ellipsoidal Fermi surface, which favors the open orbits along the [0001] direction.
Six hyperboloidal Fermi surfaces occupy approximately 18 % of the Brillouin zone
in volume.

3. Branches ζ (ζ′) consist of two sets of cylindrical arms, where each set consists
of three arms tilted by approximately 40◦ from the [0001] direction, as shown in
Fig. 4.12(c). These six tilted arms and six hyperboloids are most likely connected
to the flat ellipsoidal Fermi surfaces, as shown in Fig. 4.12(d). The angular depen-
dences of dHvA frequencies of six tilted arms are shown in Fig. 4.12(e). Six tilted
arms occupy approximately 2 % of the Brillouin zone in volume. A half Brillouin
zone is roughly occupied by three Fermi surfaces named α(α′), ε(ε′), and ζ(ζ′),
revealing no other main Fermi surfaces. Open orbits are most likely observed not
only for the [0001] direction but also for other field directions.

4. Other dHvA branches such as δ and η are observed.
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We conducted energy band calculations based on the density fluctional theory by
local density approximation (LDA) and the full potential linear augmented plane wave
(FLAPW) method, using lattice parameters and atomic positions in Table 3.2(a). In the
present band calculations, the scalar relativistic effect was considered for all the valence
electrons, and the spin-orbit interaction was included self-consistently for all the valence
electrons as in a second variational procedure. Here, 5d9 in the Ir atom and 5s25p2 in
the Sn atom are treated as valence electrons in the band calculations. As a primitive cell
contains three molecules of IrSn4, the present compound is an uncompensated metal,
which is reflected in the energy band structure, as shown in Fig. 4.13(a). A main Fermi
surface with a hole character is expanded from the A point to a region close to the Γ
and L points and to the H point, which corresponds to the flat ellipsoidal Fermi surface
centered at the Γ point, as shown in Fig. 4.12(a). Namely, the experimentally estimated
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ellipsoidal Fermi surface is a hole Fermi surface centered at the A point.
The partial and total densities of states are shown in Fig. 4.13(c), representing that Ir-

5d electrons exist in the region from 0.1 to 0.5 Ry, with a peak at 0.3 Ry. A contribution
of three kinds of Sn-5p electrons to the total density of states are dominant at the Fermi
energy εF.

For reference, we measured the temperature dependence of the Hall coefficient, as
shown in Fig. 4.14. The sign of the Hall coefficient is positive, corresponding to the
hole Fermi surface with a large mobility. If we follow a simple one-carrier model, the
carrier is 1.7 × 1022 holes/cm3 at 2 K. Note that the one-carrier model is not applicable
to the present compound with the multiply-connected Fermi surface, and in fact, the
temperature dependence of the Hall coefficient is very complicated.

2
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R H
 (1

0-9
m

3 /C
)

3002001000
T (K)

α-IrSn4

I // [112-0]
H // [1-100]
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Figure 4.14: Temperature dependence of the Hall coefficient in α-IrSn4.

The similar angular dependences of dHvA frequencies in α-RhSn4 and IrGe4 are
shown in Figs. 4.15 and 4.16, respectively. Branches ζ and ζ’ are observed in both
compounds. The corresponding splitting energy is 350 K in α-RhSn4 and 260 K in
IrGe4, which are almost the same value of 280 K in α-IrSn4. Note that a spherical
Fermi surface named φ is detected in α-RhSn4 and IrGe4, which is not observed in
α-IrSn4. The dHvA frequencies, cyclotron effective masses, and splitting energies in
α-RhSn4 and IrGe4 are summarized in Tables 4.2(b) and 4.2(c), respectively.
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Energy band calculations were also carried out for α-RhSn4 and IrGe4, as shown in
Figs. 4.17(a) and 4.17(b), respectively. These energy bands are approximately the same
as that of α-IrSn4 in Fig. 4.13(a).
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CHAPTER 5

Conclusion

We successfully grew single crystals of α-IrSn4 and α-RhSn4 by the Sn-flux method
and IrGe4 by the Czochralski method in the tetra-arc furnace, together with polycrystals
of RhGe4 under pressure, and measured the electrical resistivity, specific heat, magne-
toresistance, Hall coefficient, and de Haas-van Alphen effect. The experimental results
are summarized as follows:

1. In addition to the usual Sn-flux method, we tried to grow single crystals of α-IrSn4

in a horizontal two-zone electric furnace. The obtained single crystals were of
especially high quality, with residual resistivity ρ0 = 0.052 µΩ · cm and residual
resistivity ratio RRR = 1250.

2. Single crystals of α-IrSn4, α-RhSn4, and IrGe4 were found to be an enantiopure of
the trigonal chiral structure with space groups P3121 (No. 152) or P3221 (No. 154)
on the basis of the Flack parameter determined by the single crystal X-ray diffrac-
tion analyses. We obtained many single crystalline samples in the Sn-flux method.
One single crystal belongs to P3121 and another belongs to P3221 in α-IrSn4 and
α-RhSn4. This is also applied to single crystalline ingots of IrGe4, which were
obtained using the Czochralsky method in a tetra-arc furnace.

3. We confirmed bulk superconductivity in IrGe4 and RhGe4 by measuring the spe-
cific heats. Both compounds are weak-coupling BCS-type superconductors. The
upper critical field µ0Hc2 at 0 K, µ0Hc2(0), in IrGe4 is anisotropic, being 11.5 mT
for H ∥ [112̄0] and [101̄0] and 22.5 mT for [0001]. The anisotropy of µ0Hc2 was

120
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explained by the effective mass model, resulting in the existence of a flat ellip-
soidal Fermi surface in IrGe4, with ka : kc ≃ 9 : 4 or m∗a : m∗c ≃ 92 : 42, where
2ka and 2kc are the caliper lengths of the ellipsoidal Fermi surface of revolution
for kx(ky) and kz, respectively, and m∗a and m∗c are the corresponding masses. The
present Fermi surface in IrGe4 is applied to the other compounds.

4. The present compounds are uncompensated metals of which the transverse mag-
netoresistances indicate saturated behaviors in the high magnetic fields. Non-
saturated behaviors were observed in the configuration of J ∥ [112̄0] and H ∥
[1̄100], indicating the existence of open orbits along the [0001] direction.

5. From the results of the dHvA experiments for α-IrSn4, we observed relatively
large dHvA branches named α (α’) for H ∥ [112̄0] and β (β’) for H ∥ [101̄0]. We
believe that the dHvA branches α(α′) correspond to the belly orbits of the flat el-
lipsoidal Fermi surfaces of revolution estimated from the effective mass model for
the upper critical field Hc2 in IrGe4. Thus, the obtained ellipsoidal Fermi surface
occupies approximately 33 % of the Brillouin zone. From the results of energy
band calculations, the present ellipsoidal Fermi surfaces are hole Fermi surfaces
centered at the A point of the Brillouin zone. Branches α and α’ are similar in the
angular dependences of dHvA frequencies, representing the split Fermi surfaces
due to the antisymmetric spin-orbit interaction based on the noncentrosymmetric
(chiral) structure of this compound. We also observed other split dHvA branches.
Among them, branches ε (ε’) correspond to hyperbolic arm-like Fermi surfaces
along the [0001] direction. Branches ζ (ζ’) consist of two sets of three cylindrical
arm-like Fermi surfaces. Each cylindrical arm is tilted by approximately 40 ◦ from
the [0001] direction. These arm-like surfaces are most likely connected to the flat
ellipsoidal Fermi surfaces, which favor the open orbits along the [0001] direction.
A half Brillouin zone was roughly occupied by three Fermi surfaces named α(α′),
ε(ε′), and ζ(ζ′), revealing no other main Fermi surfaces.

6. We observed the characteristic angular dependences of dHvA frequencies in α-
IrSn4. The dHvA frequencies in the configuration of [0001] → [112̄0] → [0001̄]
are symmetric for [112̄0], while those in the configuration of [0001]→ [101̄0]→
[0001̄] are asymmetric for [101̄0], reflecting the present trigonal structure. In the
basal plane, we also confirmed that those in the configuration of [112̄0]→ [011̄0]
→ [1̄21̄0] are symmetric for [011̄0].
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7. Characteristic dHvA branches η (η’) were also observed in α-RhSn4 and IrGe4. A
small nearly spherical Fermi surface named φwas observed in α-RhSn4 and IrGe4,
which was not detected in α-IrSn4.
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