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Preface

In 1982, Cazenave-Lions [10] studied the existence and stability of standing
wave solutions for the following single nonlinear Schrodinger equation:

i0;® + AP + |®P'd =0 in RY. (0.1)

Here, the standing wave solutions is the solution of (0.1) of the form ®(¢,z) =
ety(x). The solution has the spatially localized waveform which does not
progress and oscillate. Starting with this study, a similar problems for the
models with potentials and general nonlinearities have been actively studied.
In recent years, the existence and stability of standing wave solutions for
systems, such as two component interaction models describing the Bose-
Einstein condensation phenomenon, have been actively investigated.

Under such circumstances, this thesis deals with the existence and asymp-
totic behavior of standing wave solutions for the following nonlinear Schrodinger
system with three wave interaction:

i&at(bl + €2A(I)1 — %(I)‘I)l + B|(I)1|p_1(l)1 = —OZCI)3(I)2 in R x RN,
ie@tQDg + 62A(I)2 — %(CL’)CDQ + B|q>2|p71q)2 = —O[(pg(il in R x RN,
z'e@t@g + €2A(I)3 — %(l’)@g + B|(I>3|p*1(1)3 = —Oéq)l(I)g in R x RN.

(0.2)

This system was introduced by Colin-Colin-Ohta in [19] as a simpli-
fied model of a quasilinear Zakharov system studied in [15, 16]. This sys-
tem describes the interaction between laser and plasma and is related to
the Raman amplification in a plasma. The physical situation is as fol-
lows. When the incident laser field enters the plasma, it is backscattered
by Raman-type processes. These two waves interact to create an electron
plasma wave. The three waves combine to produce an ion density change
that itself affects the three preceding waves. Here a solution of (0.2) of



0.1 Fixed mass problem

the form (®(¢, ), Po(t, z), P3(t, 7)) = (eMVouy(x), €2 ouy(x), e uz(x))
(A3 = A1 + \g) is called a standing wave solution. Then u = (uy,uz,us3)
satisfies the following system:

—&2Auy + (Vi(z) + M)up = Blur|P"ruy + qusti;  in RY,
—&2Auy + (Vo) + Ao)ug = Blug|Ptuy + qusti;  in RY, (PP
—&2Auz + (Va(z) + A3)uz = Blug|Ptus + aujuy  in RY.

In this thesis, we consider the fixed mass problem and the fixed frequency
problem for (P%#). The fixed mass problem is the problem of finding the solu-
tion (u, Ay, A2, A3) of (P27) satisfying L*-normalized condition [py [u;|* = a;
for given a; > 0 (j = 1,2,3). The fixed frequency problem is the problem of
finding the solution u = (uy, ug, uz) of (P>#) for fixed \; € R (j = 1,2,3).
The fixed mass problem is dealt with in Part I and the fixed frequency prob-
lem is dealt with in Part II in this thesis.

0.1 Fixed mass problem

For the fixed mass problem, we define the following functional:

E*(u Z/ Va2 + V(@) uy

p+ ] Z/ |uj|erl — aRe/ U U U3,

where N <3, 1 <p<1+4/N, a,p,e > 0. We also impose the following
conditions for the potential V;(z):

(V1) for all j =1,2,3, V; € L®(RY;R).
(V2) forall j =1,2,3, Vj(z) < limpy e Vj(y) = 0 (for almost every z € RY).

We consider the following minimization problem of £%# under L* normalized
condition:

§87(a) = inf{ B (u) [we H, - fou luy* = a5 (5 =1,2,3)},

i



where H := H'x H' x H', H* := H'(R"; C). Then a minimizer u for £2*(a)
satisfies (P?) and ), appears as a Lagrange multiplier.
We also consider the limit minimization problem:

f <a> = inf{Eg,fo(u) | ucH, fRN |uj|2 = a; (.7 = 17273)]’?

£,00

1 B
o, = 2 12 _ |p+1
BRw =5 [t - -2 > [t

— aRe U ULU3.
]RN

To prove the existence of a minimizer for £2#(a), it is extremely important
to show the strict subadditivity condition

€7a) < €27(b) + €24 (a —0) (0.3)

for all b = (by,be,b3) with b # a and 0 < b; < q; for all j = 1,2,3 where
a = (ar,as,a3), a; >0 forall j =1,2,3.

For the single minimization problem with pure power nonlinearities, it is
easy to show the strict subadditivity condition by using the scaling ug(x) =
Ou(z) for > 0. Also, for the single minimization problem with general non-
linearities and without potentials, we can show that the strict subadditivity
by using the scaling uy(z) = u(Az) for A > 0 (see [46]). But for system
minimization problems, it is more difficult to show the strict subadditivity
condition. Ardila [4] showed the existence of minimizer for £2#(a) under the
condition N =1and V; = 0 for j = 1,2, 3. Ardila [4] used the rearrangement
techniques to obtain the strict subadditivity for £27(a). Kurata-Osada [31]
showed the existence of minimizer for £2%(a) under the condition N < 3 and
(V1),(V2) and the following symmetric condition (V3):

(V3) forallj =1,2,3, V;(—x1,2") = Vj(x1,2) for almost every z; € Rand 2’
e RV
Vi(s,2") < Vi(t,2’) for almost every s, € R with 0 < s < t and
e RV

Kurata-Osada [31] used the coupled rearrangement techniques developed
by Shibata [47] on another system. However, it is more difficult to show
the strict subadditivity condition (0.3) without assuming symmetry for the
potentials.

1l



0.2 Fixed frequency problem

Recently, Ikoma-Miyamoto [27] established a method of showing the strict
subadditivity condition for two component system arising Bose-Einstein con-
densates model without assuming symmetry for the potentials. In Chapter
1, we confirm that the method of [27] is also applicable to the three wave
interaction model without assuming symmetry for the potentials.

Osada [42] obtained the following existence result of a minimizer (see
Theorem 1.1 in Chapter 1):

Theorem 0.1. (Theorem 1.1 in [42], the existence of a minimizer
for &'(a))  Assume that N < 3,1 < p < 1+4/N and (V1)-(V2) and
(V1,V5,V3) # (0,0,0) and a; > 0 for all j = 1,2,3. Then for any minimizing
sequence {u,}22, for &"'(a), up to a subsequence, there exists a minimizer
u € H for &' (a) such that

|lu, —ul|lg — 0.

0.2 Fixed frequency problem

In the fixed frequency problem, functions are considered as real-valued func-
tions. Also, rewrite V;(z) + A; as V;(z). For fixed frequency problem, we
define the following functional I®? which characterizes the solution of (P%#)
as a critical point:

8 (u Z/ 2V, + V()2
p+12/ |uj|p+1—oz/ U U U3.

We consider H := H'(RY) x HY(RY) x H*(R") as the space to consider the
solution. Then we say that u is a ground state of (P%?) if u is a nontrivial
solution of (P2#) and minimizes I®® among all nontrivial solutions of (P%?).
To search a ground state solution, we consider the following constrained
minimization problem:

C?’B = inf ]O"B( ),
uGNQB

NP = {u e H\ {(0,0,0)} | G2 (u) = 0},

v



3
G (u) = Z /RN 2| Vu,|* + Vj(x)uf — Blu; [Pt = 3a /RN U U U3.
j=1

It is well-known that u is a ground state of (P®#) if and only if u is a
minimizer for ¢®#. Therefore, to show the existence of a ground state of
(P2P), it is sufficient to show the existence of a minimizer for ¢#. In the
following, we mention the historical background of the singular perturbation
problem.

Rabinowitz [44] showed that there exists a ground state solution of

—?Au+V(z)u = |ulf"'u in RY (0.4)

for e sufficiently small if 0 < inf gy V(2) < liminfy o V(2). Here we say
that u is a ground state of (0.4) if u is a nontrivial solution with least energy

1 ) 1
- Vul? + V(x)u? — —— Pl
5 PV - — [

among all nontrivial H(RY) solutions of (0.4).

Wang [54] studied the concentration behavior of positive ground state
solutions of (0.4). That solutions concentrate at a global minimum point of
V' as ¢ — 40, have a unique local maximum (hence global maximum) point
and exponential decay rapidly around the minimum point.

Lin-Wei [33] considered the following nonlinear Schrédinger system

—e2Auy + Muy = pud + Bugud in Q,
—&2Auy + Aoy = poul + fuiuy  in Q, (0.5)
Uy, ug >0 in §, '

uy = us =0 on 0f2,

where Q@ C RY is a smooth and bounded domain. They showed that as
e — 40, there are two spikes for both u;. and us., where (uy.,usc) is a
positive ground state of (0.5). If 8 < 0, the locations of two spikes reach a
sphere-packing position (the positions that maximize the minimum distance
from the boundary and the distance from each other) in the domain 2. On
the other hand, if 5 > 0, the locations of two spikes reach the position
farthest from the boundary.



0.2 Fixed frequency problem

Lin-Wei [34] considered the following system with potentials:

—&2Auy + Vi(z)uy = pud + fugui  in RY,
—&*Aug + Va(w)ug = pou3 + fuiug  in RY, (0.6)
Uy, Ug > 0 in RN.

For this system, they showed the spikes are trapped at the minimum points
of Vj(z) if § < 0. On the other hand, if 5 > 0, they introduced a certain
function p(Vi(z), Va(x); B) and the spikes are trapped at the minimum points
of p(Vi(x), Va(x); B) or trapped at the minimum points of V;(z).

U2 e

Vaw) M

0
Figure 0.1: inf,epn p(Vi(2), Va(2); B) < dy +d)**

U2 e
ULE

Va(x)
Vi(z)

0
Figure 0.2: inf,cpn p(Vi(z), Va(z); B) > d{*° + d;>°

Here, p(Vi(zo), Va(zo); B) and de’O are the least energies of the follow-
ing equations respectively: Here, p(V; (o), Va(zo); 8) and d;"° are the least
energies of the following equations respectively:

—Auy + Vi(zo)uy = ud + Bugus  in RY,
—Aug + Vao(zo)us = ud + fuiuy  in RY,
up >0, uy >0 in RN

vi



and

—Au+Viou=u® inRY,
u>0 in RY.

The least energy means the energy which ground state has.
Montefusco-Pellacci-Squassina [39] considered (0.6) for the case N = 3.
They showed that the least energy solution of (0.6) converges (up to scalings)
to a least energy solution of corresponding limit problem as ¢ — 40. They
adopt a definition of Nehari manifolds similar to Pomponio [43] and ours.
They also proved that if 3 is sufficiently large, then the limit state is vector,
on the other hand, if £ is sufficiently small, then the limit state is scalar.
We now introduce the main result in the setting of the singular pertur-
bation problem. In the following, we state the main results in Chapter 4.
We assume = 1. To state main results in Chapter 4, we also consider the
following system and define the following corresponding functional:

—AUl + )\1’(}1 = ’Ul|p_101 + avavs,
—Avy + vy = |U2|p_1v2 + avyvs, (P)\’a)

—Avg + /\3U3 = |U3|p71’U3 + avqvg,

(v Z/ Vo] + Ao
p+12/ o [P — / V1UV3,

where A := (A1, A2, Ag) with A\; > 0 (j = 1,2,3). Define the least energy as
follows:

P, Aoy Ag; ) i=  inf T (v),

veNA

N = {v € HN\ {(0,0,0)} | G¥(v) = 0},
GM(v Z/ [V + Ajvf — [o; [P —3a/ V1V9V3.
RN

We assume the following condition for the potentials:

(V1) for all j =1,2,3, V; € L®(RY) N CY(RY),

vil



0.2 Fixed frequency problem

(V2) for all j =1,2,3, 0 < Vjo :=inf,cpn V() < limyme Vi(2) = V.
(Cl)a infyern p(Vi(z), Va(z), Va(2); ) < p(Vi,00, Varoo, V3,005 @)

We now state main results for the singular perturbation problem. First,
we state the existence of a ground state of (P*?!) for ¢ sufficiently small (see
Theorem 4.3 in Chapter 4).

Theorem 0.2. We assume that (V1),(V2) and fix « so that (C1), holds.
Then it follows that

&t <N ( inf p(Vi(x), Va(z), V3(x); ) + 0(1)) , ase— +0.

z€RN

Moreover, there exists a non-negative ground state u of (P®!) for ¢ suffi-
ciently small.

Next, we state the precise asymptotic behavior of a ground state of (P>!)
as € — +0. To obtain the asymptotic behavior precisely, we introduce the
following condition:

(C2), infepy p(Vi(2), Va(x), Vi(@); @) < minj_yg5¢,"",

where
A >0,
D)=+ [ Vuf? a2 - L/ !
1 2 RN p+ 1 RN ’
A . A
c; = inf I7(u),
BRI

N = {u e H'(RY)\ {0} | G} (u) = 0},
) = /RNWUF = [uft

We also consider the following equation associated the above minimization
problem:

—Au+ M= |[ulf (P?)

Now, we state the precise asymptotic behavior for a non-negative ground
state of (P®!) as ¢ — +0 (see Theorem 4.5 in Chapter 4).

viil



Theorem 0.3. We assume that (V1),(V2) and fix « so that (C1), and
(C2), hold. Let {e,}>2; C (0,00) with €, — 0 as n — oo and let u,, be a
non-negative ground state of (P®'). Let z;, be a maximum point of u;,,.

(1) Then, it follows that {z;,}>>, is bounded for all j = 1,2, 3.

(2) It holds that

2t =l ( inf p(Vi(x), Va(z), Va3(x); ) + 0(1)) , ase— +0.

€ zERN

(3) Furthermore, up to a subsequence, there exist Wy € H and xy, € RY
such that

Tjn — L0,
|Zjn — Th

En
inf p(Vi(z), Va(z), Va(2); a) = p(Vi(wo), Va(wo), Vs(2o); @),

zeRN

Wjn(Tjn +Eny) = Wjo in HI(RN),

— 0, asn— o0, j#k,

W, is a ground state of (PV(®@0)®)
W0 is positive, radially symmetric and strictly decreasing

forall j =1,2,3,
where V(x¢) = (Vi(xo), Va(zo), V3(20))-
(4) Moreover, for any 0 < n < V4, there exists C,, > 0 such that
wjn(z) < C’ne’\/mw’zjv"'/gn forallz e RY, neN, j=1,2,3,

where Vj := min{V} g, Vo, V30}-

Finally, we state the main result in the asymptotic behavior of a non-
negative ground state of (P*!) as ¢ — +0 for the case where (C2), does
not hold (see Theorem 4.6 in Chapter 4). When (C2), does not hold, the
following condition holds (see Lemma 4.15 and Proposition 4.18):

(C3)o infyern p(Vi(z), Va(x), V3(x); @) = minj—; o3 ch’O.

X



0.2 Fixed frequency problem

Theorem 0.4. We assume that (V1),(V2) and fix a so that (C1), and
(C3), hold. In addition, we assume that there exists o > « such that (C3),/
holds. Let {e,}>°, C (0, 00) such that €, — +0 and let u,, be a non-negative
ground state for (7737;1). Let z;, be a maximum point of u;,. Then, up to a
subsequence, there exist Iy € {1,2,3} and z;,0 € RY such that

Tigm — Tlp0, Vi (1'10,0) = Vip0 = W,

&l =N ('H}igg o+ 0(1)) =N <c‘1/l°’0 + 0(1)> , ase— +0,
J: b b

Utgn(Tign + Eny) — W in Hl(RN),

Uj(Tjp +Eny) — 0 in HY(RY) 5 # Iy,

where W is the unique solution of the following equation:

—AW + VoW = WP in RY,
W >0 inRY,

W(0) = max,epy W (z),
W(x) — 0, as|z|— oco.

In the problem considered Lin-Wei [34], they consider the least energy
solution among all vector solutions (the solution which has all components
are non-zero) of

—e2Auy + Vi(x)u = U:f + 5%“37
—e2Auy + Va(z)ug = ud + Suius.

On the other hand, in our setting, we consider the least energy solution
among all nontrivial solutions (includes scalar solution (the solution which
only one component survive)) of

—€2AU1 + V1(a:)u1 = |u1]p_1u1 + Quzusg in RN,
—&*Aug + Va()ug = |ug|P"uy + auguy  in RY, (P2h)
—&2Aug + Va(z)usz = |uz[Ptuz + cuguy  in RY.

Therefore, in the result of Theorem 0.4, the case which each component of

ground states survives and converges to a minimum point of corresponding
potential respectively as in the result in Lin-Wei [34] does not occur.



The difference in the range of N and p arising the fixed mass problem
and the fixed frequency problem is due to the difference in the conditions
for ensuring that the functional is bounded below due to the difference in
the constraints. The purpose of this thesis is to analyze the existence and
asymptotic behavior of the solutions of minimization problems for the fixed
mass problem and the fixed frequency problem using variational methods.

The rest of the thesis is organized as follows.

In Part I, we consider the fixed mass problem. Part I consists of Chapter
1 and 2. In Part II, we consider the fixed frequency problem. Part II consists
of Chapter 3 and 4.

In Chapter 1, we show that the existence of a minimizer for &' (a) under
without assuming symmetry for V;(z). This result is an extension of the
result of Kurata-Osada [31]. In doing so, a technique interaction estimate
developed by Tkoma and Miyamoto in [26] plays an important role. Chapter
1 is based on the result in Osada [42] and Kurata-Osada [31].

In Chapter 2, we consider the asymptotic behavior of a minimizer for
ﬂw(a) as B — oo under supposing a = (% for given k € R. We show
that the asymptotic behavior of a minimizer can be classified into five types
depending on the size of kK € R. Moreover, we investigate the asymptotic
behavior of a minimizer for {f’ﬁ (a) as @ — oo under supposing § = a” for
given 7 € R. This is an extension of the result of [31]. Chapter 2 is based on
the result in Osada [41].

In Chapter 3, we investigate the asymptotic behavior of a ground state of
(PY) as a — oo. Moreover, we obtain the result that there exists a positive
constant a* such that all ground states of (P{") is scalar (a state in which
only one component survives) if 0 < o < o*, and all ground states of (P{")
is vector (a state in which all components survive) if o > o*. Chapter 3 is
based on the result in Kurata-Osada [30].

In Chapter 4, we consider the existence of a non-negative ground state
of (P>!) for e sufficiently small and the asymptotic behavior of the non-
negative ground state of (P*!) as ¢ — +0. In particular, it is clarified
that the asymptotic form becomes spike-like, and the position of the spike
is determined by the shape of the potential V;(x) and the attractive force of
the three wave interaction o. Chapter 4 is based on the result in Osada [40].
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Fixed mass problem



Chapter 1

Existence of a minimizer for a
nonlinear Schrodinger system
with three wave interaction
under non-symmetric potentials

1.1 Introduction

We consider the following L?-constrained minimization problem associated
with a nonlinear Schrodinger system with three wave interaction: for a =
(ala a2, a3)> ay, G2, a3 Z 07

&(a) :==inf{E(u) |u e M(a)}, (1.1)
13
Bwi=33 [ IVl + Vi@l do
j=1
— ii/ |u; [P d — aRe/ Uy UgTi3 dx
p+ 1 =1 RN J RN ’
M(a) ={u € H ||yl =a; (j=1,23)}

2



Chapter 1 Existence of a minimizer for a nonlinear Schrodinger system
with three wave interaction under non-symmetric potentials

where u = (uy,ug,u3), H := H' x H' x H', H' :== H'RY;C), 1 < N < 3,
1 <p<1+4+4/N, o,f > 0 and each potential V; satisfies the following
conditions:

(V1) for all j =1,2,3, V; € L(RY;R).
(V2) forall j =1,2,3, Vj(z) < limjy e Vj(y) = 0 (for almost every z € RY).
The minimization problem (1.1) is related to the existence of a standing

wave solution of the nonlinear Schrédinger system with three wave interac-
tion:

10y, — Vi (2)vy + Avy + Bloi|P oy = —adyus, (1.2)
i0yvy — Va(2)vg 4+ Avy + Blvg|P vy = —adyvs, (1.3)
103 — Va(x)vs + Avs + Blus|Ptvs = —avgvs. (1.4)

As explained in [4], once we show the existence of a minimizer of (1.1), we can
also show the existence of a minimizer of the energy E under the constraints
luallz + lluslls = ar, Jluall + [lusllz = az,

for given a; > 0 and as > 0. Then if u is a minimizer of the energy E under
the constraints ||uy]|3 + |lus||3 = a1 and |Jus||3 + ||us||3 = a2, there exist w;
and wy such that

—Auy + (w1 + Vi(z))ur — Bl [P~y = atigus,

—AUQ + ((JJQ + ‘/Q(x))UQ — /8’U2|p71U2 = Quus,

—Auz + (w3 + Va(2))uz — Bluz|P~uz = ququs,
where w3 = w1 + wy. That is,
(eiwltul(x), €iw2tU2<l’>, ei(wl—i-wg)tug(x))

is a standing wave solution of (1.2)—(1.4). In that sense, it is important to
show the existence of a minimizer of the minimization problem (1.1).

The system (1.2)—(1.4) was introduced by Colin-Colin-Ohta [19] with V;(z) =
0 and 8 =1 (see also [15, 16]). Colin-Colin-Ohta [19] showed that the stand-
ing wave solutions (e, 0,0) and (0, e“*p, 0) is orbitally stable for all & > 0,
where w > 0 and ¢ is the unique positive radial solution of

~Av+wv— [P 'v =0 in RY.

3



1.1 Introduction

On the other hand, (0,0,e™“!p) is orbitally stable if 0 < a < «o* and is
orbitally unstable if & > a* where a* is suitable positive constant (see [19]
for more detail).

We say that {u,}>°; C M(a) is a minimizing sequence for £(a) if E(u,) —
&(a) as n — oco. We state the main result in this chapter.

Theorem 1.1. Assume that N <3, 1<p<1+4+4/N, a,5>0and (V1)-
(V2) and (V4, V4, V3) # (0,0,0) and a; > 0 for all 7 = 1,2,3. Then for any
minimizing sequence {u,}>2, C M(a) for £(a), up to a subsequence, there
exists a minimizer u € H for {(a) such that

|lu, —ul|lg — 0.

We also consider the limit minimization problem:
§o(a) = nf{Ex(u) | u e M(a)},
Eo(u) = -Z/ V2 d — ii/ s [P
— aRe/ uy Uz d.
RN

To prove Theorem 1.1, it is extremely important to show the strict subaddi-
tivity condition

§(a) <&(b) + Eoc(a — ) (1.5)

for all b = (b1, be, b3) with b # a and 0 < b; < a; for all j = 1,2,3 where a =
(a1, as,as), a; > 0 for all j = 1,2,3. In previous paper [31], we showed the
existence of a minimizer under the conditions (V1),(V2) and the additional
assumption:

(V3) forallj =1,2,3, V;(—x1,2") = Vj(x1,2") for almost every z; € R and 2’
e RV
Vj(s,x’) < Vj(t,2") for almost every s, € R with 0 < s < ¢ and
7' e RN-L
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Thus Theorem 1.1 improves the result in [31]. The condition V (x) < limyy|_e0
V(y) = 0 (for almost every x € RY) is almost necessary even for the scalar
case (see e.g. [35, 36]). However it is known that the condition (V3) is not
necessary for the scalar case or some systems (see e.g. [26, 27]). The key
point of the proof of Theorem 1.1 is to show a quantitative estimate (1.41)
(see the proof of Proposition 1.9) for our system, which implies the strict
subadditivity (1.5) without symmetric condition (V3) by using the idea in
26, 27).

For the single minimization problem with pure power nonlinearities, it is
easy to show the strict subadditivity condition by using the scaling ug(x) =
Ou(z) for > 0. Also, for the single minimization problem with general non-
linearities and without potentials, we can show that the strict subadditivity
by using the scaling uy(z) = u(Ax) for A > 0 (see [46]). But for system
minimization problems, it is more difficult to show the strict subadditivity
condition. Ardila [4] showed the existence of a minimizer for £(a) under the
condition N =1 and V; = 0 for j = 1,2,3. Ardila [4] used the rearrange-
ment techniques to obtain the strict subadditivity for £(a). Kurata-Osada
[31] showed the existence of a minimizer for {(a) under the condition N < 3
and (V1),(V2) and the symmetric condition (V3). Kurata-Osada [31] used
the coupled rearrangement techniques developed by Shibata [47] (see Gou
[23] and Gou-Jeanjean [24] for other studies using coupled rearrangement).
However, it is more difficult to show the strict subadditivity condition (1.5)
without assuming symmetry for the potentials. Recently, Tkoma-Miyamoto
[27] established a method of showing the strict subadditivity condition for
two component system arising Bose-Einstein condensates model without as-
suming symmetry for the potentials. So in this chapter, we prove Theorem
1.1 based on the technique due to [27].

We also mention other studies on nonlinear Schrodinger system with three
wave interaction. Pomponio [43] studied the existence of vector ground state
of the system

—Auy + Vi(2)uy — |ug [Py = auslis, (1.6)
—Auy + Va(z)ug — |ug|Ptuy = auyts, (1.7)
—Aug + Va(z)us — |us|Ptus = auyus, (1.8)

for v > 0 sufficiently large. Here, N < 5,2 <p <2*—1,2* .= 00 (N = 1,2),
2*:=2N/(N —2) (N > 3) and the potential V; satisfies a suitable conditions

5
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(see [43] for more details). After that, Kurata-Osada [30] showed that the
asymptotic expansion of ground state energy as a — oo and there exists
a positive threshold o* such that all ground state for (1.6)—(1.8) is scalar
if 0 < a < a* and is vector if @ > a*. Moreover, Osada [41] showed the
asymptotic expansion of £(a) as 3 — oo with a = 3% (6 € R).

The rest of this chapter is organized as follows: In Section 1.2, we note
that a property of a minimizing sequence for (a) and an exponential decay
estimate for a non-negative solution of a corresponding nonlinear elliptic
system (see Lemma 1.8). In Section 1.3, we prove the strict subadditivity
for £(a) by using the idea in [27]. In Section 1.4 we prove Theorem 1.1. In
Appendix, we prove the existence of a minimizer for £(a) under symmetric
conditions for potentials V;(z). Although this result have been proved in
[31], we give the proof for the reader’s convenience.

Notation

u| = (Jual, usl, [us]),

(u,v)s ::/ uv dz,
RN

ull3 = (u,u)s,

(u,v) g1 ::/ Vu - Vv +uvdz,
RN

||U||%11 = (u,u)m,

(W, v)g =) (uj,v5)m,

M-

Il
—

J
lull7 = (w,u)m,
(u,v)y, == Re - Vu - Vv + Vj(z)uv dr,

Py (u) = (u, u)y;.



Chapter 1 Existence of a minimizer for a nonlinear Schrodinger system
with three wave interaction under non-symmetric potentials

1.2 Preliminaries

From now on, in this chapter, we assume that a = § = 1 for simplicity.

1.2.1 Existence of the nice minimizing sequence

The following lemma can be proved as in Lemma 2.2 in [27].

Lemma 1.2. Assume that N < 3,1 < p < 1+4+4/N and (V1),(V2) and
let {u,}>2, C M(a) be a minimizing sequence for &(a). Then {|u,|}2, is
also a minimizing sequence for £(a). Moreover, if {|u,|}5°; has a strongly
convergent subsequence in H, then {u,}2, has also a strongly convergent
subsequence in H.

Although the following lemma can be proved as in Lemma 2.3 in [27],
we give a proof for the reader’s convenience according to the setting of this
chapter.

Lemma 1.3. Suppose that (V1) and let {u,}>*, C M(a) be a minimizing
sequence for (a). Then there exist {v,}°>, C M(a) and {\;,} C R such
that {\;,}>°, are bounded and

la, — vallz — 0,
E'(vy) + MaQ1(ve) + X2nQo(vi) + A3,Q5(vy,) — 0 strongly in H,

where
3 3
E'(u)[v] = Re Z Vu; - Vo, + Vi(x)u;v; dz — Re Z/ | P~ 05 do
j=1 /RY j=1 /RY
- Re/ U1UQE3 + ulﬂgﬂg + U1U2@3 dl’,
RN

Qs(w) = 3wl Q5(wlv] = Re(u;, ;)

Proof. Applying Ekeland’s variational principle for E and {u,} on M(a)
(see [38, Theorem 4.1 and Remark 4.1]), there exists {v,}2>, C M(a) such

7



1.2 Preliminaries

that for ¢, := E(u,) — &(a) > 0,

E(Vn> S E(un>7 ||un - VnHH S \/a,
E(v,) < E(W) + /en||ve — w|lg  for all w € M(a). (1.9)

Thus, {v,}>2, also a minimizing sequence for £(a).
For u € M(a), set
TuM(a) :={v € H | Re(uj,vj)2 =0 (j=1,2,3)}
By the Riesz representation theorem, there exists unique @; € H' such that

(Uj,Uj)g = (QNI/]‘,UJ‘)HI for all v; € Hl,
[jlla = [l2; - (1.10)

Set VQ1(u) := (14,0,0), VQ2(u) := (0,12,0), VQ3(u) := (0,0, u3) and

span {VQ1(u), VQ2(u), VQs(u)}
= {01VQ1(11) —+ CQVQQ(U) -+ 03VQ3(u) | C1,Co,C3 € R}

Then we have

TuM(a) = {v e H[Re(VQ;(n),v)n =0 (j=1,2,3)}

= span {VQi(u), VQ2(u), VQs3(u)},
H =T,M(a) & span {VQi(u), VQ2(u), VQs3(u)} (1.11)

Noting that (1.11), for all u € H, there exist h € T, M (a) and ¢y, co,c35 € R
such that

u=h+cVQi(v,) + &VQ2(v,) + c3VQ3(vy).
Setting Ajn = —E'(v,)[VQ;(v)]/VQ; (Vi) I3, we have
(E' (Vi) + M@ (Vi) + X20Q5(Vi) + A3, Q3(Va))[u] = E'(v,)[h].  (1.12)

Here, we define ¢(t) : (—¢,e) — M(a) as follows:

Vin + thl Va.n + thg U3n + thg
() = (van s Yt
”Uln—i‘thl”z H’Ugn—i‘thQHg +th3”2
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Then c(t) is a C'-curve satisfying ¢(0) = v,, and ¢/(0) = h. From (1.9),

E(C(t));E(V’J > /e C(t)% . if ¢ >0, (1.13)
E(C(t))t_ﬂv”) < Jon C(t)%V” } if ¢ < 0. (1.14)
Since E is Fréchet differentiable,
Elelt)) ~ EVn) gy )m), ast—o. (1.15)
From (1.13) (1.15), we have
|E'(vi)[h]| < Ven| . (1.16)

Thus from (1.12) and (1.16),

||El(vn) + /\l,anl (Vn> + /\Q,nQ,Q(Vn) + A3,an(Vn)| H*
= sup [(E'(va) + An@i(Va) + A2n@5(Va) + AsnQ3(va)) [ul|

< e, — 0.

Since {v,} is bounded in H and (1.10) and v,, € M (a), there exista M > 0
such that

IVQ;(va)lla = /aj,
|E'(v,)[VQ;(vy)]| <M foralln e N.

Therefore {);,,} is bounded. O

1.2.2 Exponential decay estimate

We introduce the following terminology for convenience.

Definition 1.4. Let f be a non-negative function defined on RY and \ >
0. We say that f has an essentially exponential decay order v\ if for all
0<ym< VA< VT2, there exist Cy, C;, > 0 such that

Cpe Vel < f(2) < Cp e VMl for all x € RY.
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1.2 Preliminaries

Definition 1.5. Let {a,}>%, be a non-negative sequence and A > 0. We
say that {a,}°°, has an essentially exponential decay order v/ if for all
0 < /M < VA < /2, there exist Cy,, C;), > 0 such that

ane’\/"?" <a, < Cme’*/’TI" for all n € N.
We give a simple proof of the following weak version of the interaction
estimate due to Bahri-Li [5].

Lemma 1.6. Let f and g be non-negative functions and A;, Ay > 0. We
assume that f and g have an essentially exponential decay order y/\; and
v/ Ag respectively. Set

Ay = f(@)g(x — ney) dx.
RN

Then {a,}32, has an essentially exponential decay order min{y/A, v/ A2}

Proof. Without loss of generality, we may assume that A\; < Ay. We first
prove that for any 0 < \/n < /A1, there exists C;, > 0 such that

a, < C’me_\/ﬁ” for all n € N.
Indeed, since f and g have an essentially exponential decay order v/A; and
V/Ag, it follows that for any 0 < /3 < /A1, there exist /5 < /N1 < /A2,

Chs, Gy > 0 such that

f(x) < Cpe VBl for all z € RY,
g(z) < Cpe VTl for all 2 € RV,

Thus, we have
—V/islztner| ;—/malz|
a, < Cp,C,, e e dx

RN

< C’%Cm/ e~ W=Vl g o=V for all () < N3 < VA1
RN

10
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Secondly, we prove that for any /7, > /A1, there exists Cy, > 0 such that
an > Cpe”VP" for all n € N.

Since f and g have an essentially exponential decay order /A; and /s,

for any \/m5 > VA1, /16 > v/ A2, there exist Cy,, > 0 and C,; > 0 such that

f(x) > Cpe VBl for all x € RY,
g(z) > Cpee VTll for all z € RY.

Thus, we have
Qp = 077507]6 / e—\/nis\as—i-nel\e—\/%m dx
RN

> 0,0 / o~ W)l gy oV
RN

O

Lemma 1.7. Let f and g be a non-negative functions and p,q > 0 with
(p,q) # (0,0) and A, Ay > 0. We assume that f and g have an essentially
exponential decay order v/A; and v/A, respectively. Then it follows that fPg9
has an essentially exponential decay order pv/Ai + ¢v/As.

To show the strict subadditivity for £(a), we prove the exponential decay
estimate for the non-negative solution of the following system (1.17)—(1.19).

Lemma 1.8. (cf Lemma 3.1 in [27]) Let uy,us,u3 € H'(RY) be a
non-negative weak solution of the following elliptic system:

—Aul + ()\1 + Vl(x))ul = ulf + U2U3, (117)
—Aug + (Ay + Va())ug = uf + uyus, (1.18)
—Aug + (A3 + Va(2))ug = uf + uyus, (1.19)
where N <3, 1 <p <1+4/N,0< A < X < A3, Vj satisfies (V1) and

(V2). Then it follows that

(i) if uy > 0, then w; has an essentially exponential decay v/A;.

11
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(ii) if uy > 0, then uy has an essentially exponential decay v/ As.

(iii) if u1 = ug = 0 and uz > 0, then uz has an essentially exponential decay

VAs.
(iv) if uy,ug,ug > 0, then ug has an essentially exponential decay /Ay :=

min{v/A1 + vAz, v A3}

Proof. (i): For the case of u; > 0,us = ug = 0, we can prove easily (i). So
we assume that uy, us,uz Z 0. By the strong maximum principle, it follows
that uy, ug, ug > 0. First, we prove upper estimate for u;. For all 0 <y < Ay,
there exists € > 0 such that 0 < n; < Ay —e. Set u :=uy +uq, V :=V; + V5.
Note that uy,us >0, V4,V <0 and 0 < Ay < Ag. From (1.17) and (1.18),

—Au+ (M +V(z))u
< —Auy — Aug + Mug + Aoug + Vi(z)ug + Va(z)us
= uf +ub + (ug + ug)ug
< 2uP + uug. (1.20)

From N < 3 and the elliptic regularity, u; € H?(RY) N L>*(RY) N C(RY)
and

lim wu;(x) = 0.
|z|—o00

Note that Vj(z) — 0 as |z| — oo. There exists R > 0 such that if |x| > R
then

—V(z)+2uP " +uz <e.
From (1.20), if |z| > R, then
—Au+ (A —e)u<0.
On the other hand, we define the comparison function ¢ as
Y(x) == Ce vVl
Noting 71 < A\; — ¢, we have
—AY+ (M —e)p = (Vm(N =1)/]|z|+ 1 —e— nl)Ce_\/’Tlm > 0.

12
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Thus
—Au+ (M —e)u < =AY+ (A —e)y for all |z| > R.
From the comparison principle, there exists C,, > 0 such that
uy(2) < uz) < Cpe Vil for all z € RV,
Secondly, we prove lower estimate for u;. Since u; > 0 and V; < 0, we
have
—Auy + Mug > 0.

By the same argument as above, we can prove that for all o > A;, there
exists Cy, > 0 such that

uy(z) > Cpe VRl for all 2 € RY.
(ii),(iii): They can be proved by the same argument as in (i).

(iv): We first prove upper estimate for us. For all 0 < /15 < VA4 =

min{v/A1 + /A2, v/ Az}, there exist 0 < \/f1 < v/A; and 0 < /75 < /A such

that
Vs <V + /.
From the upper bound for wuy, us, we have

uy(2) < Cpe Vel for all x € RY,
uy(z) < Cpe VL for all x € RY.

From (1.19),
—Aug + (A3 + Va(2))ug — uf < O, Cypye”Vtvimlal,
Since 15 < A3, thre exists € > 0 such that 15 < A3 — . Note that

lim wz(z) = lim Vi(z) =0.



1.2 Preliminaries

Thus, for |z| sufficiently large,
Va(z) —ul ' > —e.
Hence, for |z| sufficiently large, we have
—Aug 4+ (A3 — &)ug < C,, Cyp e~ VIVl (1.21)
On the other hand, we set 1(z) := Ce VBl Then
—AY + (A — &) = (Vip(N = 1)/[x| + X — & = ps)Ce VEIL - (1.22)

Since /N5 < /M1 + /13, for |z| sufficiently large, it follows from (1.21) and
(1.22) that

—AU3 + ()\3 — 6)11,3 S —A@b + ()\3 — E)’(/)
By the comparison principle, there exists C,; > 0 such that
uz(z) < Cpe VL for all x € RY.
Secondly, we show the lower estimate for uz. Let \/ng > v/ Ay := min{/ A+

VA2,V A3z} If Ay = A3, then we can prove the lower estimate for us by the
same argument as in the lower estimate for u;. So we consider the case of

VA = VA + V). Then there exist V2 > VA1 and /M1 > v/ Az such that
Ve > /2 + /1.

From (1.19), we have

—Aug + Azuz = —Va(x)uz + uf + ujug

Z U1Us.
From the lower estimate for w;, us, there exist C,,, C,, > 0 such that

uy(z) > Cpe VRl for all 2 € RV,
uy() > Cpe Vil for all z € RY.

Thus

—AUg + )\3U3 Z CmCme_(\/ﬁ’L\/@‘x'.
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On the other hand, we set ¢(z) := Ce™V®l#l. Then
—AY + At = (Vii(N = 1)/ || + Ag — 116)Ce VW,
Since /Mg > /M2 + /14, for |z| sufficiently large,
—Aug + Azuz > —A) + A31).
By the comparison principle, there exists C,; > 0 such that

uz(z) > Cpe VTl for all x € RY.

1.3 Strict subadditivity for £(a)

The next proposition plays a crucial role to prove Theorem 1.1.

Proposition 1.9. Let a,b,c € RY, satisfying b,c # (0,0,0) and a; =
bj 4+ ¢; > 0 and let uy and wy be a minimizer for {(b) and . (c) respectively
satisfying

Uj.0 > O, Wj.0 >0 a.e. in ]RN7

—Auy g+ (Ao + Vi(x))uro — u{',o = UgoUzp In RY, (1.23)
—Ausg + (Ao + Va(z))ugo — ug,o = Uy Uz In RY, (1.24)
—Auz o+ (As0+ Va(x))uso — ug,o = Ui gUgp In RY, (1.25)
—Awy g+ Aowio — wly = waowse in RY, (1.26)
—Awsy g + Ao — Why = Wipwsp in RV, (1.27)
—Awsg + A3pws 0 — Wy = WipWzp in RY, (1.28)

where 0 < A1 < Ao < Agp for all j =1,2,3. Then we have
§(a) < &(b) + &so(0).
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Proof. We borrowed the ideas from Theorem 1.1 in Ikoma-Miyamoto [27].
Set

Wjn(2) == wjo(x —ne1), Tjp = oo + 1JU T = (wj0, Wjn)2-
75 J,n

Remark that

(T1n(U1,0 + Win), Ton (U2 + W), Tan(uso + ws,)) € M(a),
0< Kjn — 0.

By the strong maximum principle, it is sufficient to consider the cases

u10,0,0),  Wo = (w10, W20, Ws0),
0,uz0, 0), Wy = (w1,0, W20, ws,o),
0,0,u30), Wo = (w1, wa0,Ws0),
Uy,0,U2,0,U30), Wo= (w1,07070)7

0 w207 )7

c
S
I

)
U1,0, U2,0, U3,o)7 Wo = (
Ug = (U1 0,U20,U30), wo = (0,0 w3o)
) (

~~
— e
: < : : B
~— ~— ~— ~— ~— ~— ~—
o
—~ — —~ — ~—~ ~—~ —

Uo = (U1,0, U2,0,U3,0);, Wo = (W1 0,w20,w30)

So it is sufficient to consider the cases

(A) /il,n > 0,
(B) Kin = 0< K2,n,

(C) Rin = R2n = 0< R3n-

Noting that
E(min(u1o+ w1,), Ton(tgo + wan), T3n(Uso + wssp))
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3 2 p+1
T'n
P OX HTSTRES wrcy N

J=1

— 7’1,n7'2,n7'3,n/ (u1,0 + w1 ) (U0 + Wan)(uso + ws,y) de,
RN

we compute each term.

(Step 1) Since a; = b; + ¢;, we have
[ujo + winlls = aj + 260
Hence,
a a/2 q
7“.] = S :1__,%”_‘_01%2 .
J,n (aj + 25]',71) aj s ( j,n)

First, we estimate each term as Claim A, B and C as follows.

Claim A. There exists 6; € (0,1) such that

2
n
J_FV] (Uj,() -+ wjm)

2
L Kjn b
=\3 7o (Fy; (o) + [Vwjolls) = Njokjm + | ufgwjn d
CLj RN

Jan Winugousgdr  (j=1)
+ fRN U pWanuzodr  (j=2) + 0(/<sl<+91), if Kk, > 0. (1.29)

J,n
fRN Uy pUz W3, dr  (j = 3)

Claim B. There exists 03 € (0,1) such that

1
Tp+

R

> L —@/ Wit + bt da
p+1 aj RN 7

+ / U Wi + wjowh,, do + o(k52), i Ky > 0. (1.30)
RN
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Claim C. There exists 03 € (0,1) such that

7’1,n7'2,n7'3,n/ (w10 + w1 ) (U20 + Wop)(uso + ws,) de
RN

3
/ﬁ: .
]77"/
> 11— E — U, 0U2,0Us3,0 + W1 0Wa pW3,0 dT
aj RN

i=1
+ / W1 U2,0U3,0 + ULoW2nU3,0 + Ut ,0U20W3 5 + Wi W nUs0 AT
RN

0(/1%;93) if K1, >0,
+ 9 o(k5 ") if Kip =0 < Koy, (1.31)

1403 : _ _
o(kzy, ) if Kip = Kop =0 < K3p.

Proof of Claim A. It follows from (3.44) in [27] that

2

Tin
%ij (Uj70 + wj,n)

1 /{j,n

< (5 B a_> (Fv; (uj0) + IVwjollz) + (w0, win)v,

J
+ O(K5,,) + O(Kjn{uj0, Win)v;)-

Since uy is a solution of (1.23)—(1.25), one sees

_ . p o
(Uj0, Win)v; = —Njokjn + /R | UioWin dz

fRN w pUzouzodr  (j=1)
+ 9 Jan trowanusodr (5 =2). (1.32)

fRN U1 U 0W3, dr  (j = 3)

Now, we prove that if x;, > 0, then there exists 6;; € (0,1) such that

0 .
(wj0, win)v, = o(k;}).

Indeed, if k1, > 0, then uy g, w0 > 0. From Lemma 1.8, u; and wqg
have an essentially exponential decay order /A;. Thus from Lemma 1.6
and 1.7, there exist ny,n, > 0 and C}, Cy > 0 such that

Cre Vmn < K1, forallneN, (1.33)
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/ ulfjowlm dr < Cye V™" for all n € N. (1.34)
RN

If ug 0, uzo > 0, then ug o and usz o have an essentially exponential decay order
Vv Ay and v/ A4 respectively. Hence from Lemma 1.6 and 1.7, there exist n3 > 0
and C3 > 0 such that

/ W1 g ouzodr < Cae VB"  for all n € N. (1.35)
RN

From (1.32)—(1.35), there exists 0 < #1; < 1 such that

)
<u1,07w1,n>V1 = 0(”1,1{11)'

We can prove the cases kg, > 0 or k3, > 0 by the same argument.

Set 6 := min{611,012,013} € (0,1). We have (ujo, wjn)yv, = o(mgfn).
Hence, if x;, > 0,

K (.0, Win)v, = o(kj+).
Thus we have (1.29).

Proof of Claim B. We can prove (1.30) by the same argument as in page
21 in [27]. So we omit the details.

Proof of Claim C. It follows that

7'1,n7'2,n7'3,n/ (w10 + w1 ) (U20 + Wap)(use + ws,) de
]RN

> (15200 ) (1- 22 400 ) (1- 522 4+ 004,

aq a a3

X / (u1,0U2,0Us,0 + W1 W2, W3 0 + W1 U2 0US0 + Ut W2, U3 0
RN
+ Uy U2, 0W3 1, + W1 W2 U3 0) dT
= / (u1,0U2,0Us,0 + W1,0W2,0W3 0 + W1 nUsz,eUse + Ut W2 U3 0
RN

+ Uy gU,0W3 5, + W1 W2 U3 0) dT
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3

/ﬁ: .
]7n

— 0 / (u1,0u2,0Us,0 + W1 oWa W3 ) dT

. J RN

7j=1

3
Z Kjn
- (wl,nuz,ous,o + U1 pW2 ,U3,0 + U1,0U2,0W3.n
CL]' RN
7j=1
d O 2 2 2
+ wl,an,nuZ’nO) T+ (Kl,n + '%2,71 + ”{3,n>‘

Here we show that there exists 05 ; € (0, 1) such that

3
Kjn d
— W1, U2,0U3,0 + UL OW2,,U3,0 T UL U2 0W3,n + W1 pnW2 nU3,0 AT
- CLJ‘ RN
J=1
1+93,1 .
o(ky,, ") if kyy >0,
S 1+03’2 . _
= q 0(ky,, ) if K1n =0 < Kop, (1.36)
1+93’3 .
( 3.n ) if Rin = Ko = 0< K3n-

If kK1, > 0, from Lemma 1.6-Lemma 1.8, there exist 7, > 0 and C; > 0
such that

Kin > Cie V™M™ for all n € N. (1.37)

If fRN Wy pu2ouzodr > 0, then from Lemma 1.6-Lemma 1.8, there exist
12 > 0 and C5 > 0 such that

/ W1,nU2,0U3,0 dx S C’ge_\/%" for all n € N.
RN

Since other terms can be estimated in the same way, there exist n3 > 0 and
C'5 > 0 such that

/ (w1 nU2,0U30 + Us W2 nUs 0 + Ut pU2,0W3 5
RN

+ Wy p W nuzg) dr < Cze VB for all n € N. (1.38)

If Kop,kan > 0, it follows from /A1 p < /Ao < v/ Ago := min{ /Ao +
\/)\270, \/)\370} that for all 6 € (0, ].),

Ron = O(Fd?n), K3n = O(K?n)‘
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In any case, it follows from (1.37),(1.38) that there exists 03, € (0, 1) such
that

3
Kjn

(W1 nU2,0Us0 4+ UL oWa 1 U3 0 + Ut U2 0W3 0
(lj RN

=1
+ Wy pWa Uz ) dr = 0(;@}293’1).

For the case k1, = 0 < Koy, OF K1, = Koy = 0 < K34, (1.36) can be proved
by the same argument.

In the same way, it follows that there exists 65 € (0,65 ;) such that

0(/1%;93) if kK1, >0,

2 2 2 1463y - _
Kip t+ Ky, T R3, = 0(“2,n ) if K1 =0 < Koy,
1+03\ - _ _
o(kz,, ) if K1 = Ko =0 < Kz

Therefore we have (1.31).

(Step 2) From (1.29)—(1.31), setting 0, := min{6,,0s,03}/2 € (0,1), we
have

E(i0(u10 +w1,), Ton(tgo + wan), T3n(Uso + wsy))
3 3

1 Kin
<3 > (Fy, (uj0) + [ Vwjoll3) = > %(/\j,oaj + Fy, (uz0) + [ Vw;olf3)
; J

J=1 Jj=1

3
p
+ E / U 0Wjn dx + / W1, U2,0U3,0 + Ut,0W2,,U3,0 + Ut ,0U2,0WS 4 AT
= IRy RN

1 3 3
1 1
-— g i de — E ub gwjp + ujow? dr
Js Js Js Js 75 J,n
p+ 1= Jry — Jr¥
J= J=
3 K
+ E _Cl / uj,o + wj,o dr — Up,0U2,0U3,0 + W1,0W2,0W3,0 dz
. J RN RN
7=1

- / W1 U2, 0U3,0 + UL oW2 nU3,0 + Ut 0U20W3 5, + Wi pn W nUs0 AT
R
3
Kjn
+ Z — / U1,0Uz2,0U3,0 + W1,0W W30 dT
RN
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1.3 Strict subadditivity for £(a)

o(mﬁe“) if K1, >0,

1 .
+ 0(/@2;64) if K1, =0 < Kap,

1+04\ - _ _
o(kiz, ') if K1 = Kop =0 < K3y

Rjn
= E(ug) + Eo(Wo) = ) ~ = (Njoa; + Fy; (ui0) + IVwjoll3
j=1 7

p+1 p+1
— / uj70 + wm dx — / Uq,0U2,0U3,0 + W1,0W2,0W3,0 d$)
RN RN

3
p
— g uj70wj7ndx—/ W1 W2 U3, 0 AT
— RN RN
]:

0(5%3’164) if K1, >0,

+ 0(/@%}294) if K1, =0 < Kap, (1.39)
0(’43;);94) lf Rin = R2pn = 0< R3,n-

(Step 3) By (1.23)-(1.25) and (1.26)—(1.28), we have

Fy, (uj0) = —)\j70|]uj70||§ + /N u%l + ug ougpus o dz,
R
IVw;olls = =Ajollwsoll3 + /N w%l + wy pwa w3 o d.
R
Recalling that a; = |lujol3 + |wjoll3, we have

Fu(us0) + Vgl = ~oa; + [ it + ' do
R

+ / U1,0U2,0U3,0 + W1 oWa,nW3,0 dT. (1.40)
RN

From (1.39) and (1.40), we have

0(/{1294) if kK1, >0,

f(a) S f(b) + foo(c) — Rn + O(/i%:;e‘l) if Kip = 0< K2.n, (1.41)
0(/’{;’7‘;94) if Kin = Kop = 0< Ka.n,

where

3

Rn = E / uj70w§77n dl‘+/ W1,nW2nU3,0 dx.
1 RN
J:

RN
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(Step 4) Now, we prove that

kit = 0(Ry) if Ky > 0, (1.42)
Ryt = 0(Ry) if K1 =0 < Ko, (1.43)
’111?.,—1;04 = O(Rn) if Rin = Ran = 0< R3n- (144)

Proof of (1.42) Since k1, > 0, from Lemma 1.8, uy¢ and w; o have an
essentially exponential decay order /A o. From Lemma 1.6 and Lemma 1.7,

fRN Ul,owlin dx has an essentially exponential decay order min{,/A1 o, p1/A1,0

} = \/A10- Since k1, has also an essentially exponential decay order /A o,
for all # > 1, there exists Cy > 0 such that

P 0
/N uy owy , dx > Cyky .
R

Assume 0 < 1+ 64. Then we have

KR, < Ol )

1,n 1n

Proof of (1.43) (1.43) can be proved as in (1.42).

Proof of (1.44) Since k1, = ko, = 0 < K3, there are two possibilities,

(a) u1,0,u20,us0, wso >0 and wy g = wan = 0.

(b) s, w10, W20, wso > 0 and uy o = ugg = 0.

Case (a) By Lemma 1.8, uso and wsp have an essentially exponential

decay order \/Aso := min{/ Ao+ /20, /A30} and /A3 respectively.

From /A40 < /A3, and Lemma 1.6 and Lemma 1.7, fRN u370w§7n dx has an

essentially exponential decay order min{y/As 0, p\/A30} = \/As,0. Since k3,
has also an essentially exponential decay order /A4, we can prove (1.44) in
the case (a) by the same argument as in (1.42).
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1.4 Proof of Theorem 1.1

Case (b) By (1.25) and (1.28) with w9 = uz¢ = 0, one sees

D p
/ u3,0Ws ,, + W1 W nU3,0 dT > / U3 W3y AT
RN RN

Since fRN uf yws ., dr and k3, have an essentially exponential decay order

min{p/As0, \/A10} = v/ Ao, for all § > 1, there exists Cy > 0 such that

P 0
/N Uz g3, dr > Cyrig .
R

Thus we can prove (1.44) in the case (b) by the same argument as in (1.42).

From (1.41) and (1.42)—(1.44), we have

§(a) < &(b) + &x(e).

1.4 Proof of Theorem 1.1

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Let {u,}°, C M(a) be a minimizing sequence
for £(a). By Lemma 1.2 and 1.3, we may assume that

£ (0n) + M@ (0n) 4+ A2n@5(0n) + A3 n@s(us)|

e =0, (i) l2 = 0.
(1.45)

In addition, since {\;,}52; and {u,}32, is bounded, we may assume that
Njin = Njo,  u, — uy weakly in H. (1.46)
Remark that
by = lzoll3 < limin ;3 = .
Set b := (b, be, b3). If b = a, we have ||u,, — ug||g — 0 as in [31].
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Now, we aim to prove that b = a. We prove by contradiction. Assume
that b # a. As in Theorem 1.10 in Appendix in this chapter, we have

[ujnlls = llujoll3 + [lujn — wjioll3 + o(1),
E(u,) = E(ug) + Ex(u, —ug) + o(1),
§(a) = &£(b) + &xcla —b), (1.47)
E(u(]) - €<b>7
1i_>m Ex(u, —ug) = &x(a —b).

In addition, since Lemma 1.13 in Appendix in this chapter and (1.47), we
have b # (0,0,0). Since {u,, —up}>2, is a minimizing sequence for . (a —b),
up to a subsequence, there exist R > 0 and ¢ > 0 and {y,}°2, C R" such
that

3
/ Z [Ujn(7) —ujo(z)*dz > ¢ foralln € N
\xfyn\<R j=1

by Lemma 4.2 in [31]. Since u;, — u;o in L (RY), up to a subsequence,

we have |y,| — oo. Since {(u, —up)(- + y,)} is bounded in H, there exists
wo € H such that

(w, —up)(- + yn) — Wo weakly in H.
Then we have
u, (- + yn) = wo weakly in H. (1.48)

Moreover, as in Theorem 1.10 for the case without potentials in Appendix in
this chapter, up to a subsequence, we have

c=a—b,
Eoo(Wo) = &xo(0),
1w — o) (- + ¥n) — Wollm — 0

where ¢; = ||wjo||3, ¢ := (c1, ¢, 03).
From (1.45)-(1.48), we derive that

ujo >0, wjo=>0a.e. in RN,
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1.5 Appendix

[ —Auyg+ (Ao + Vi(@))uro — uf o = Us,0Us3,0,
—Augg + (Moo + Va(w))ugo — up g = u1gusp,
| —Auz o+ (Ao + Va(z))uso — ué’,o = U1,0U2,05
( —Aw; g + A owio — wlf,o = W2,0W3,0,

P
—Awy g + Ao wao — Wy ) = W1,0W3,0,

p
[ —Aws g + Az pws0 — W3 = Wi pWa0-

Since ||ujol3 + |lwjollz = a; > 0, we have u;o #Z 0 or wjo # 0. By Lemma
3.7 in [27], we have A;o > 0 for all j = 1,2,3. Without loss of generality, we
may assume that 0 < Ao < Ay < Agp. From Proposition 1.9, we have

§(a) <&(b) + &uc(a — ).
This contradicts (1.47). So we have b = a. O

1.5 Appendix

In this Appendix, we prove that the strict subadditivity of £ and the existence
of a minimizer for £(a) under symmetric conditions for the potentials (see
Proposition 1.12 and Theorem 1.10). This result is an extension of Ardila’s
result [4] to a model with higher spatial dimensions and potentials. Although
this result was obtained in Kurata-Osada [31], for the reader’s convenience,
we mention this symmetric case result and the method used in the proofs.

We assume the following condition (V3) in addition to the assumptions in
Chapter 1.

(V3) forallj =1,2,3, V;(—x1,2") = Vj(x1,2") for almost every z; € R and 2’
c RNfl’
Vi(s,a'") < Vi(t,2') for almost every s,t € R with 0 < s < ¢ and
r' € RN-L,

The following Theorem is mentioned as Theorem 1.1 in [31].

Theorem 1.10. (the existence of a minimizer for {(a)) Suppose a4,
as, a3 >0, N=1,23,1<p<1+4/N and Vj(x) (j = 1,2, 3) satisfies the
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conditions (V1)—(V3), respectively. Then, any minimizing sequence {u, }>°,
for &(ay, as, az) is relatively compact in H up to translations. That is, there
exist {y,}°2, C RY and u € H such that {u,(- +y,)}°>, has a subsequence
converging strongly in H to u. Moreover, u is a minimizer for £(aq, ag, as).

Remark 1.1. In Theorem 1.10, if there exists j € {1, 2,3} such that V; # 0,
then we can take y, = 0 for all n € N.

For x € RY, we denote by z = (z1,2') (z; € R, 2’ € R¥™1) and also we
denote by £! the 1-dimensional Lebesgue measure.

First, we state the definition of the coupled rearrangement developed by
Shibata [47].

Definition 1.11. (coupled rearrangement, cf. Shibata [47]) Let
u, v be measurable functions defined on RY such that

lim u(x) = lim v(z)=0.

Then the coupled rearrangement u % v is defined by

o0

(uxv)(zy,2) = /0 X{u(ah) >t x{loan>t (T1) dt, 1 € R, 2/ € RV !

for any measurable subsets A, B C R, where A x B is defined as follows:

Ax B = (—(L'(A) + L£Y(B))/2,(L"(A) + L'(B))/2) .

The following proposition is mentioned as Proposition 3 in [31].
Proposition 1.12. (Strict subadditivity for £,) Assume the condi-
tions (V1)-(V3) for V;(x), j = 1,2,3. Let by,ba,b3,c1,¢2,¢3 > 0 and we assume

oo (b1, b2, b3) and & (cq, Co, ¢3) have a minimizer respectively. If by,¢; > 0 or
by, co > 0 or bs, c3 > 0, then we have

§(b1 + c1, by + €2, b3 + c3) < (b1, b2, b3) + Eeo(c1, €2, C3),
where we denote by £ instead of £ if V; =0 for all j =1,2,3.
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Proof. Suppose that u and v are minimizers for £(by, by, b3) and & (c1, ¢2, ¢3)
respectively. We consider only the case by > 0 and ¢; > 0. Since b; > 0 and
¢1 > 0, from Lemma 3.3 in [31], u* and v* are minimizers for £(by, b, b3) and
&oolcq, €2, c3) Tespectively and for all j € {1,2,3},

uf >0 almost everywhere in RY, w3, uj >0 for almost every z € RY,

(1.49)

wi € H'(RY)nC'(RY), |l‘im uj(r) =0, (1.50)
T|—00

wi(—x1,2') = uj(wy,2") for almost every z; € R and (1.51)

for almost every 2’ € RV 1,
uj(s,x') > uj(t,x’) for almost every s,t € R with 0 < s <tand  (1.52)

for almost every 2’ € RV~
and

v¥ >0 almost everywhere in RY, v} v5 >0 almost everywhere in R,

(1.53)
vy € H'(RY) nCY(RY), ll‘im vi(z) =0, (1.54)
T|—00
v (—=x1,2") = vj(21,2") for almost every 2; € R and (1.55)
for almost every 2’ € RV !,
vi(s,2') > vji(t,x") almost every s,t € R with 0 <'s <t and (1.56)

for almost every 2’ € RV ™1,

where u* is the Steiner rearrangement of u with respect to the hyperplane
1 = 0. We refer [28] for the definition of the Steiner rearrangement. From
(1.49)—(1.56), Lemma 2.12, Corollary 1 in [31] and the results in [47], we have

/ |V(uf*vf)|2dx</ |Vuf|2dx+/ |Vi|? dz, (1.57)
RN RN RN

/ ]V(u*-*v*)\deg/ \Vu*-\zdx—i—/ |VoiPdr (5 =2,3), (1.58)
RN J J RN J RN J

[ Vi@ de < [ Vit o) e (159
RN RN

/ u{ugugdzz%—/ vagvgdxg/ (uy * v7)(ul * v3)(us *v3)dr, (1.60)
RN RN RN
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/ [uj x vj|* de :/ |U§|qu+/ witde (g =2,p+1). (1.61)
RN RN RN
From (1.57)-(1.61), it holds that

§(br 4 c1,02 + c2,b3 + c3) < E(uj x 7, uj % v3, ujz * v3)
< B(uf, 5, ) + a0}, 03, 03)
= &(b1, b2, b3) + Exo(ca, €2, C3).

Now we prove Theorem 1.10 for the case without potentials.

Proof of Theorem 1.10 for the case without potentials. Let {u,}°, C
H be a minimizing sequence for £, (a1,as,as). The proof proceeds in five
steps:

(Step 1) First, we prove that taking a subsequence, there exist {z,}>2, C
RY and u € H such that

Ujpn (- + x,) = u; weakly in Hl(]R{N) (1 =1,2,3, n— 00),
(75} ‘}'50

Since a; > 0, by Lemma 4.2 in [31], taking a subsequence, there exist €; > 0
and R; > 0 such that

sup / luyn|>dz > e, for all m € N.
yERN Jl|z—y|<R1

Therefore, there exists {x,}°°, C RY such that

€
/ luyn|?dz > = for all n € N.
|x—zn|<R1 2

On the other hand, since {u,}>, is bounded in H from Lemma 2.4 in [31],
taking a subsequence, there exists u € H such that

Wj (- + 2,) — uj weakly in HY(RY) (5 =1,2,3).
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Now, we remark that

/ |ug (2 + x,)|? dx = / |u17n\2d93 > il for all n € N.
|z|<R1 2

|z—xn|<R1

Since the embedding H'({|z| < Ri}) C L*({]x| < Ry}) is compact, we have

£
/ lug|>dz > = >0,
2| <R 2

that is, we have u; # 0.

(Step 2) Let by := |Jui|? (> 0), by := |luzl|3, b3 := ||us||3. Moreover, we
set vj,(2) == ujn(r + x,) — uj(x) (j = 1,2,3). Then, we prove that u is a
minimizer for (b1, b, b3) and taking a subsequence, the followings hold:

[ujnlls = lluglls + vgnllz +0(1) (5 =1,2,3, as n — o0),
Eo(u,) = Exo(u) + Ex(vy) +0(1)  (as n — 00),
§oo(a1, a2, a3) = Sm(bh ba, b3) + §oo(a1 —by,a2 — by, a3 — b3).

Claim 1. Taking a subsequence, for ¢ =2 and ¢ = p + 1, we have

/ |Uj7n|qd$:\/ |uj|qd:v+/ |Vjn|?dz+0(1) (as n — 00).
RN RN RN

This statement follows immediately from the Brezis-Lieb Lemma (see e.g.

7).
Claim 2.
/RN(|VUJ]-,H|2 — |Vu,|> — |V, |?) doz = 0(1)  (as n — 00).

Indeed, note that

N

AN<|VUj7n’2 — |Vu,|* = [Vv;|?) do = 2Re/R Vu; - Vv, d,

where Vu - Vo := 3 | %%. Since v;, — 0 weakly in H'(R"), it follows

Vu; - Vv, dr =o0(l) (asn— 00).
RN
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Hence we get Claim 2.

Claim 3.

/ UY U U3 dT = / U Uz dx + / V1 V2. U3, dz +0(1)  (as n — 00).
RN RN RN

Actually, since

/ UL U2 Uz dT = / (w1 + v1,) (ug + va2,,) (U3 + Us ) do
RN RN

= U UUS3 dx + Uﬂig@gyn dr + Ulvgmﬂg dr + / Uﬂ)g}nﬁgm dx
RN RN RN RN

+ V1 U3 AT + V1 pU2V3 p, AT + V1,V U3 A + V1,nV2,n U3 A,
RN RN RN RN

it suffices to prove that

lim U1 pUoUs dr = lim UV n U3z dz = lim / U UV3 p, dx = 0,
n—o0 RN n—oo RN n—oo RN
(1.62)
lim UV2 V3. dr = lim V1 nU03 , dr = lim V1 V2 Uz dr = 0.
(1.63)
Since we can prove these easily by using v;,, — 0 (j = 1,2,3) in L} (RY),
we omit the details.
From Claim 1-Claim3, it follows that
Ew(u,) = Ex(u) + Ex(v,) +0(1) (as n — 00). (1.64)

From Claim 1 we have also

15 = lluill3 + llvjnll3 +o(1) (as n — oo).

[
Letting n — oo in (1.64), from Lemma 2.6 and Lemma 3.2 in [31], we have

Eoolay,as,a3) = Ex(u) + lim E(vy,)

n—oo

> Eoo(br, b2, b3) + 1im Ec([[orall3, 023, v3nll2)
n—oo

31



1.5 Appendix

= &o(b1,ba,b3) + Eac(ay — by, as — bo,az — bs)

Z 500(61/17 ag, CL3)-

Therefore,
EOO(u) = 600<b17b27b3)7 (165)
lim Eoo(vn) = foo<a1 - bl, ags — bg, as — bg), (166)

n—oo
foo(ab asz, a3) = foo(bl, ba, 53) + foo(al — by, a3 — by, a3 — 53)~ (1-67)

That is, u is a minimizer for £, (by, ba, b3).

(Step 3) We prove by = a;. Suppose by contradiction that b, < a;. By
the same argument as in (Step 1), then there exist a minimizing sequence
{vn}22, for {(ar — by, as — be,az — b3) and a function v € H with vy #Z 0
such that

v — v; weakly in H'(RY) (j =1,2,3).

Set ¢ := ||v1||3(> 0), 2 := ||va]|3, c3 := ||v3]|3. Using the same argument as
in (Step 2), we have

{1 — by, ag — by, ag — b3) = {o(ca, Co, c3)+
+£Oo(a1—bl—Cl,ag—bQ—CQ,ag—bg—Cg), (168)
EOO(V) = 500(01762703)'

Now, u and v are minimizers for £, (b1, by, b3) and & (c1, 2, c3) respectively.
Furthermore since b; > 0 and ¢; > 0, from Proposition 1.12, it follows that

§oo(by 4 €1, b2 4 €2, b3 4 €3) < oo (b1, b2, b3) + Eac (1, €2, C3). (1.69)

Therefore, combining (1.67),(1.68),(1.69) and using Lemma 3.2 in [31], we
arrive at

goo<a1>a27a'3) = foo(blab% bs) + foo(Ch —b1,a9 — by, a3 — 53)
= Eoo(b1, b2, b3) + &1, €2, 03) + Enc(ar — by — ¢1,a0 — by — o, a3 — by — ¢3)
> Eoo(by 4 €1,b0 4 €o, b3 + ¢3) + Eno(ar — by — 1,09 — by — 2, a3 — by — ¢3)
(

> €oolar, az, asz).

This is a contradiction. Hence, it follows that b; = a;.
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(Step 4) We prove by = ay and by = a3. First, we show by > 0. We assume
that by = 0, then by b; = a; and the subadditivity for S, (see Lions [35, 36]
for more details), it follows that

{oolar, az, a3) = §c(ay, 0,03) + £ (0, ag, az — bs)
= Soo(al) + Soo(bg) + Soo<a2) + Soo(ag, — bg)
Z Soo(CLl) + Soo<a2) + Soo(a3)7

where
Soo(a) == inf{Jo(u) | u € HY(RYN), ||ulj3 = a},

1 1
Joo(u) == §/RN |Vul? do — ) N lu|Ptt d.

This contradicts Lemma 4.1 in [31] (i). Thus, we have by > 0. We can show
by = a as in (Step 3). In a similar way, we can also prove b3 = as.

(Step 5) We prove that lim, o |[u,(- + z,) — u||lg = 0 and u is minimizer
for £ (a1, as,as). From (Step 1)—(Step 4), we have proved

Ujn (- + ) = u; weakly in Hl(RN) (1 =1,2,3),

Hulug = ag, HU'ZH% = Qaa, ”'LLBH% = as.

From (1.65) and by = ay, by = ag, by = ag, u is a minimizer for £, (ay, as, as).
Moreover, noting that ||uy,||3 — a1, ||uz.ll3 — a2 and [Juz,|/3 — a3 (n —
o0), we have

wjn (- +xn) — ujlla =0 (n — 00), (1.70)
that is,
|lvjnlla =0 (n — o00). (1.71)

Since {v;,}°°, is bounded in H'(RY), by Gagliardo-Nirenberg’s inequality,
it holds that

lim 0[P da = 0, (1.72)
n—oo N
lim U1 V2,003, dz = 0. (1.73)
n—oo RN
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Indeed, by Gagliardo-Nirenberg’s inequality, for each ¢ = p+ 1 and ¢ = 3,
there exists a constant C'(¢, N) > 0 respectively such that

N(qg—2)/2 —N(g—2)/2
lvinlls < Clq, N)HVUJ-,HHQ(‘I )/ 00l (@=2)/2.
Note that {v;,}72, is bounded in H*(R¥) and (1.71), it follows that
p+1

[vinllpis = 0, llvjalls = 0. (1.74)

From this, we have (1.72) and (1.73). From b, = ay,by = as,b3 = as,
(1.65),(1.66),(1.72),(1.73), we have

EOO(“) - goo(ala ag, a3)7
13
. 2 .
nlggoﬁz/ﬂw |Vv; | dx = 0.
7=1
From this and (1.70), the conclusion follows. O

Next, we prove the existence of a minimize for £(a) with potential.

We note that the relationship between ¢ and £,,. This lemma guarantees
that minimizing sequence for {(ay,as,a3) with potentials does not vanish.
This lemma is mentioned as Lemma 4.5 in [31].

Lemma 1.13. Let aj,az,a3 > 0. Then it follows that &(a,az,a3) <
goo<a17a27a3)-

Proof. From Lemma 4.4 in [31], there exists a minimizer u = (uy, ug, ug) for
£ (a1, az,a3) such that u; > 0 almost everywhere in RY. Since V; # 0 or
Vo £ 0 or V3 # 0, it follows that

3
Z Vi(z)u? dz < 0.
j=1 /RY

Thus we have

§(a1>a27a3) < E(u) < EOO(u) = gm(alaa%a?;)'

34
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with three wave interaction under non-symmetric potentials

Now we prove Theorem 1.10 for the case with potentials.

Proof of Theorem 1.10 for the case with potentials. Let {u,}:°, C
H be a minimizing sequence for £(ay, ag,as). Since {u,}> is bounded in
H | there exists u € H such that

uj, — u; weakly in H'(RY) (j=1,2,3, n — o).
(Step 1) Set by := ||ui||3, by := ||uz||3, b3 := ||lus||3. We prove that u is a
minimizer for £(by, by, b3) and taking a subsequence, the followings hold:

[wjnlly = lluill3 + ujm — ujll3 +0(1) (5 =1,2,3, as n = o0),
E(u,) = E(u) + Ex(u, —u) +0o(1) (asn — o),

E(ay, as,a3) = &(b1, by, bs) + Eao(ar — by, as — bo, az — b3),
bl>00rbg>00rb3>0.

From the same argument as in the Step 2 of the proof of Theorem 1.10 for
the case without potentials, taking a subsequence, we have

/ |wjn]? da = / |u;|* dz +/ |t — uj|* dz 4+ o(1) (as n — o0,
RN RN RN

(1.75)
Ex(u,) = Ex(u) + Ex(u, —u) +o(1) (asn — o0). (1.76)

Moreover, from Lemma 2.7 in [31], it follows that
/ Vi(z)|uj | doe = / Vi(z)|uj|* dz + o(1) (as n — oo, j =1,2,3).
RN RN
(1.77)
From (1.76),(1.77), we have
E(u,) = E(u) + Ex(u, —u) +0o(1) (asn — c0). (1.78)

By the same argument as in the proof of Theorem 1.10 for the case without
potentials, we can prove that

E(U) = g(bh b27 b3)7
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1.5 Appendix

f(al, as, ag) = f(bl, bg, bg) + foo(al — bl, ag — bg, as — bg) (179)

That is, u is a minimizer for £(by, bg, b3). Suppose by = by = b3 = 0. From
€(0,0,0) =0 and (1.79),

§<a1,G2,@3) = foo(alaa2aa3)'

This contradicts Lemma 1.13. Therefore we have b; > 0 or by > 0 or by > 0.

(Step 2) From (Step 1), by > 0 or by > 0 or by > 0. We consider only the case
by > 0. We prove b; = ay. Suppose b; < a;. From (Step 1), u is a minimizer
for £(by, by, b3) and from Lemma 4.3 in [31], (a1 — by, ag — be, a3 — bs) has
a minimizer. Since b; > 0, a; — b; > 0, from Proposition 1.12, we have

£(a1, az, a3) < &(b1,bg,b3) + &c(ar — by, as — by, a3 — bs).

This contradicts (1.79).

(Conclusion) We can prove by = as and by = a3 by the same argument as
in the Step 4 of the proof of Theorem 1.10 for the case without potentials.
Then we can prove that lim,, . ||u, — u||z: = 0 and u is a minimizer for
&(ay, as, a3) by the same argument as in the Step 5 of the proof of Theorem
1.10 for the case without potentials. O
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Chapter 2

Energy asymptotic expansion
for a system of nonlinear
Schrodinger equations with
three wave interaction

2.1 Introduction

Recently, there are many studies on the existence of standing waves and their
stability for the nonlinear Schrodinger system with three wave interaction
(see Colin-Colin-Ohta [18, 19], Pomponio [43], Ardila [4], Kurata-Osada [31]
and the references therein) and related systems (see e.g. Gou-Jeanjean [24],
Bhattarai [6], Zhao-Zhao-Shi [60] and the references therein).

In particular, the L?-constrained variational problems associated with the
systems and the orbital stability of ground states have been studied by many
works (e.g. Bhattarai [6], Gou-Jeanjean [24], Ardila [4], Kurata-Osada [31]).
In this chapter, we focus on the following L*-constrained variational problem:

P(ay, ay,as) = inf{E?(u) | u € H,

lually = a1, fluzll = az, |lus|l2 = as},

37



2.1 Introduction

Z/ [Vuy[* de + Z/ ()|uy|? da
p+1 Z/ ’u]‘pﬂ-l dx — OCRG/ U UU3 d$

where u := (uy, us, u3), Us is the complex conjugate of uz, H := H'x H* x H',
H' .= H{(RY;C), a,8 >0, N = 1,2,3, 1 < p < 1+4/N, a1,as,a3 > 0
and each potential V; (j = 1,2, 3) satisfies some suitable conditions. In this
chapter, we assume only one of the following conditions for the potentials
‘/j (] =1,2, 3)

(V1) V e L=(RM;R).
(V2) V e C(RY;R) and V(z) < limjy00 V(y) =0, for all z € RV,

In the previous paper [31], for the case 8 = 1, we studied the energy
asymptotic expansion of £!(ay, as, az) as a — oo. In this chapter, we consider

the asymptotic expansion of the energy £7(ay, ay,as) as 8 — oo with o = 3%
for a given k € R.

To state the main result in this chapter in details, we define the following
variational problems:

So(ar, ag, a3) = inf{E°(w) [u € H, [Jui]l3 = a1, [Juall3 = az, [Jus|l3 = as},

by (a17a27 as

):
) :=sup{E'(u) | uis a minimizer for ¥o(a1, as,az)},

€oo(a1>a27 a3) == inf{E(u) [u € H, |lu]; = ar, [[uall3 = a2, |lus|l; = as},
):
)=

Soolay) = nf{Jo(u) | u € H'(RY), [[ul; =a;} (j=1,2,3),

SY(ay, az,as) = sup{J*(u) | uy,up, uz are minimizers for
Seol(@1), Soo(@2), Seo(asz) respectively},

where

3
1
= QZ/RN |V, dr — Re/RN Uy uls dz,
+1
E(u): p+12/ |u; [P de,
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3
1
_ 5 ;/RN |Vu]|2d$ _—— Z/ |u]|p+1 dw — Re/ u1u2u3 dl’

1
Toou) = = 2y — —— rHl g
W= [ IVuPds p+1/RN’“‘ "
JH(u) ::Re/ Uy U3 dx.
RN

Remark 2.1. Let N <3, 1<p<1+4+4/N, o, > 0. Under the following
three assumptions on V; (j = 1,2,3):

o Ve L*([RN;R),
° V(ZE) < lim‘y|_>oo V(y) =0 (a.e. T e RN),

o V(—z1,2") =V(x,2') (ae. z; €ER, 2/ € RN,
Vi(s,2') < V(t,2') (ae. s,t € Rwith 0 < s <t, ae. 2/ € RN,

the existence of a minimizer for £7(ay, as, as) is known (see [31]).

See also [31] about the existence of minimizer for ¥y(ay, as, az) under the
additional condition N < 2. Moreover, since it is easy to check that the set
of minimizers for ¥g(a,as,a3) is uniformly bounded in H, it follows that
21((1,1, g, CL3) < OQ.

Remark 2.2. When N € N, 1 < p < 1+ 4/N, for all a; > 0, it is
well-known that there exists a unique positive, radial symmetric and strictly
decreasing minimizer ¥,, € H'(RY) for Sy(a;) such that for all minimizer
u for S (a;), there exist y € RY and 6 € R such that

u(zr) = ewlllaj(x +v)
(see [14, 21, 32]).

Unless otherwise noted, ¥, means the one in Remark 2.2. Also, we set
U = (¥,,,¥,,,V,,). Note that ¥ is a maximizer for S'(a;,as,as). See

azs

Lemma 2.4 for the proof.

For a given k € R, as a = " we define for simplicity

E’(u) := Ej.(u),
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2.1 Introduction

(a1, az, as) == &5 (a1, as, as).
We show that there exist two critical numbers
k1:=@4—-N)/(4=N(p-1)), Ky:=-N/(4—=N(p-1))

such that the asymptotic expansion of £°(ay,as,as) as B — oo are different
in the following five cases:

(i) kK > Ky, (i) &k = k1, (ili) K2 < K < K1, (IV) K = ke, (V) K < Ka.

We say {u, }°2, is a minimizing sequence for £ (ay, as, az) with 3, — oo if

lunal3 = o lugal} = a2, sl = as.
Eﬂn(un) = &P (ay, as,as) + o(l), asmn — oo.

We also study the asymptotic behavior of minimizing sequences {u,} by
using the rescaled functions of two types:

W, () = B, "N ANy, (528N ) (2.1)

n

for the case (i) and
V() == BgN/(‘*‘N(p_l))un(552/(4‘1\7(”_1)%) (2.2)
for the cases (ii)—(v), respectively.

Now we state the main result in this chapter.

Theorem 2.1. Let N =1,2,3, 1 < p < 1+4/N and let {u,}>2, be a
minimizing sequence for £°(ay, as, az) with 3, — oo. Then we have the
asymptotic expansion of %(ay, as, az) = fgﬁ(al, as,as) as f — oo in the five
cases as follows:

(i) For the case k > Ky, assume N < 2 and the condition (V1) for each
potential V; (j = 1,2,3). Then

& (ay, ag, a3) = 545/(4_1\[)20(@1, ag, ag) — BENETV/A=NTIY (4 ay, a3)

+ o(BENEP=D/U=NT - ag B o0,

Moreover, for the rescaled function w,, defined by (2.1), up to a subse-
quence, there exist {y,}°°, C RY and a maximizer w for ¥, (ay, a, az)
such that

|lWn(-+yn) — Wy =0, asn— oo.
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(i)

(iii)

(iv)

For the case Kk = ki, assume the condition (V2) for each potential
Vi (j =1,2,3) and (V4, V5, V3) # (0,0,0). Then it holds that

(a1, a2, a3) = YN (ay, az, a5)
1
+3 mé%{vl(x)al + Va(x)ag + Vi(z)as} +o(1), as f— oo.
xE
Moreover, for the rescaled function v,, defined by (2.2), up to a subse-

quence, there exist {y,}>°; C RY a minimizer v for £, (ay, az,az) and
2o € RY such that

V(- + Yn) — V][ =0, yn/ﬁi/(”“N(p‘”) — 2 inRY, asn— oo,
min {Vi(x)a; + Va(z)ay + Va(w)as} = Vi(zo0)a1 + Va(z0)az + Va(20)as.

z€RN

For the case ky < Kk < K1, assume the condition (V1) for each potential
V; (j =1,2,3). Then

(a1, az, a) = BYUNET(S (ar) + Sao(az) + Su(as))
— ﬁN/(4—N(p—1))4-%51(al7 as, az) + O(BN/(4_N(p_1))+"), as 3 — 00.

Moreover, for the rescaled function v,, defined by (2.2), up to a subse-
quence, there exist {y,}°2, C RY, and 6y, 60,, 03 € R such that

Vi (- 4 Yn) — eiejlijHl — 0, asn — oo,
01 + 0y = 03,

where ¥y =V, , Uy =V, U3 =U,,.
For the case k = ko, assume that the condition (V2) for each potential
Vi (1 =1,2,3), (V1,Va,V3) # (0,0,0). We also assume that V; has a
unique minimum point z;o and 219 = 229 = 230 =: 29. Then
&% (a1, az, ag) = fYUNETI(S(a1) + Sac(as) + Soo(as))
1
— S (ar, az, a3) + 5 min{Vi(z)ay + Va(w)az + Va(w)as} + o(1),
e

as 3 — oo.
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Moreover, for the rescaled function v,, defined by (2.2), up to a subse-
quence, there exist {y,}2%, C RY, and 0,6, 03 € R such that

V50 (- + Yn) — 62.0]"I’g‘||H1 — 0, asn — oo,
01 + 62 - 93,

Y /B ENE=D) 5 0 in RN as n — oo,
where Uy =V, , Uy =V, Us=V,,.

(v) For the case k < ko, assume that the condition (V2) for each potential

V; (j =1,2,3) and (V4, V5, V5) # (0,0,0). Then
(a1, a3,a3) = BONETD(S(a1) + Sao(as) + Suc(as))
1
+ = <min Vi(z)a; + min Vo(z)as + min Vg(x)ag) +o(1),
2 \zerN z€RN z€RN

as [ — oo.

Moreover, for the rescaled function v,, defined by (2.2), up to a subse-
quence, there exist {yff) © CRN(j=1,2,3),and 6; e R (j = 1,2,3)
and zj0 € RY (j = 1,2,3) such that

[V (- + %(zj)) - 6ié’j‘l’jHHl — 0, asn— oo,
yﬁlj)/ﬁs/(%N(p—l)) — 2z in RY, asn — oo,
iy Vi(z) = Vi(zjo0),

where \111 = ‘I/al, \1/2 = \Ifaz, ‘113 = \I/ag.

Remark 2.3. By Theorem 2.1, we can say that the effect of the three
wave interaction appears in the first order term in the case k > k; and in
the second order term in the case Ky < Kk < k1, but disappears in the case
Kk < kg. We also emphasize that we use the different rescaled functions in
the case (ii)—(v) and in the case (i), respectively, to obtain the asymptotic
behavior of minimizing sequences precisely.

The rest of this chapter is organized as follows: In Section 2.2, we pre-
pare the characterization of S'(ay,as,a3) to prove Theorem 2.1 in the cases
(iii) and (iv). In Section 2.3, we prove Theorem 2.1 concerning the asymp-
totic expansion of £#(ay, as, az) and the asymptotic behavior of a minimizing
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sequence for the cases (i)—(v). In Appendix, we note that the asymptotic
expansion of £2” as a — oo for a given 7 < 0 and the asymptotic behavior
of a minimizing sequence for £, where a,, — c0.

2.2 Preliminaries

For simplicity, we prove Theorem 2.1 as a; = ay = a3 = 1. So for simplicity,
we write fﬂ(ah az, az), Sec(a1), Sl(@h ag, as), oo, a2, a3), Lo(ai, az, az) and
Yi(ay,az, as) as €7, Su, S, €x, Lo and 31, Moreover, when a; = 1, ¥,, in
Remark 2.2 is abbreviated as V.

As stated in Remark 2.2) the following compactness of the minimizing
sequence for S., is known (see Lions [35, 36]).

Lemma 2.2. Let {u,}2, be a minimizing sequence for S,,. Then up to a
subsequence, there exist {y,}°°, C R and 6 € R such that

[t (- 4+ yn) — €i9‘1’!\H1 — 0, asn — oo.

Here, we note that the fact on rearrangements (see [8]).

Lemma 2.3. We assume that N € N and let f,g,h € C(RY) be functions
such that positive, radial symmetric and strictly decreasing and

lim f(x)= lim g(z)= lim h(zx) =0,

|x|—o00
f(z)g(z)h(z)dr < occ.
RN
For yo,y1 € RY, if yg # 0 or y; # 0, then
[ 1@t~ it =) de < [ F@(ah(e) da

holds.

Lemma 2.4. (characterization of maximizer for S') Let u be a
maximizer for S*. Then there exist y € RY and 61, 05, 03 € R with 6;+6, = 65
such that

u=(e"VU(-+y), V(- +y), V(- +y)),
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51:/ U dr (> 0).
RN

Proof. By the definition of S*,

S'= sup Re(e!@+%2-0)) qup / U(z)¥(x + 21)V(x + 25) dx
RN

01,02,03€R 21,20€RN

= sup /RN\I/(x)\I/(x+21)\I/(x+Zg)dx

21,22€RN

with 8; + 05 = 03. From Lemma 2.3, we have

sup /RNW(x)@(x+zl)W(x+z2)dx:/ U ()0 (2)U(z) do

21,22€RN RN

and the supremum is attained only for the case z; = 25 = 0. Thus

St :/ U(x)®dr (> 0).

We note the following compactness of minimizing sequence for &..

Lemma 2.5. ([31]) Let N <3,1<p<1+4/N. Let {u,}32, bea
minimizing sequence for £,,. Then up to a subsequence, there exist {y,}>2, C
RY and a minimizer u for &, such that

|lwjn(- + yn) —wjllgr =0, asn — oo.

2.3 Proof of Theorem 2.1

Throughout this section, we assume that N < 3,1 <p < 1+4+4/N, >0,
a = % with k € R and a; = as = a3 = 1. First, we give the proof of the
cases (ii)—(v) of Theorem 2.1. Finally, we give the proof of the case (i) of
Theorem 2.1.
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To show the results in the cases (ii)—(v), we rescale the function u as (2.2),
the functional E? and its energy &° as follows:

Let u be a function such that
Jur|3 = [Juzll3 = [lus]l3 = 1.
We rescale the function u as follows:
v(z) = fNVUNE=D)y(g=2/U=NE=1) g,
Then it follows that
o113 = lJv2ll3 = [lvsll3 = 1
and
Eﬁ(u) _ ﬁ‘l/(élff\f(pfl))EB(V)7 gﬂ _ 64/(4*1\%1971))5/57

where

3
1
:§;/RN |V,|? x——Z/ ;[P dx

. 6(N4)/(4N(p1))+“Re/ ’U1’0263 dLL‘

RN

2
54/4 Np—1)) Z/RN <52/(4 N— )|Uﬁ| da,

o =mf{EP(v)|veH, |yli=13G=1,23)}

So it is sufficient to prove the energy expansion of €% and the asymptotic
behavior of v,, to prove the cases (ii)—(v) in Theorem 2.1.

2.3.1 Proof of Theorem 2.1 (ii)

For the case kK = k1, we have

3 18
E°(v) = Ex(v) + /0N 071) 52_:/ (52/ QJUV(pl))) [0, da.
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Upper bound

Lemma 2.6. (upper bound for &P ) Under the assumptions in the case
(ii), it follows that

- 1
& < oo+ BTVINETIIS min {Vi(2) + Va(x) + Va(w)}
+o(BH/U=NEP=1)) " as B — oo.

Proof. From Lemma 2.5, there exists a minimizer v for £,. Let 7o € RV
be a point which attains

min {Vi(z) + Va(z) + Vs(x)}.

zeRN
For g > 0, we set

pa() i= vl — FENO D)),

Then it holds that

L 2
/RNVJ (m) |05.5(2)|* dx
v 2
:/RNVJ' (m+wo) |vj(x)|* du.

From (V2), it follows that

€ 2
/RN Vi ( BT NG-1) “’0) [vj ()| dz
= [ Vi@l dr, as g o
RN
Then we have

& < EP(pp)
=¢ 4+ 8 4/(4—N(p—1 )1 Z/ (m) |90j,5($)|2 dx

= oo+ GHONOTD 2 wmin (Vi(2) + V(o) + Vi)

z€RN
+o(B~HENEP=1)) - as B — oo.

O
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Lower bound and the completion of the proof of Theorem 2.1 (ii)

Theorem 2.1 (ii) with a; = as = a3 = 1 is reduced to the following lemma.

Lemma 2.7. Under the assumptions in the case (ii), it follows that

~ 1
& = o pTHUNETDS min {Vi(2) + V() + Vi ()}
+o(B~HU=NE-1)) " as B — 0.

Moreover, for the rescaled function v,, defined by (2.2), up to a subsequence,
there exist {y,}°°, C RY a minimizer v for &, and 2y € RY such that

an("i_yn) _VHHl _>O, yn/BQ/ N(p-1)) — 20 n RN, as n — 0o,
gg@%ﬂ+%@%Hﬂ)}ZW@®+%@O+%@&

Proof. Note that v,, satisfies

B (v,) = £ + of 4N
where 3, — oo. From Lemma 2.6, it follows that

§oo +0(1)
> & 4 o(B, M UNED)) = B (v,)

4/(4—N 1)) R
= Eo(vi) + B, /N1 = Z/RN (2/(4 NG 1)))

> €+ 0(1).

Therefore {v,,}72, is a minimizing sequence for {,. From Lemma 2.5, up to
a subsequence, there exist {y,}°°, C RY and v € H such that

(2.3)

IVo(- +yn) = V|t — 0, asn — oo

v is a minimizer for &..

Since [|v;, (- +yn) — vj]|2 = 0 (as n — 00), up to a subsequence, there exists
g; € L*(RY) such that

Vjn(® +yn) = vj(z), asn — o0, a.e. x € RN,
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[Vjn(® +yn)| < gj(z), foralln €N, ae xRV

Claim. {y,/82/* NP~V g hounded.

2/(4=N(p—1))

If not, up to a subsequence, |y,|/5n — 00 (as n — o0). From

(V2), it holds that

T+ Yn
/RN ‘/J (m) |Uj,n(x + yn)’2 dr — 0, as n — o0.

From Lemma 2.6, we have

1
oo + 554/(4—N(p—1))§ min{Vl(x) + Vao(z) + Va(z)} + 0<6;4/(4—N(p—1)))

> € —i—o(ﬁn /( —N- 1))), as n — 00.

Then we have

min {Vy () + Va(2) + Vs(2)} = 0.

zCRN

On the other hand, since V;(x) < 0 (for all # € RY) and V; £ 0 or V, # 0 or
V3 # 0, it follows that

mm{Vl( )+ Va(z) + Va(x)} < 0.

zERN

This is a contradiction. Thus the claim holds. Therefore, up to a subse-
quence, there exists zy € RY such that

yn/ﬁi/m_N(p—l)) — 29, asn — oo.

From (V2), we have

T+ Yn
/N Vi <m) [0j0( + y) [* da
R p (2.4)

—>/ (20)|v;(@)|? de,  as n — oo.
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From (2.3)—(2.4), we have
1
£+ 67:4/(4—N(p—1))§ mﬂigzlv{vl(x) + Va(z) + Va(z)} + 0(6;4/(4—1\/(1)_1)))
€

> gﬁn = Eﬁn(vn) 4 0(5;4/(4*]\7(17*1)))

1
> oo B AN (Vi 20) 4 Valzo) + Valao)) + 0( 8 /4N 0-1)

> o+ frHUNOD min {Vi(x) + Va(w) + Va(w)} + o5, V07H07D)),
as n — oo.
Therefore, we have
min {Vi(z) + Va(2) + Va(@)} = Vi(zo) + Va(20) + Va(20),
lim BYONOE g ) = min {Vi(2) + Va(a) + Vi)

Since {f,}22, is arbitrary sequence satisfying 3, — oo (as n — 00), we have

- 1
¢ = Goo + f7VENETIS min {Vi(2) + Va(w) + Va()}
xre
+o(fYUNE=IY - as B — 0o,
|

Remark 2.4. The result of Theorem 2.1 (ii) indicates that u,, concentrates
at zg. Indeed, u,, behaves like

w,(z) = BYENE-1)y (g2/A-NE-1),)

~ /35/(4—]\7(1’—1))V(ﬁi/(‘l—N(l’—l))x _ yn)

~ BN/U=NP-1) g (g2 G=NE=1) (5 — 2)),  as B, — oo.

n

2.3.2 Proof of Theorem 2.1 (iii)

Note that for the case (iii)

—4/(4=N@p-1) <(N-4)/4-Np-1)+r<0
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and

- ZJOO BN/ (A=Np=1)+x 71(y)

J=1

4/(4—N(p-1)) * |2
+6” Z/RN <52/(4 ))) vl de.

First, we prove the upper bound for €%, Taking ¥ = (¥, ¥, ¥), where VU is
the function ¥, defined in Remark 2.2 with a; = 1, under the assumption
in the case (iii), from Lemma 2.4, it is easy to obtain

€% < EP(W) < 35, — pIV-H/U-Ne-DHrgl = a5 8 — 0.

Theorem 2.1 (iii) with a1 = as = a3 = 1 is reduced to the following lemma.
Lemma 2.8. Under the assumption in the case (iii), it holds that
&8 — 35, — BN-D/A-NE-D)+rgl 4 o gN-/G-NE-D15) o6 3y o0,

Moreover, for the rescaled function v,, defined by (2.2), up to a subsequence,
there exist {y,}°, C RY and 6;,6,,0; € R such that

[0 (- 4 yn) — €9 W]l in = 0, asn— o0, j=1,2,3,
01 + 6y = 5.
Proof. (Step 1) Note that v,, satisfies

[o1nll5 = llvamll5 = llvsnll3 = (2.5)
Eﬁn( ) gﬁn+0(ﬁ 4/(4—N(p— 1)))

50



Chapter 2 Energy asymptotic expansion for a system of nonlinear
Schrodinger equations with three wave interaction

From the upper bound for £, it holds that
394 + o(B; 4/(4 N(pfl)))
> 5671 _{_0(5 4/(4=N(p— 1))) — E’ﬂn(vn)
Z Joo(vl,n) + Joo(fU?,n) + Joo(v&n)

£ OG0 N [ 4, T
RN

3
1
52/ Vesl? x——z/ 0l d

N (1) (N—-4)/(4—N(p—1))+x 3 5
O(1/5Y/@-Ne-1ny _ O / fol? d.
3 Zl RN J

(2.7)

Here we note that N < 3,1 < p < 1+4/N and (N 4)/(4—N(p—1))+r < 0.
Then for n sufficiently large, it follows that g% */@NE=ts < 1 prom
Gagliardo-Nirenberg’s inequality (see Adams [1]) and (2.5), for ¢ = p+1 and
q = 3, we have

lesnlly < CON, @) [Vl ozl 72"
<¢||Vvj.ll3 + C(e,N,q), forall e > 0.
Here C'(N,q),C(e,N,q) > 0 is a constant. From (2.7) (2.8), we have

1 1
> (2. _- ~_ =
35, +O(1) > (2 p1- ) § :||Wgn||2

Fix € > 0 such that 1/2 —¢/(p+ 1) —¢/3 > 0. Combmmg with (2.5), we
find that there exists a positive constant C' > 0 such that for all n € N|

3
D il < C. (2.9)
j=1

(2.8)

(Step 2) From the upper bound for &8, we have
35, Zgﬁn :Eﬂn( )+ o(B 4/(4—N(p— )))
Z Joo<vl,n) + JOO(UQ,n) + Joo(v?),n)
+ O(1/BYA-Nr-1)) (2.10)

_ BN-0/-NG-1) e, / V1T .
RN

n
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From (2.9) and N <3, 1<p<1+4/N and (N—4)/(4—N(p—1))+r <0,
we deduce that

ny(zN_4)/(4_N(p_1))+HRe/ V10 V2.0U3 1, dr = 0(1), as n — OQ.
RN

From (2.5),(2.10) and the definition of S, we have

3500 Z éﬁn Z Joo(vl,n) + Joo(v2,n) + JOO(U?),n) + 0(1)
> 350 +o(l), asn— 0.

Thus we have

lim Joo(vj) = S, J=1,2,3.

n—o0

Thus {v1, 102 {van}o2 {3,152, are minimizing sequences for S,,. From

Lemma 2.2, up to a subsequence, there exist {yq(f ) >, C R and §; € R such
that

[Vjm (- +y) — €| g — 0, asn — oo, j=1,2,3. (2.11)

n

(Step 3) Set

Wy = €0 (- —y), j=1,2,3

n

\I’n = (\I;LTH \112,117 \Ij3,n)'
From (2.11) and {v,}>2; and {¥,}2, are bounded in H, we have
|J1(Vn) - Jl(‘I’n>’

< / wunl[Vanl[vn — Usn| dz + / onn o2 — T
RN RN

[Wsnldr 5 19)

—{—/ V1.0 — Ui || Won|| Vs, de — 0, asn — oo.
RN

Moreover, since ¥;,, is a minimizer for S., it follows that
JH(®,) < S
From the upper bound for €7, it follows that

35«00 . 6&N—4)/(4—N(p—1))+f{51
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> éﬁn — [bn (Vi) + 0(6;4/(4—1\7(19—1)))

= Joo (V1) + Joo(Van) 4 Joo(v3,) — ST/ E=NE=1+r g1 (y
+ o( BN/ (=N @E-1)+x)

n

> SSoo o ﬁT(LN74)/(4fN(p71))+NJ1(\Iln) + O<ﬁT(LN74)/(4fN(p71))+N)
> Ssoo . BT(LN74)/(47N(p71))+551 + 0(6£N74)/(47N(p71))+n)7 as 7 — 0o,

Thus we have

Bn _
lim S =-S5 lim JY(¥,) =S (2.13)

n—oo /8”(1]\]'_4)/(4_1\]'(17_1))""H n—oo

Since {f,,}5°, is arbitrary sequence satisfying 3, — oo, we have

&8 =38, — pWN-H/U=Np=1)trgl 4 o(BIN=H/E=NE=1)+r) 45 5 — 0.

(Step 4) From (2.13), it follows that

Re(e@H02=0) lim [ W(2)W(z +yl) — yP)W(z +y) — yP) do = S,
n—oo RN
(2.14)

We prove {yg) — yg) }> , and {yq(f) — y,(lg) % are bounded in R¥. If not,

n=1
for example, if {yg) — y,(f)};’f:l is not bounded, up to a subsequence, then it
holds that

Iyt — 4P| = 00, asn — oco.

From Remark 2.2, ¥ € L*(R") is radial symmetric and decreasing, it holds
that

lim ¥(z)=0.

|z| =00
Thus for all € > 0, there exists R > 0 such that

lz| > R =V (x) < e.

In addition, since |y7(11) - yr(f)] — o0 (as n — 00), for n sufficiently large, we
have

Uz 4y —y?) <e, forall |z| <R,
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Thus for n sufficiently large, it follows that
)] = [T = y0), (- — y2), w(- — )|

n

: / V() ¥(w + g =y )W+ -y da
RN
< 6/ U(z)W(z 4y — ) de
|z|<R

+ 8/ V(o +ye) =y +y) —yY) de
le[>R
< el U3 + || = 2e.
Thus we have

lim J'(¥,) = 0.

n—o0

Although
lim J'(¥,) = S,

n—o0

this is a contradiction to S* > 0 from Lemma 2.4. Therefore {yﬁ,}) — y,(f)};?f:l

is bounded. We can prove that {yr(ll) — yy(f’)}zo:l is bounded in the same way.
Hence up to a subsequence, there exist y®,y® € RN such that

gD — D 5 @ asn — oo,

y D — 9B B asn — oo,

Therefore we have
/ V() ¥(z +y) =y (z + 9D — y) da
RN

— U(2)U(z +y)U(z +y®)de, asn— oco.
RN
From (2.14), it holds that
Re(e!01+02-03)) / U(2)U(x + y)\U(z +yP)de = St
RN

Therefore (10, W (- + y?) W (. + y©®)) is a maximizer for S*. From
Lemma 2.4, y® = y® = 0 and we may assume that 6, + 05 = 65.
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Moreover we have
[vjn (- + yr(zl)) - equ’HHl —0, asn—o00, j=23.

Indeed, setting 2= yﬁl) — y,(lj) (j =2,3), we have

lojn (- +9) = Pl = [l +y?) — D0 (- = 2|
< ojn (- + 9?) = €2 W[ + (€ — P U(- — )|

— 0, asn — oo.

2.3.3 Proof of Theorem 2.1 (iv)

For the case kK = ko, we have

3
EP(v) =) Juolvy) = 0D

=1

3
1 T
1 2
x(J (v)—§§ /ﬂj(W) |v;] dw)-
j=1 7R

For the proof of the upper bound, we use the following test function:
pa() = W — AN )

where zg is unique minimum point of V;. By using the arguments used in
Theorem 2.1 (ii), we can prove the upper bound:

&< EB(Q%) = 35, — fH/E=NE-1)
1
X (Sl -3 mﬂ%{n{m(x) + Vo(z) + V};(m)})
zeRN

+o(fYUNE=IY - as B — 0o,

For the proof of the lower bound, note that the rescaled function v,, defined
by (2.2) satisfies

|g:17

lo1nllz = llv2mll3 = llvsn
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EBn (V) = gﬁn + 0(5;4/(4—1\7(12—1)))7

where [, — co. By the similar argument as in the proof of Theorem 2.1 (iii),
it holds that {v,}, is bounded in H and each {v;,},>, is a minimizing

sequence for S. Therefore up to a subsequence, there exist {y$’}>2, c RY
and ¢; € R such that

g (- +yP) = €Wl — 0.
From the upper bound for %, we have
35, — 5;4/(4*N(p71))x

1
x (8" = 5 min {Vi() + Va(w) + V()}) + o8,/ 7071)
S
>
> 35, — 5;4/(4*N(p71))><

3
1
1 2
(J vn _EZ/ Vi (W) [Vinl d"ﬂ)
7j=1
+ 0(5;4/(4—1\7(12—1)))‘

Since

THvi) = JH MW (- = y(D), 0 (- — D), W (- — yP)) + o(1)
< S'+0(1),

by the same argument as in Theorem 2.1 (ii) and (iii), we have

y@ ) BHENEI) 6 = 2,
xz 2 _
/RN Vj (W) |Vin] ™ dz = Vj(250) = Vj(z0).
Thus we have

38, — B ENe-1) (gl _ % mﬁn{vl( x) 4+ Va(z) + Vi(x)})
zeRN
+O(ﬂ 4/(4—N(p— 1)))
> £
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> 35, — 5;4/(4—N(p—1))x

X (f(e"@l\l’(- —y 1), €W (- — y@), (. — y@))

- 5 (Vi) + Vi) + Valan)} ) +o( /-0

> 35, — VN80 - L i (V@) + 14(@) + Va(@)])

2 zeRN
+ 0(6?;4/(4—]\7(17—1)) )

By the same argument as in Theorem 2.1 (iii), we have

£ = 35, — p VN (81— L i (Vi) + 1a(2) + Va(@)))

z€RN
+o(BTHUNE=IY - as B — o0,
91+02:93+2k7ﬂ ke,

yth — ¢

[0jn (- + yn) — €% g1 — 0,
yn/ﬁi/“‘N(p‘”) — 2o,

) — 0, y7(11) - 97(13) — 0,

where y,, = yg) .

2.3.4 Proof of Theorem 2.1 (v)

For the case (v) k < kg, note that

(N=4)/4=Np-1)+r<—-4/(4=N(p-1))

3 3

~ _ _ _ Xz
EP(v) =) Juo(vy) + g4 N1 Z/RN Vj <m) v, dz
j=1

j=1
_ BINH/=N 1) 4k 11 ()

N —

First we prove the upper bound for £°. Let z;0 € RY such that
min, gy Vj(z) = Vj(z;0) for all j =1,2,3.
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Set v;(x) = U(z — B/ENEV)x, 1), v = (v1,v2,v3). Then we have
& < E(v)
— 35, 4 g YN 1)12/ BNy . W2 da

+o(B~ 4/(4=N(p— 1)))
_ ~4/(4-N(p-1)) - -
=35 + 3 {xnelﬂggvVl( )+ min Va(z) + min Va(z)}

+o(fHUNE=I - as B — 0.

Next, we prove the lower bound for 56 . Recall that the rescaled function
v,, defined by (2.2) satisfies

[v1,nll2 = lv2allz = [lvsnllz =1

EBn (vy) = gﬁn + 0(5;4/(4—1\7(12—1)))7

where (3, — co. Since {v;,,}>°, is bounded in H*(RY), by the same argu-
ment as in the proof of Theorem 2.1 (iii) and (iv), {v;,}>2, is a minimizing

sequence for S,,. Thus up to a subsequence, there exist {y,(1 1o, € RY and
0; € R such that

i (- +yP) — e Ul — 0.

By the same argument as in the proof of Theorem 2.1 (ii), since

{yﬁLj ) / BN @-1) o, is bounded, up to a subsequence, there exists z;o €
RY such that

Y G ENG=D)

n

Moreover we have
| N Dy, P o 5 Vi(as0)
RN
From the upper bound for €7, it follows that

35 _'_6 4/(4=N(p—-1)) {mln ‘/1( )—}—min %(-T)‘l’mln ‘/?)(x)}

xERN zCRN
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+o(5 4/(4=N(p— 1)))

> 35 +ﬁ /(=N {‘/1(210)+%(220)+%(230)}+0( —4/(4=N(p= )))
> 38, + BN {mln Vi(z) + min Va(x) + min V3(z)}

xERN xRN z€RN

+o(B; 4/(4=N(p- 1)))

This implies that

€8 =35, 4 pH/UE-NE-1) {mln Vi(z) + min Va(z) + min Vs(z)}
zeRN zeRN
+o(BH/E=NEP=1)) " as B — oo,
min V;(z) = V;(2,0).

zERN

2.3.5 Proof of Theorem 2.1 (i)

Let u be a function such that

luall3 = fluzll3 = [lusll3 = 1.
We consider the rescaled function w as (2.1) such that

W(l’) = B—NN/(4—N)U(B—25/(4—N)$)‘

Then it follows that

lwi]l3 = [lwal3 = [lwsl3 =1
and

Eﬁ(u) — 545/(4—N)]55(W)7 56 — B4H/(4—N)f(ﬂ

where



2.3 Proof of Theorem 2.1

K% =if{F(w)|weH, Iwl|i=1(G=123)}.
For the case (i) k > k1, note that
—4k/(4—N)<k(N(p—-1)—4)/(4—N)+1<0.
We first prove the upper bound for K°. Let W,, be a maximizing sequence
for ¥, that is, W,, satisfies

W,, is a minimizer for >,
EYW,) = X, asn — oo.

Then we have

K? < FA(W,) = E%(W,,) — grN-D-4/U-N+1 gL )

3
1
+ﬁ4/€/(4N)§Z/ V; 2%/4 N) )|W]n‘2 de
j=1 /RY
<Yy — 5H(N(p71)*4)/(47N)+1E1 (Wn)
Then letting n — oo, we have

P < ¥ — BriN@-D-4)/(4-N)+1y |

Next we prove the lower bound for K”. Note that the rescaled function
w,, defined by (2.1) satisfies

lwinll3 = llwenll = llwsalls =1,
Fﬁn( ) K67L+0( —4r/(4— N)

where (3, — 0o as n — oco. Since {w;,}%, is bounded in H'(R"), by the
same argument as in Theorem 2.1 (iii), {w, }7°, is a minimizing sequence for
Yo. From the compactness of minimizing sequence for ¥, (see Kurata-Osada
[31]), up to a subsequence, there exist {y,}°°, C RY and a minimizer w for
Yo such that

IWn(- +yn) — W]l — 0, asn— oo.
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From the upper bound for K?, we have
5y — BENE-D-4)/(-N) 1y

n

> 3, — 5S(N(p_1)_4)/(4_N)+1E1(Wn)

3
1
) O AN
2 =1 RN 7

= %o — pEWNE-D=D/U=NH1 Bl () 4 o geiNp=1)=)/(=N)+1)
>3 — BS(N(p—l)—4)/(4—N)+121 + o(ﬂg(N(p_l)_‘l)/(‘l_N)“).

Thus we have
KP =¥, — ﬁn(N(pfl)f4)/(4fN)+1zl + O(ﬂn(N(pfl)f4)/(4fN)+1)’ as 3 — 00

and w is a maximizer for ;.

2.4 Appendix

We remark the another asymptotic expansion of the energy ¢°(a1, as, as) as
a — oo with 8 = a” for a given 7 € R. For 7 > 0, the result of asymptotic
expansion of £°(ay, as,a3) as a — oo with 3 = a” is included in Theorem
2.1. So we consider the case 7 < 0. For a given 7 < 0, as § = o” define

Eo(u) == B5 (u),
§a<a17a27a3) = §§T(G17G2,a3)'

Let {a,}32, be a positive number sequence such that a,, — oo as n — oc.
We say that {u,}5°, is a minimizing sequence for &,, (ay, as, as) if

H“lnH% = a1, |lugn 3 = as, HUSn”g = ag,
E.,(u,) =&, (a1, a2,a3) + o(1), asn — oo.

We use the rescaled function w,, defined by (2.1) to analyze the asymptotic
expansion for £, (a1, as,a3) as @ — co. The asymptotic expansion up to the
first term for £, (a1, as, as) for the case 7 = 0 is treated in Kurata-Osada [31].
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Proposition 1. (1) —N(p—1)/(4—N)<717<0

(1)

(111)

Assume that N < 2. Then it holds that

€alar, az,a3) = oM S(ar, a2, a5) — NPV NS (44, a5, a5)
+ o(aNP=V/E=NATY s 0 0.
Moreover, let w, be a minimizing sequence for &, (a1, as,as) where
a, — 00. For the rescaled function w,, defined by (2.1), up to a subse-

quence, there exist a mazimizer w for ¥1(ay, az,as) and {y,}°, C RY
such that

|Wn(-+yn) — W =0, asn— oo.

T=-N(p-1)/(4-N)
Assume that N < 2, (V2) and (Vi, V2, V3) # (0,0,0). Then it holds
that

Ealar, az,a3) = 044/(4_N)Eo(a1, asz, az) — Xi(ay, az, as)

1
+3 mﬂi{rjlv{Vl(x)al + Va(z)ag + Vi(z)as} +o(1), as a — oo.
s

Moreover let u,, be a minimizing sequence for &, (a1, as, az) where a,, —
oo. For the rescaled function w,, defined by (2.1), up to a subsequence,
there exist a maximizer w for Yi(ay, as, a3), {y,}°2, C RY and 2y €
RY such that

ij,n(' + Yn) — ijHl — 0, asn — oo,
yn/ai/(%N) — 20, asn — 00,
Igﬂgg{%(x)al 4 Va(@)as + Va(@)as) = Vi(z0)ar + Va(z0)as + Va(z0)as.

T<—-N(p-1)/(4—N)
Assume that (V2) and (Vy, V2, V3) # (0,0,0). Then it holds that

fa(ah a2, a3)
1
= o801, a5, 05) + 5 min {Vi(@)ay + Va(w)ay + Va(a)as)
e

+o(1), asa— .
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Moreover let u,, be a minimizing sequence for &, (ay, as, az) where a,, —
oo. For the rescaled function w,, defined by (2.1), up to a subsequence,
there exist a minimizer w for Yo(a1, as, as), {yn}°>; C RY and zo € RY
such that

|wjn (- + yn) — wjllgr — 0, asn — oo,

Y /2N 5 20 s n— oo,
rgg&g{%(sc)al + Va(z)ag + Va(x)az} = Vi(zo)ar + Va(20)az + Va(2o)as.

Since we can prove Proposition 1 in a similar way as in the proof of Theo-
rem 2.1, we omit the details. We note that we assume an additional condition
for the bottom of the potentials in the case (iv) in Theorem 2.1. But we do
not need the additional condition in Proposition 1 since the compactness
of the minimizing sequence of a minimization problem for appearing in the
first term of the asymptotic expansion of &, aligns the translations for each
component.
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Fixed frequency problem
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Chapter 3

Asymptotic expansion of the
ground state energy for
nonlinear Schrodinger system
with three wave interaction

3.1 Introduction

In [43], Pomponio studied the existence of a vector ground state of the non-
linear Schrodinger system with three wave interaction:

—Aug + Vo(z)ug — |us|P " us = aujug  in RY, (Pv)

—Auy + Vi(z)uy — Jug [P uy = quguz  in RY,
—Auz + Va(x)uz — |us|Pus = aujus  in RY,

where u := (uy,us,u3), uj,us, us are real-valued functions, « € R, N €
N, N <5and 2 <p < 2*—1, where 2* is defined as follows:
o . ) (N =1,2),
") 2N/(N —2) (N >3).

Here the potential V = (11, V5, V3) satisfy the following conditions:
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(V1) for all i = 1,2,3, V; € L®(RY;R).

(V2) for all i = 1,2,3, Vi(z) < limjy00 Vi(y) =: Vi € R, for almost every
r € RV,

(V3) for all i = 1,2,3, 0 < C; < Vj(x), for almost every » € RY.

We note that the results in [43] holds even if p = 2, although the condition
p > 2 was assumed in [43]. In particular, in [43], the existence of a vector
ground state for « sufficiently large was shown. Also, in [43], the ground state
converges to the scalar ground state as o — 0 was shown. However, in [43],
it was not clear whether the ground state is scalar or not for small «.. In this
chapter, we give a positive answer to this question and moreover establish a
precise asymptotic expansion of the ground state energy for a — oc.

We set H = HY(RY) x HY(RY) x H*(RY). The solution of (Py) is char-
acterized as a critical point of the functional Iy : H — R defined as follows:

3
Iy(u) = Z Iy, (u;) — a/RN Ui UgUsg,
i=1

1 1
Iy, (u;) == = Vu,|* + Vi(z)u? — —— ug [P
wlw) =5 [ 1Vl Vi = — [
Now we set
Cy ‘= uierjlév [v(u),
where

Ny = {u e H\{(0,0,0)} | Gv(u) = 0},

3
Gv(u) := Z/N |V |* + Vi(o)u? — |u; [P — 3a/ Uq UnU3.
i=1 /R

RN

Definition 3.1. A solution u = (uy, us,u3) # (0,0,0) of (Py) is called a
scalar solution if there exist 7,7 € {1,2,3} with ¢ # j such that v; = u; = 0;
while a solution u of (Py) is called a vector solution if u; # 0, uy # 0 and

u37é0
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Definition 3.2. We will say that u is a ground state of (Py) if u is a non-
trivial solution of (Py) and Iy (u) < Iy (w) holds for all non-trivial solution
w of (Py).

To state the asymptotic expansion precisely, we consider the following limit
problem:

—Auy + Vi(2)u; = ugug  in RY,
—Auy + Va(z)upy = uguz  in RY, (Pso)

—Auz + V3(z)uz = ugug  in RV,

The solution of (Ps) is characterized as a critical point of the functional
Iy o : H — R defined as follows:

3
fvm(u) = ZIN\/“OO(UZ) — /RN U1U2U3,
i=1

8 1
Rl i= 5 [ 190l + ViGoyi
2 ]RN
Moreover we set

éV,oo = II}f jv,oo(u),
uEvaoo

where

AN/V,OO = {u S H\ {(07070)} | éV,OO(“) = O},

3
éV,m<u) = Z /RN |vuz|2 + ‘/z(l')uf - S/RN U U2US.
=1

We define also a vector solution and a ground state for the problem (Pu)
similarly.

First, we note the compactness of the minimizing sequence for ¢y .
Proposition 3.3. Let {u,}>2, C ./\~/'Vpo be a minimizing sequence for ¢y .
Then up to a subsequence, there exist {£,}5°, C RY and u € H such that

|twin(-+ &) —willgr — 0, asn — oo.
We can take &, = 0 for all n € Nif (V1, V5, V3) Z (Vi 00, Va,00, V3,00). Moreover

u is a minimizer for ¢y o, that is, u is a ground state of (Pu).
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Note that any ground state u to (Ps) should be a vector solution of (Py),

that is u satisfies (Py) and u; # 0 for all i = 1,2, 3.

Now we write cy and ¢y« as ¢, and ¢o, for simplicity. Using Proposition
3.3, we established the following asymptotic expansion to ¢, as o — oc.

Theorem 3.4. Let o > 0. Then
Ca = Cso/a? +0(1/a?), as a — oo.

Moreover, let {a,}32, C (0,00) be a sequence such that «,, — 0o as n — o
and u,, a minimizer for ¢,, . Then up to a subsequence, there exist a minimizer
u for ¢, and a sequence {£,}32, C RY such that

lantin(- + &) — willgr — 0, as n — oo.

We can take &, = 0 for all n € Nif (V4, V5, V3) # (V1 00, Va,oos V3,00)-

From Remark 1.1 in [43], it follows that ¢, is an even function on R. So
we consider only for the case a € [0, 00).

We show the existence of the positive threshold o* as follows.

Theorem 3.5. ¢, is non-increasing and continuous on [0, c0). In addition,
there exists a* > 0 such that ¢, = ¢ if 0 < a < o* and ¢, < ¢ if @ > o*.
Moreover, for a@ > «*, all minimizer for ¢, is a vector solution of (Py) and
Cq 1s strictly decreasing on (a*, 00). For a € [0, *), all minimizer for ¢, is a
scalar solution of (Py).

Remark 3.1. For the case V; =V, = V3 =V, we give an upper bound of
the threshold a*.

(i) For the case p = 2.
It holds that a* < v/3 — 1.

(ii) For the case p # 2.
Let ag be a unique positive solution of

A(a)® {} p—2 A@r! } 2(p+1)
a?C(w)? p—1

=1
2" p+ 1lar~1C(m)r! ’
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where w is a positive ground state of
—Au+V(z)u — |ulPtu =0

and
Au) = /RN \Va|? + V(z)@?, C(a) ;:/

Then we have o* < «ay.

See the Appendix in [30] for the proof of Remark 3.1.

For the physical background of the nonlinear Schrodinger system with three
wave interaction, see Colin-Colin [15, 16] and Colin-Colin-Ohta [18, 19]. In
particular, in [18, 19], they studied the orbital stability of a standing wave for
a nonlinear Schrodinger system with three wave interaction. More precisely,
they revealed that the stability and instability of the standing wave solution
depended on the size of the coupling parameter « (see also Colin-Ohta [17]).

Recently, there are several works on the nonlinear Schrodinger system with
three wave interaction and related models. For the L?-constrained variational
problem associated with this system, see Ardila [4], Kurata-Osada [31], Os-
ada [41] and for other related models, see e.g. Tian-Wang-Zhao [50], Wang
[52], Zhao-Zhao-Shi [60] and the references therein.

The rest of this chapter is organized as follows. In Section 3.2, we show
the compactness of the minimizing sequence for ¢y . In Section 3.3, we
prove the asymptotic behavior of a ground state of (Py) and its energy c,
as a — 0o. In Section 3.4, we prove the existence of the positive threshold
a* of a such that the ground state of (Py) is a scalar solution if 0 < o < o,
whereas the ground state is a vector solution if @ > «*. In Appendix, we
give the proof of the continuity of ¢, on the parameter o € [0, c0).

Notation

e For r > 0 and zy € RV, we define B,(zo) := {z € RN | |x — xo| < 1}.
e We denote by H*(RY) the set of real valued H* function.
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e We denote by || - ||z the norm of HY(RY).
o We set H := H'(RV)?, and set |[u|Z := 30, [lu]|%: for u € H.

3.2 Proof of Proposition 3.3

To show Proposition 3.3, we need the following lemma which can be proved
as in [43].

Lemma 3.6. Let {u,}>, C /\N/'v,c>o be a minimizing sequence for ¢y .

Then {u,};>, is bounded in H and it does not vanish, that is, there exists
r > 0 such that

lim sup / ui , +us, +us, #0.
r(€)

n—oo fGRN

We also note that, since

3
- 1
Foln) = 23 /RN Val? + Vi)l
=1
> Cllull, for all u € Ny, (3.1)

and there exists C' > 0 such that |Juljg > C for all u € Ny o (see [43, Lemma
2.1]), év. is a positive constant.

We define the functional jv,oo :H — R as follows:

3

- 1

Jv o) := 5 E /]RN |Vu|* + Vi(z)us.
i=1

We need also the following lemma.

Lemma 3.7. (cf. [29, Lemma 1]) If Gy 0o(1) < 0, then it follows that
JVOO(U) > 6\/700.
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Proof. Since Gv,m(u) < 0, it follows that u # (0,0,0). Therefore, it holds
that [, uyugug > 0. Thus there exists unique ¢ > 0 such that Gy . (tu) = 0
by the same argument as in Lemma 2.3 in [43]. We set

Gy oo (tu) =: At> — C?,

A= Z/ |Vu;|> + Vi(z)u? > 0,
C = Ba/ urugus > 0.
RN

Then Gy oo(tu) > 0if 0 < t < 7 and Gv o (tu) < 0if t > £. Since Gy o0 (u) <
0, it follows that ¢ < 1. Hence we obtain

Evoo < Jvso(fu) = Ty oo () < Jyoo(u).

Now we prove the compactness of the minimizing sequence for ¢y  (cf.
[29, Lemma 3)).

Proof of Proposition 3.3. (Step 1) First we show for the constant po-
tential case: V =V

Let {u,}°, C Ny_ . be a minimizing sequence for éy_ . From (3.1)
and Lemma 3.6, {u,,}22; is bounded in H and it does not vanish, that is, up
to a subsequence, there exist C' > 0, r > 0 and {£,}°°, C RY such that

/ ui, Fus, + ug,n > (C, forallneN. (3.2)
By (én)

Since {u,(- + &,)}22, is bounded in H, up to a subsequence, there exists
u € H such that for i = 1,2, 3,

Ui (- + &) — u; weakly in H'(RY),
Uin(- + &) = u; ae. in RY,
Uin(-+ &) = uin LL (RY), 1<q<2%.

loc
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By the lower semicontinuity, we get Jy_ o0(1) < éy_ s0. From (3.2), we have
u # (0,0,0). By the Brezis-Lieb Lemma, it follows that

0= CNTYVOQ,OO(U—n) - éVoo,oo(u) + éVoo,OO(un<' + gﬂ) - 11) + On(1)7 (33)
jVoo,oo(un) - jVoo,oo(u) + jVoo,OO(un(' + gn) - u) + On(l)

We prove Gy o (1) = 0 by contradiction.

Case 1. The case of Gy o (1) > 0. From (3.3), for n sufficiently large, it
follows that Gy o (u, (- + &,) — u) < 0. From Lemma 3.7, for n sufficiently
large, we have Jy_ oo(U,(- + &) — 1) > Gy . From (3.4), it holds that
JVoo0o(1) = 0. Thus we have u = (0,0,0). This contradicts u # (0,0,0).

Case 2. The case of C?vgopo(u) < 0. From Lemma 3.7, we have Jy_ o (1) >
év., co- This contradicts Jy_ (1) < év_ o

From the above, we have Gv..0o(u) = 0. Since u # (0,0,0), it follows
that u € My . Thus we have

éVoo,oo < fVoo,oo(u) < hglogf fVoo,oo(un) = 6Voo,oo-

Since
Uin(-+ &) — u; weakly in HI(RN),

lim |Vui,n|2 + V;,oouz?,n - /N |Vui|2 + V;,oouzga
R

n—oo RN
we have || (- +&,) —uil m — 0 (asn — o). Therefore, we have u € Mo oo

and Iv_ «(u1) = év_ . The remaining part of the statement can be proved
in the standard argument (see e.g. [43]).

Suppose that v = (v1,v2,v3) is a ground state of (Pu). Since [,y vivov3 >
0, it holds that v; # 0 for all 1 = 1,2, 3.

(Step 2) Next, we show for the case V # V. We note that it follows
that ¢v 0 < Cv 0o if V # V. Indeed, from Proposition 3.3 for the constant
potential case, there exists a vector ground state u to (Ps) for V.= V.
Let t > 0 be a positive constant such that tu € NV,oo- Then we have

&vioo < Ivoo(fu) < Iy oo(tu) < Iy oo(1) = v oo.
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Let {u,}>, C ./\~/'V7C>Q be a minimizing sequence for ¢y . We can show that
{u,}5°, is bounded in H as in Step 1. Up to a subsequence, we have

Ui — w; weakly in HY(RY),
Uiy — U; A.€. 1N RN,

Wi, — u; in LL (RY), 1< q< 2%,

Let {t,}2°, C (0,00) be a sequence such that t,u, € Ny_ . Thus

éV,oo + On(1> = jV,oo(un) > j oo( nun>

- ]Vo<> oo nun § /RN )uin
~ t?p § :/ (‘r( ) v ) 2
CV o ,00 i\&r i,00 ) Wi p-

_— [e ok} 2 Z 1 RN ) )

Suppose that u = (0,0,0). Since {t,}>2; is bounded (the proof is the same
as in Lemma 3.6 in [43]) and u;,, — 0 in L2 (RY) and (V2),

loc

o 2 —
Jin 3 Z [ = Vi, =0

Hence we have ¢y oo > Cv_ o This is a contradiction to ¢y oo <Cv_ . Thus
u # (0,0,0). The rest of this proof is proved by the same argument as in
Step 1. O

3.3 Proof of Theorem 3.4

Hereafter, we write Iv, Ny, Gv, ¢v, Iv.oo, Nvoo and &y o as Lo, Ny, Ga,
Cas ]Oo, N and ¢,. Here we rescale the energy functional I, and G, and
the infimum ¢, as follows: Let u € H. Set w = au. Then it follows that

1 -
a?
1
o}
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3.3 Proof of Theorem 3.4

where

3
1 / 2 2
=5 V| + Vi(z)w;
222:1: RN
_ 1 i/ |w-]p+1—/ Wy Waw
p—l-lOép_l £ Jyn 1 . 1Ww2W3,

Co = inf [:a(w),

weN,

N, :={w e H\ {(0,0,0)} | Ga(w) =0},
=3 [ 1vu + Vi) =3 [

Therefore, the proof of Theorem 3.4 is reduced to the proof of the following
proposition.

Proposition 3.8. It follows that ¢, — ¢, as a — oo. Moreover let
{a,}22, C (0,00) be a sequence such that o, — oo as n — oo and w,,
a minimizer for ¢,,. Then up to a subsequence, there exist a minimizer w
for ¢oo and {&,}5°, C RY such that

lwin(-+ &) —willgn — 0, asn — oo.

We can take &, =0 for alln e Nif V £ V

Proof. (Step 1) First we note the upper bound &, < ¢4 for all a > 0. Let
w be a minimizer for ¢, and s, a positive constant such that s,w € N,,.
Then we have

Coo = foo(w) > Io(sqW) > fa(saw) > Cq

(Step 2) Next, we show the lower bound ¢, > ¢s + 0o(1) as a — oo. To
show this, first we show that there exists C' > 0 such that for all @ > 1 and
weN, |[wllg>C. Let @« > 1 and w € N,,. Then we have

C\|wuH<Z [ 19w+ Vit - plz [ ot [ wwe
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< O(lwl™ + Iwlf)-

Thus, there exists C' > 0 such that for all & > 1, ||w|jg > C by the same
argument as in Lemma 2.1 in [43].

Let w, be a minimizer for ¢,. Next we show that there exist ag > 1 and
C > 0 such that for all a > ay,

/ W1, W2,aW3 o Z C.
RN
Indeed, from the upper bound for ¢,,

1

3
1 p-2
Coo = Ca = = \Y ia2+‘/i 2 + —/ iaerl
w2tz [ ol Vit gty e

> O|lwallf, for all a > 0.

Thus {W, }a>0 is bounded in H. Since w, € N,
3
COwalt =Y [ IVwial + Vi,
i=1 /RY

1 3
— p+1
= —= > | w3 wiawsaws,
1874 —1 RN RN
=

1

ap~1

S C + 3/ W1, W2,aW3 -
RN

Hence for « sufficiently large, we have
/ W1,6W2,aW3 o 2 C. (35)
RN

For « sufficiently large, let ¢, > 0 be a positive constant t,w, € -/\700 (this
fact is proved by the same argument as in Lemma 2.3 in [43]). It follows that

3
Z/ Vwi ol + Vi(z)w}, = 3ta/ W1 aW2 4 W3 4 (3.6)
i=1 Y RY RY
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3.3 Proof of Theorem 3.4

Since w, € N, we have

Z/ |sza|2—|—V( ,a aP—1 Z/ |wla|p+1+3/ W1,aW2,W3,q-
]RN

(3.7)

From (3.5),(3.6),(3.7),

3
1
3(tcx - 1)/ W1,qW2,qW3 o = V1 E / |wi,a|p+1»
RN oP i—1 RN

p<t-15 <,
that is, t, — 1 as @ — o0o. Thus we have
o = In(Wa) > In(taWs) = Io(taWa) + 0(1) > s + 0(1), as a — 0.
Hence we have
Ca — Cso, AS Q. — 00,
foo(tawa) — Coo, AS QX — OO.

(Step 3) Let {a,}22, C (0,00) be a sequence such that a,, — 0o as n — oo.
Let w,, be a minimizer for ¢,,. By the same argument as in Step 2, for «,,
sufficiently large, there exists ¢,, > 0 such that

|lwa|lf < C, forallneN,
t, — 1, asn — oo,
taw, € /\700, for all n € N,

—~~
o oo
Nej
N

foo(tnwn) — Cooy  AS M — OO.

Thus from Proposition 3.3, up to a subsequence, there exist a minimizer w
for ¢ and {&,}°2, C RY (if V # V,, then we can take &, = 0 for all n € N)
such that

|ltnwin(- + &) —willgr — 0, asn — oo.
Moreover noting that (3.8) and (3.9),
lthwin(- + &) — win(- +&)|lm — 0, asn — oo.
Thus we have

”wzn( +&,) —willg — 0, asn— oco.
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3.4 Proof of Theorem 3.5

Before going to give the proof of Theorem 3.5, we give several remarks in the
following lemmas.

Lemma 3.9. Let o € R and u a minimizer for ¢, such that o fRN U U UZ =
0 (if o« = 0, it satisfies automatically). Then it follows that ¢, = min;_; » 5 ¢(7)
and u = (uq,0,0) or (0,us,0) or (0,0, us). Here

N (i) = {u € H'(RY)\ {0} | Iy, (u)[u] = 0},

) = inf Iy (u) > 0.
o(i) = Inf Tvi(u)

Proof. Since u is a ground state of (Py),

—Auy + Vi(x)uy — |ug|P 'y = augus,
—Auy + Vo(x)us — |us|P  us = auqus,

—Aug + Va(x)uz — |us|P"lug = augug

holds. Since o [px uyugus = 0, we have

/ |Vui|2+‘/}(x)u?—/ gL = 0.
RN RN

Then it follows that

p—1 2 2
Iy (ug) = 52— P+ Vilay? > .
) = g [ 19 Ve

Since u # (0,0,0), there exists ¢ € {1,2,3} such that Iy, (u;) > ¢(i) (> 0).
Therefore we have

Let ig € {1,2,3} be an index such that ¢(ig) = min;—1 23 (). Let @ € N (ip)
be a function such that Iy, (u) = infuen(ip) Iv;, (u)(= c(io)). For simplicity,
we assume that i = 1. Since (%@, 0,0) € N,, we have
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Hence it holds ¢, = min;_; 53 ¢(7).

Ifup # 0, ug # 0 and ug # 0, co = Io(u) > 320 ¢(i) > ming_y 95 c(i).
This is a contradiction to ¢, = min;—; 2 3¢(¢). We can also rule out the case
that two components are non-zero. Therefore it follows that u = (u4,0,0) or
(0,u2,0) or (0,0, us). 0

Lemma 3.10. (Py) has a ground state.

Proof. For the case V =V, or the case ¢y < ¢y, the result of [43] implies
the existence of a ground state of (Py). We also note that the statement
holds even for the general cases for the sake of completeness. So let V # V.
If ¢y, has a vector ground state, then ¢y < ¢y, holds and hence (Py) has
a ground state. Finally, assume that all ground state of (Py_ ) is a scalar
solution. Then for V;, oo = min;—1 23 V; » we have a scalar ground state u to
(Pv..) with u;, # 0. Moreover, we may assume V;, = V;, » and cy = ¢y, .
So u itself is a ground state of (Py). O

Although Pomponio [43] proved the following lemma only for the cases
V =VgorV, # Vi, for all i = 1,2,3, the same argument yields the
following statement even for the general cases.

Lemma 3.11. Let {a,}5°, C (0,00) with a,, — 0 as n — oo and u,
a ground state of (Py) for @« = «,. Then there exist i # j such that
Wi g, Ujn — 0 in HY(RY).

Proof of Theorem 3.5. Claim 1. ¢, is non-increasing on [0, c0). We can
prove this claim by the same argument as in the proof of Lemma 2.5 in [43].

Claim 2. ¢, is continuous on [0, 00). We omit the proof. See the proof of
the continuity of ¢, in Appendix in this chapter.

Claim 3. There exists a* > 0 such that ¢, = ¢ (0 < a < a*) and
Co < g (> a*). {a>0]cy = c} is bounded closed interval. Indeed
since ¢, = Coo/a? + 0(1/a?) as a — oo, it is bounded set. Being closed set
follows from the continuity of ¢,. Being interval follows from monotonicity
of ¢,. Hence there exists a maximum of { > 0 | ¢, = ¢o}. We define
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a* ;= max{a > 0| co, = co}. Then ¢, = ¢ if 0 < o < a*, and ¢, < ¢ if

a > ot
Claim 4. o* > 0. If not, there exists a,, > 0 with a,, =& 0 as n — o
such that (uy ., U2y, us,) is a ground state of (Py) with w;,, # 0 for any

i =1,2,3. By Lemma 3.11, we may assume ug,,,u3,, — 0 in H'(R"). We
also have {u;,,}°°, is bounded in H*(RY). Now, we have

/ ’vu2,n|2 + ‘/Z(x)ug,n = / |u2,n|p+1 + O5n/‘ ul,nUZ,nu?),na

RN RN RN

/ |Vu3,n|2 + Vzi(x)ug,n = / |u3,n|p+1 + an/ U, nU2,nU3mn-
RN RN RN

It follows

Ch([luzn

|§—]1 + ||u3,n||%{1) S / |u2,n|p+1 + |u3,n|p—H + 2an/ ul,nUZ,nUS,n-
RN RN

Here we note by the Sobolev embedding theorem

2 / il nllusn] < / i1 ([t
RN RN

< Collur nllzs (Jluznll i + llusnllz)
< Cs([luzallzn + llusallz)-

* o+ Jusal)

Take g > 0 so that apC3 < C/2. Then, for 0 < a,, < g, we have

G

Szl + usal) <

|u2,n|p+1 + ’u37n|p+1
RN

1)/2
< Cy (JluanlZps + o) 7072

Since ug, # 0 and us,, # 0, we obtain

)(pfl)/2

< C (luzallin + lusalla

1
2

which contradicts ug ,,, uz, — 0 in H'(RY).

Claim 5. For a > o, for any minimizer for ¢, is a vector solution and c, is
strictly decreasing. Moreover, for any minimizer for ¢, on (0, a*) is a scalar
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solution.

Let o > o*. It follows that ¢, < ¢y. Let u be a minimizer for ¢,. From
Co < Cg, U is a vector solution. Let aq,as > o* with a; < as. Let u be a
minimizer for ¢,,. Since ¢,, < ¢o, u is a vector solution and it satisfies

I?;aox I,,(tu) = I, (u),

/ uiugug > 0.
RN

Let ¢ > 0 be a positive constant such that tu € N,,. Then we have
Cay = Lo, (1) > 1, (tu) > I, (tu) > cq,-

Now we show that for any minimizer for ¢, on (0,a*) is scalar solution. If
not, there exists a; € (0, *) such that there exists a minimizer for ¢,, such
that it is vector solution. Then as before, c¢,, > ¢4, for a3 < ay < a*. This
is a contradiction to ¢, = ¢o for all « € [0, a*]. O

3.5 Appendix

In this Appendix, we prove the continuity of ¢, on the parameter o € [0, 00).
For a similar argument, see Zhao-Zhao-Shi [60, Lemma 4.1].

Proof of the continuity of ¢, on [0,00). Let oy > 0. We now prove that
the continuity of ¢, at & = . Assume that a > 0 and « is sufficiently close
to ap. From [43], there exists a non-negative ground state u to (Py) with
a = ap. In addition, let t, > 0 be a positive constant such that t,u € N,.
Then we have

V| + Vi(x ! / z”“—?;t/ =0.
Z/ |Vu; |~ + Z lu a RNU1U2U3

Therefore {t,}, is bounded. So we have

(v — ao)/ taurtaustous = o(l),  as a — ag.
RN
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Thus we have

Co < Io(tou) = Iy, (tou) +0o(1) < I, (0) +0(1) = coy +0(1), as a — ay.
(3.10)

On the other hand, let {a,}>°, be any non-negative sequence such that
an, — ap as n — oo and u,, a non-negative minimizer for c,,. Then

3
1
i=1

= I, (Uy,) = Ca,, < Cop +0(1), asn— oo.

Hence {u,, }>2, is bounded in H. Let ¢,, > 0 be a positive constant such
that t,, U,, € N,,. Then

Z/ Vit 0, | + Vi(2)uZ, — Z/ i, [P
— Bt%ao/ UL 0, U2, 000, U3 0, = . (3.11)
RN

Since ¢, is non-increasing on [0, 00), there exists o > 0 such that c,y10 < ca,
for all n € N. Therefore up to a subsequence,

3
Z/ |t 0, |PTF > C, forall n € N. (3.12)
i—1 JRY

Indeed, if

3
lim E Ui o, [P =0
n—00 4 < JRN ’

1=

by Holder’s inequality, we have

lim UL 0, U2, 0, U3 0, = 0.
n—oo RN

Therefore

1
0 < cao-‘ro S COén = ‘[Oé'n (uan) - iGan (uan)
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3
p—1 / ol an/

g Ui + — Ul 0, U2,0,U30, — 0, asn— oo.
2(p+1) = o ] 2 gy RO

This is a contradiction. Thus (3.12) holds. From (3.11), {t,, }>, is bounded.
Thus

Cap < Iao(toznuan) = la, (ta,Uq,) +0(1)
< I, (u,,)+o0(l) =c,, +0(1), asn— oc. (3.13)

From (3.10) and (3.13), it implies that ¢, — ¢4, as a — ay. O
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Chapter 4

A singular perturbation
problem for a nonlinear
Schrodinger system with three
wave interaction

4.1 Introduction and main results

In this chapter, we consider the following nonlinear Schrodinger system with
three wave interaction:

—2Auy + Vi(2)uy = |ug [P ruy + augus  in RY,
—€2AU2 + ‘/2($)UQ = |U2|p71U2 + auqius n RN, (Pg)

—€2AU3 + Vzg(l')u;; = ]u3]p_1u3 + QU Uy in RN,

where N <5, 2<p<2*—1,2" =00 (N <2),2*=2N/(N —2) (N > 3),
e >0, a > 0. We also assume the following basic conditions for the potentials
V; (j=1,2,3):

(V1) for all j =1,2,3,V; € L®(RY) N CYRY),
(V2) forall j =1,2,3,0 < Vjo := inf gy Vj(2) <limjyo Vi(2) = Vjoo-
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We define the following functional and least energy for (P.):

u = (ug,ug,uz), H:= HI(RN)3,

3
1
I(u) := 5 ; /[RN eV, |* + Vj(z)u

3
1
_ p+1l
pt1 ijl /RN e /Rw e

= inf [
Ce ulénf\/g +(w),

-N‘e = {u € H\ {(070’ O)} | Ga(u) = 0}7

3
Ge(u) := Z/RN |V, |? + Vi (x)ul — Ju|P™ — 304/ U UgU3.
j=1

RN

(P.) is related to standing wave solutions of the following time dependent
nonlinear Schrodinger system with three wave interaction:

iedyvy + e2Avy — Vi(x)vy + |v1[P" 'y = —adivs in R x RY,
i£0vy + €2 Avy — Va(x)vg + |0o]P 'y = —atyvs  in R x RY, (4.1)
ie0,v3 + €2 Avg — ‘73(37)?]3 + |vs]P7lug = —avjvy  in R x RV,

Indeed, if (vi(t, ), va(t,x),v5(t, ) = (e™1ui(z), €2 5uy(z), €3t/ 5us(x))
with w3 = w; + wy is a solution of (4.1), then (uy,us, u3) satisfies (P.) with
Vi(x) = w; + Vj(x), where uy,uy, us are real-valued functions. The system
(4.1) was introduced by Colin-Colin-Ohta [19] with V;(z) = 0 and ¢ = 1
(see also [15, 16]). Colin-Colin-Ohta [18, 19] showed that the standing wave
solutions (™', 0,0) and (0, e“*p,0) are orbitally stable for all « > 0, where
w > 0 and ¢ is the unique positive radial solution of

~Av+wv— Pty =0 in RY.

On the other hand, (0,0,e™%p) is orbitally stable if 0 < a < a* and is
orbitally unstable if @ > o* where o is a suitable positive constant (see
[18, 19] for more detail). For other studies on nonlinear Schrédinger system
with three wave interaction, see [4, 30, 31, 37, 41, 42, 43, 51| and the references
therein.
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Rabinowitz [44] showed that there exists a ground state solution of
—*Au+V(z)u = f(r,u) in RY (4.2)

for e sufficiently small if 0 < inf,cgy V(2) < liminf, o V(x), where f
satisfies suitable conditions (see [44] for more detail). Here we say that u is
a ground state of (4.2) if u is a nontrivial solution with least energy

1
—/ EQIVUIQ—FV(:I:)uQ—/ F(z,u)
2 RN RN

among all nontrivial H'(R") solutions of (4.2), where

F(z,u) = /Ou f(z,t)dt.

Wang [54] studied the concentration behavior of positive ground state solu-
tions of (4.2) for the case f(x,u) = [u[P"'u. That solutions concentrate at a
global minimum point of V' as ¢ — 40, have a unique local maximum (hence
global maximum) point and exponential decay rapidly around the minimum
point.

Lin-Wei [33] considered the following nonlinear Schrodinger system

—e2Auy + Muy = pud + fugui in Q,
—&2Auy + Aoy = poud + fuiuy  in Q, (4.3)
Uy, ug >0 in §, '

uy = us =0 on 01,

where Q C RY is a smooth and bounded domain. They showed that as
e — 40, there are two spikes for both u; . and us., where (u; ., usc) is a
ground state of (4.3). If § < 0, the locations of two spikes reach a sphere-
packing position (the positions that maximize the minimum distance from
the boundary and the distance from each other) in the domain Q. On the
other hand, if g > 0, the locations of two spikes reach the innermost part
(the farthest part from the boundary) of the domain.

Lin-Wei [34] considered the following system with potentials:

—&2Auy + Vi(z)uy = pyud + fugui  in RY,
—&2Auy + Vo(z)ug = pous + fuiuy  in RY, (4.4)
Uy, Ug > 0 in RN.

85



4.1 Introduction and main results

For this system, they showed the spikes are trapped at the minimum points
of Vj(x) if 8 < 0. On the other hand, if 5 > 0, they introduced a certain
function p(Vi(z), Va(x); B) and the spikes are trapped at the minimum points
of p(Vi(x), Va(x); B) or trapped at the minimum points of V;(z).

U2 e

Va(x) e
Vi(z) p(Vi(z), Va(x); B)

0
Figure 4.1: inf,cpn p(Vi(z), Va(z): B) < dy° + d)>°

U2 e
U ,e

Va(z)
Vi(x)

0
Figure 4.2: inf,cpn p(Vi(z), Va(z): B) > d{™° + d)>

Here, p(Vi(xo), Va(zo); 5) and de’o are the least energies of the following
equations respectively:

—Auy + Vi(zo)uy = v + fugui  in RY,
—Auy + Vo(zo)ug = ud + Buiuy  in RY,
up >0, wuy >0 in RN

and

—Au+Vjpu=u® inRY,
u>0 in RY.

The least energy means the energy which ground state has.
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Montefusco-Pellacci-Squassina [39] considered (4.4) for the case N = 3.
They showed that the least energy solution of (4.4) converges (up to scalings)
to a least energy solution of corresponding limit problem as ¢ — +0. They
adopt a definition of Nehari manifolds similar to Pomponio [43] and ours.
They also proved that if 8 is sufficiently large, then the limit state is vector,
on the other hand, if § is sufficiently small, then the limit state is scalar.

For other studies on concentration behavior and related studies, see [2, 11,
12, 13, 48, 49, 53, 55, 56, 58, 59] and the references therein.

To state main results in this chapter, we also consider the following system
and define the following functional:

—Avy + M\ = ’Ul|p_101 + avaus,

—Avy + Agvy = |va[P vy 4 avyvs, (75)\’(1)
—Avg + \vz = |v3]P g + avivg,

3 18

e (v) = 5 Z /sz|vvj|2 + X0 (4.5)
j=1

3
1

- ;P — V1 V9V

p—i—l;/RN|]| /RN 1r2ms

(4.6)

where A := (Mg, A2, A3) with A\; > 0 (j = 1,2,3). Define the least energy as
follows:

p(A1, A2, Ag; ) :=  inf p’“(v),

veNH @

N = {v e H\ {(0,0,0)} | GM(v) = 0},
3
Gow)= 3 [ Vel =30 [ o

Definition 4.1. A solution u = (uy, ug, u3) of (P-) is called a scalar solution
if there exists jo € {1, 2,3} such that u;, # 0 and u; = 0 for all j # jo; while
a solution u of (P.) is called a vector solution if u; # 0 for all j = 1,2, 3.

Definition 4.2. We say that u is a nontrivial solution of (P.) if u satisfies
(P.) and u # (0,0,0). We say that u is a ground state of (P.) if u is
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a nontrivial solution of (P.) with least energy I.(u) among all nontrivial
H solutions of (P.). We say that u is a minimizer for ¢, if u € N, and
I.(u) = c.. We say that u is a non-negative ground state of (P.) if u is a
ground state of (P.) and u; > 0 in RY for all j = 1,2,3. Similarly, we say
that u is a non-negative minimizer for c. if u is a minimizer for c¢. and u; > 0
in RN for all j =1,2,3.

Remark 4.1. u is a minimizer for ¢, if and only if u is a ground state
of (P:) (see for example, [3, 57]). Similar results hold for the minimization
problem ¢. and p(A1, A2, A3; ).

Remark 4.2. Suppose A\; > 0 and A = (A1, A2, A3). From [43], (PM) has
a non-negative ground state.
We assume the following additional condition for the potentials:

(Cl)y inf,ern p(Vi(z), Va(x), V3(x); ) < p(V1 005 Vaoos V3.00; Q).

We now state main results in this chapter. First, we state the existence of
a ground state of (P.) for e sufficiently small.

Theorem 4.3. We assume that (V1),(V2) and fix « so that (C1), holds.
Then it follows that

c. <&V ( inf p(Vi(z), Va(z), V3(z); ) + 0(1)) , ase— +0.

z€RN

Moreover, there exists a non-negative ground state u of (P.) for ¢ sufficiently
small.

Remark 4.3. (1) We can show the potentials V;(z) (j = 1,2, 3) satisfies
(C1), for all @ > 0 if we assume the following condition (V3):

(V3) there exists yo € RY such that 0 < V;(yy) < Vj forall j =1,2,3.

Indeed, from (V3) and Lemma 4.9, which will be described later, it follows
that

PV1005 Varoo, Vaoos @) > p(Vi(wo), Va(yo), Va(yo); ).
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Hence, it holds that

P(Viso, Vaoos Vaoor @) > inf p(Vi(z), Va(2), Va(2); ).

z€RN
(2)  We consider the following condition:

(V4) there exists 29 € RY such that

Vi(20) = min Vj(z) =V, forall j =1,2,3.

zERN

It is easy to see that (V2) and (V4) imply (V3).

(3)  We consider the following condition:

(V3)' there exists yo € RY such that for all j € {1,2,3}, 0 < V;(y) <V

and (‘/1<y0)7 ‘/2(y0)7 %(y(J)) 7& (Vvl,oo; ‘/2,007 Vé,oo)

Then from Lemma 4.9, if @ > a3, and (V3)’, then (C1), holds, where

ay_ = max{a > 0| p(Vi s Vaoos Vae0; @) = p(Vi00s V2,005 V3,001 0) }

(4) To clear the dependence on «, we write ¢ as c.,, if necessary.

note that c. , is an even function with respect to . So we only consider the

case of a > 0.

Next, we state the asymptotic behavior of a ground state of (P.) as ¢ —

+0.

Theorem 4.4. We assume that (V1),(V2) and fix « so that (C1), holds.
Let {e,}2, C (0,00) with ¢, — 0 as n — oo and let u, be a non-
negative ground state of (P.,). Let z;, be a maximum point of u;,. Then,
up to a subsequence, there exist ly € {1,2,3}, z;,0 € RY and Ul =

(Ul Us) ulo)y € H such that

(0) wjn(igm+eny) — U (y) weakly in H'(RY) (j = 1,2,3) and U # 0.

J
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(1) {xiyn}toe, is bounded.
(2) It follows that

c. =V < inf p(Vi(x), Va(z), Va(x); ) + 0(1)) , ase— +0.

zeRN

(3) It follows that
Zig,n — Llp,0,
iGII{&fN p(Vi(z), Va(z), Va(z); o) = p(Vi(w1n0), Va(@ie0), Va(Tie,0); ),
uj,n(xlo,n + 5ny> - U](ZO)(y) in Hl (RN)’
U is a ground state of (PV@w.0)e),

Next, we state the precise asymptotic behavior of a ground state of (P.)
as ¢ — +0. To obtain the asymptotic behavior precisely, we introduce the
following condition:

(C2), infepy p(Vi(2), Va(z), Vi(@); @) < minj_y o3¢,

where
A >0,
u) -:1/ ywuw—L/ !
1 . 2 RN p+1 RN ’
A . A
c; = inf I{(u),
b= inf, 1w

N = {u e H'(RY)\ {0} | G} (u) = 0},
O /RNWUF +aa? — ufPtL

We also consider the following equation associated the above minimization
problem:

~Au+ = [ufftu in RY. (P)

Now, we state the precise asymptotic behavior for a non-negative ground
state of (P.) as ¢ — +0.
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Theorem 4.5. We assume that (V1),(V2) and fix a so that (Cl), and
(C2), hold. Let {e,}22, C (0,00) with &, — 0 as n — oo and let u,, be a
non-negative ground state of (P, ). Let z;, be a maximum point of u;,.

(1) Then, it follows that {z;,}>>, is bounded for all j = 1,2, 3.

(2) It holds that

(=N ( inf (Vi (@), V(). Vo () ) + o<1>) aseo 40
TERN

(3) Furthermore, up to a subsequence, there exist Wy € H and xy, € RY

such that
Tjn — X,
—’%n;%n‘ — 0, asn—o0, j#Kk,
inf p(Vi(2), Va(x), Va(x); ) = p(V1(20), Va(zo), Va(w0); ),

Ui (Tjn + ny) = Wjo(y) in H'(RY),
W, is a ground state of (PV(®@0))
W, o is positive, radially symmetric and strictly decreasing
for all j =1,2,3,
where V(x¢) = (Vi(xo), Va(zo), V3(20))-

(4) Moreover, for any 0 < n < V;, there exists C,, > 0 such that
Ujn () < CpeVile=minl/en for all z € RN, n €N, j=1,2,3,

where Vj := min{V} g, Va0, Vao}-
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u2,n

(x), Va(x), Vs(x); )

Figure 4.3: Hlustration of the result of Theorem 4.5

Remark 4.4. We can define a value o* > 0 as in Section 4.7. The definition
of a*, (C2), holds if @ > o* and (C2), does not hold if 0 < a < a*. From
Remark 4.3, (V3) implies that (C1), holds for all &« > 0. So Theorem 4.5
holds if we assume that (V1),(V2),(V3) and o > o*. See Theorem 4.6 for the
precise asymptotic behavior of a ground state, when (C2), does not hold.

In the following, we consider the case where (C2), does not hold. When
(C2), does not hold, the following condition holds (see Lemma 4.15 and
Proposition 4.18):

(C3)o inf ery p(Vi(z), Va(x), V3(x); @) = minj—; o3 c}/j’o.

Theorem 4.6. We assume that (V1),(V2) and fix a so that (C1), and
(C3)4 hold. In addition, we assume that there exists o > « such that (C3),
holds. Let {e,}>2, C (0, 00) such that €, — +0 and let u,, be a non-negative
ground state for (P.,). Let z;, be a maximum point of u;,. Then, up to a
subsequence, there exist Iy € {1,2,3} and z;,0 € RY such that

Tlom = Tip0,  Vig(Tie,0) = Vigo = Vo,
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c. =&V (niigg ¢7° + 0(1)) =V (c;/lo‘o + 0(1)) , ase — 0,
]: 1<

Uy (Trgn + Eny) — W in HY(RY),
Wjn(Tjn +€py) = 0 in HY(RN) j # 1y,

where W is the unique solution of the following equation:

AW 4+ VyW = WP in RV,
W >0 inRV,

W(0) = max,cgx W (),
W(z) -0, as|z|— oc.

Figure 4.4: Hlustration of The result of Theorem 4.6

In the problem considered Lin-Wei [34], they consider the least energy
solution among all vector solutions (the solution which has all components
are non-zero) of

—&2Auy + Vi(x)up = ud + Bugui  in RY,
—2Auy + Va(2)ug = u3 + Buduy  in RV,
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On the other hand, in our setting, we consider the least energy solution
among all nontrivial solutions (includes scalar solution (the solution which
only one component survives)) of

—&2Auy + Vi(z)up = |ug [P~ uy + qusuy  in RY,
—&2Auy + Va(z)uy = |ug|P~tuy + quszuy  in RY, (P.)

—&2Aug + Va(z)usz = |uz[P~tusz + auguy  in RY.

Therefore, in the result of Theorem 4.6, the case which each component of
ground states survives and converges to a minimum point of corresponding
potential respectively as in the result in Lin-Wei [34] does not occur.

Remark 4.5. (1) The unique solution W can be represented using w in
(4.28) as follows:

W(w) = Vy T w (V) ).
(2) If (V1),(V2),(V3) hold, then a* > 0 holds (see Proposition 4.18).

(3) Theorem 4.6 holds if we assume that (V1),(V2),(V3) and 0 < a < a*.

In particular, we have the following corollary: To clear the dependence on
a, we write (P.) as (P.q), if necessary.

Corollary 4.7. Suppose (V1),(V2),(V3). Then a* > 0 (see Proposition
4.18) and the following cases hold:

(i) If & > o, then Theorem 4.5 holds and the asymptotic limit of a ground
state of (P.,) is vector.

(ii) If 0 < a < o, then Theorem 4.6 holds and the asymptotic limit of a
ground state of (P.,) is scalar.

Remark 4.6. We can show that all the ground states of (P-,) are scalar
for ¢ sufficiently small and for « sufficiently small. On the other hand, all the
ground states of (P. ) are vector for € sufficiently small and for « sufficiently
large (see Proposition 4.19).
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The rest of this chapter is organized as follows. In Section 4.2, we prove
the existence of a non-negative ground state of (P.) for ¢ sufficiently small.
In Section 4.3, we prove the asymptotic behavior of a non-negative ground
state of (P.) as ¢ — +0 without (C2), and (C3),. In Section 4.4, we show
the asymptotic behavior of a non-negative ground state of (P.) as & — +0
under (C2),. In Section 4.5, we prove the asymptotic behavior of a non-
negative ground state of (P.) as ¢ — +0 under (C3),. In Section 4.6, we
study the asymptotic behavior of inf,cpy p(Vi(z), Va(z), Va(x); ) as a —
0o. In Section 4.7, we show the existence of the positive threshold a* for
inf,cpy p(Vi(x), Va(z), V3(2); o), which divides the asymptotic behavior of a
ground state of (P.,) for a > a* and 0 < a < a*. In Section 4.8, we give
two thresholds for c., and consider when all the ground states of (P.,) are
scalar or vector. In Appendix, we give the outline of the proof of the radial
symmetry and monotonicity of classical solutions of elliptic systems in the
case N = 1.

Notation

H:= H'(RY)?,

u = (Ul,UQ,Ug),

3

allf =Dl
j=1
3

(U, v)g := Z(uj,vj)Hl,

j=1
Wy, = (U1, Uz, Us ).
e We say that u,, — u in H if
|lu, —ullg — 0.
e We say that u, — u weakly in H if
(up, v)g — (u,v)g for all v e H.
e We also set

VD = (‘/I,Oa ‘/2,07 ‘é’nO)a
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Vo :=min{ Vi, Vo, Va}-
e Let 2, be a maximum point of u;,,, that is,

Ujn(Tjn) = ;161%}15 Ujn ().

e We rescale u,, as follows:
UD(y) == wn(win +0y) (1=1,2,3),
Ui (y) = tin(@in +€ny) - (i1 =1,2,3),
e In particular, if j = [, we define
W= U,

Wn = (WLn, W2,TL7 W3,TL)'

4.2 Proof of Theorem 4.3

To prove Theorem 4.3, we prove the following three lemmas needed later.

Lemma 4.8. p:(0,00)®> — R is continuous.

Proof. From Lemma 3.7 in Pomponio [43], p is continuous on (0,00)3. O

From (V1),(V2),(C1), and continuity of p, there exists a point zy € RY
such that

p(Vi(20), Va(20), Va(20); @) = inf p(Vi(z), Va(x), Vs(2); a).

TzERN

Lemma 4.9. Let o > 0.
(1) HO0< A <A forall j=1,2,3, then

P(>\17>\27>\3§a) < /)()\/17)\/27)\&704)
(2) KO< A <\ forall j=1,2,3, then

p()‘la )‘Qa )\3; O{) S p()\lla )‘/2a )‘g’)v CY)-
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3) Ifa>a} and 0 < \; < X and XA # X, then
A J j
p(>\1,>\2,>\3;04) < p<)‘,17)‘,27)‘23704)a
where

A= ()\17 )\27 )‘3)7 A, - (A/D A/27 Aé)?
= max{a > 0 | p(A}, Ay, Ag; @) = p(A], Ay, A3;0) )

Proof. (1) From Remark 4.1 and 4.2, there exists a non-negative minimizer
vo for p(N}, Ny, As; ). Let tg > 0 be a number such that tovy € NN, where
A= (A1, A2, A3) (see Pomponio [43]). Since v # (0,0,0), then we have

Z/RN )\jvio < Z/R )‘;ng',o-

Since I"*(tyvo) < IM*(vy), it holds that
p(AL, Ay, ASs ) = _f’\/’o‘(vo) > f’\,’a(tovo) > f’\’a(tovo) > p(A1, A2, As; ).

(2) We can show (2) by the same argument as in (1).

(3) Suppose a > a3,. Let vg be a non-negative minimizer for p(A}, Ay, \5; «).
From Theorem 1.4 in [30], all the minimizers of p(A}, Ay, A5; ) are vector if
a > ay,. Hence v # 0 for all j =1,2,3. Then

3 3
)\.qﬂ. < / )\,-UQ- .
;/RNJJ’O jleNj],O
Hence we can prove (3) by the same argument as in (1). O

For u = (uy, us, us), we set

v(y) = u(ey). (4.7)

We consider the following system and define the following functional and
least energy:

—Avy + Vi(ey)vr = [o1[P~ oy + avyus,
—Avy + Va(ey)va = |vafP~ vz + avyvg, (P:)

—A’Ug + ‘/;,(63/)?]3 = ’Ug’p_lvg + QvV1V9,
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Vv = (’Ul, Vo, Ug)

Z/ [Vu;|* + Vj(ey) U - Z/ Jo; [P — / V10203,

o= inf I.(v),

veN:

Nz :=={v e H\ {(0,0,0)} | G.(v) = 0},

3
=D | IVl + Vey)ol — ot - 304/ V1023
— JrN RN

We note that under (4.7),

I.(u) = eV I.(v),

G.(u) = VG (v),

We now prove the upper bound for ¢..

Lemma 4.10. We assume that (V1),(V2) and (C1),. Then the followings
hold:

(i)
6. < inf p(Vi(x),Va(), Va(w); ) + o(1), s & = +0.

T zEeRN
(ii) For all ¢ > 0 and ae > 0, it follows that
Cea < P(Vimaxs Vomaxs Vamax: 0),
where V; max = supgepny Vi(2).

(iii) Let u. o = (U1c.a,U2e.a,Useq) be a non-negative ground state of (P )

and let ;. , be a maximum point of u; . Set Ug)a(y) = U o(Tien +
ey). Then,

sup_ UL s < oo
>0, a>0

98



Chapter 4 A singular perturbation problem for a nonlinear Schrodinger
system with three wave interaction

(iv) Let {e,}2°, C (0,00) such that e, — +0 and let {«a,}5°, C [0,00) be
a bounded sequence. Let u,, be a non-negative ground state of (P., q,)

and let x;, be a maximum point of u;,. Set Ug) (y) = wp(zpp + €ny).
From (iii), up to a subsequence, there exists U® such that

UY -~ U  weakly in H.
Then, it follows that
sup ([0} vy < 0o,
neN
O 2(RN
Uj,n e (R )7
! n o
Ul UY m CL(RY).
(v) In addition to the condition (iv), we suppose that ||UJ(2 N U;l) |l — 0.
Then it holds that

sug Ujsl,)L(yg) — 0, as |y — oo, forall j =1,2,3.

ne

Proof. (i) Let z € RY be a point which attains the
inf p(Vi(x), Va(), Va(); @),
zeRN
and set ;o = Vj(z) (> 0). Let wy be a non-negative minimizer for

P(A10, A20, Az0;a). Set voo(y) = wo(y — 20/¢). Let to. > 0 be a num-
ber such that ¢y.vo. € N.. Then we have

3

2 E

tO,E /N|vv‘770?5
j=1"%

3

_ gp+l +1 3

=t / N|Uj,0,a|p + 3t . / | VL0V206U30.;
. R R
J=1

? + Vj(Ey)ng,o,s

that is,
3
Z RN|ij’0|2 + ‘/](Zo + 8y)w]2-,0
= (4.8)

3

_ 4p—1 +1

= 0. Z|wj,0|p +3t0,a@/ W1,0W2,0W3,0-
j=1 R
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From (4.8), {to.}. is bounded. Moreover, we have

iel]gN p(Vi(z), Va(x), Va(z); o) = p(Vi(20), Va(20), Va(20); @)
= p(A1,0, A20, Ag0; ) = —f/\o’a(Wo) > j)‘o’a(to,ewo)

t(z) € & 2 2
tPJrl

p+1 3
p +1 Z/ wjol" — th e / W1,0W2,0W3,0

and

-0 (e —+0),

Go [ Wittt — i [ houdy
R

where )\0 = ()\1707 AQ’O, )\3’0). ThUS, we have

inf p(Vi(e), Va(), Va(a): ) > L(toovo,.) + o(1)

RN

>¢.+o(l), ase— 0.
(ii)) From Lemma 4.9, we have

Ea,a S p(‘/l7maxa ‘/Q,maxa ‘/E%,max; 04)-

From Lemma 2.5 in [43], we have

p(‘/l,ma)o ‘/Q,maxa Vé,max; 04) S p(‘/l,maxa ‘/Q,maxa ‘/B,max; O)

Hence we obtain the conclusion.

(ili) Let veo(y) :=u.q(cy). Then v, , is a ground state of (755,&) and
U (y) = vealy +21c0/e), (1=1,2,3).
Thus, from (ii), we have

p(‘/l,max» ‘/Q,Inaxa ‘/3,max; O)
2 Ea,a = Ia,a(va,a)
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3
1
= 5 Z /RN |vvj,€706|2 + ‘G(Ey)UJQ',s,a
+1
p+ 1 Z/RN 557 - a/N Ul,s,aUQ,e,aU?),s,aa as &p — +O

Since v., is a ground state of (P.,),

2 : 2 p+1
/ |VU.775 « ‘ + V (€y> ],5 P ],E a 3& / UlaE,OLU27E,(¥ Ugys,a
RN RN

and (V2), we have

p(‘/l,rna)n ‘/2,max7 ‘/E’),nlax; 0)

>~ :jaa(vaa)
3
pb—= 2 1
——Z/ Vojeal + Venn + 5o Z/ ot
7j=1
1 o 12 0 2 / 1
6]21/RN| jea| J('Tl,, ‘Sy)( j,eoz T p+1 Z RN JE,x

3

1 )
> U P+ v )2
_6],:1/RN|V ]5a| + (an)

Hence it follows that

sup (U, < oo,
e>0,a>0

(iv) Since u, is a non-negative ground state of (P, ,) and UP(y) =
u(zy, + €,y), we have

— AU, + Vi(ain + eny) UL, = (UL + anUy) Uéli,
AU+ Vol + €uy)Us = (Ug ) +o0 U1 Din (49
—AU;) + Va(zp + 2ny) U = (USDYP + 0, U UL, '

(0
Ul >0, (1=1,23).
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4.2 Proof of Theorem 4.3

Set UV .= Ul(lzl + UQ(?“ then we have

—AUY < —AUY — AUL + Vi(@in + eay) UL + Vol + en) UL
<2UDY + a, UV UD < Uyt + cyuihud,

where C = sup,,cy o, < 00. Note U is a subsolution of Au+c(z)u = 0 with
c(z) = 2(U7(Ll))p_1+ClU§f7)l. Note that U € LI _(RY) for some N/2 < ¢ < 2*

loc

and UyZL € L3(RY) and 3 > N/2 since N < 5. By the one-sided Harnack
inequality, we have

1/2
max U < C </ (Unl))2> ,
Bi(yo) Ba(yo)

where v is an arbitrary point in R, C' is a constant depending only on N, p
and M where M is a bound of ||UT(Zl)||H1 and ||U§l7)z||H1 and independent of n
(see [22, 45]). Then

max Uél) < CM.

Bi(yo)

Hence {U ](2 >, (j =1,2) is bounded in L®(R¥). Similarly, it follows that
{Uéfi}jle is bounded in L>(RY).
From (4.9) and V; € C*(RY) and by the elliptic regularity, it follows that

1 l N
U e CXRY), UY - UY i CL(RY).
(v) Moreover, since Uﬁ — U](l) in HY(RY), up to a subsequence, there
exists g; € L?(RY) such that
U;Z <g; ae x€ RN, for all n € N.

Thus, we have

sw/' wyfs/ (g1+ )2 = 0, as Jyo] = .
neN J Ba(yo) Ba(yo)

Hence, we obtain

Sup max U}IT)L — 0, as|y| — o0, j=1,2,
neN Bi(yo) 7
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that is,

sup U (o) — 0, as [yo| = o0, j = 1,2,

neN
Similarly, it follows that

sup U?Efi(yo) — 0, as |yo| — oc.

neN

Now, we prove the existence of a ground state of (P.).

Proof of Theorem 4.3. From (C1), and Lemma 4.10 (i), we have

& < P(Vioos Vayoos Vaooi @) (4.10)

for € sufficiently small. From (4.10), there exists a ground state u of (P.) (see
the argument as in Pomponio [43]). |u| = (|uy|, |uz|, |us|) is also a ground
state of (P.). Hence, there exists a non-negative ground state of (P.). O

4.3 Proof of Theorem 4.4

Let {e,}22, C (0,1) such that ¢, — 40 and let u,, be a non-negative ground
state of (P.,). Let z;, be a point such that

Lemma 4.11. We assume that (V1),(V2). Then it follows that

‘/0 S Q(UI,n(‘rl,n) + u2,n(x2,n) + U3,n(x3,n>>p_1

4.11
(1) + i (T20) + 15 (50)). (4.11)

Proof. Since u,, # (0,0,0), we may assume that uy,(z1,) # 0. From V; €
C'(RY) and by the elliptic regularity, u;, € C*(RY). Since Au;,(x;,) <0,
we have

Vi@ n)urn(®1) < uppn(10)? + Qg (T10)usn (1)

103
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< U (21,0)F + Qg (T2.n)Us 0 (Ts.),

Then we have

%(ul,n(xl,n) + u2,n(x2,n)) S 2(ul,n($l,n) + u2,n(x2,n))p

+ oy n(T10) + Uz (T ) )Us pn(T35).
Since Uy, (21,n) + Uz p(T2,) # 0, we have
Vo < 2(urn(T1m) + o (T00))P 4+ s, (23,).
Then it follows that

Vo < 2(uy n(10) + Uz n(T2n) + Us,n(I:;,n))pfl

+ a(u n(T10) + Uz n(To2n) + Usn(T3n))-

Set
UD(y) i= un (21, +e0y), (1=1,2,3).
Proof of Theorem 4.4. (0) From Lemma 4.10 (iii),(iv), {Ug)}n is bounded
in H and up to a subsequence, there exists U € H such that

UW -~ U®  weakly in H,

UY = U in Croo(RY). (4.12)
From (4.11) and (4.12), we have
Vo < 2(U37(0) + U7 (0) + U5 (0)" ™" + a(U{7(0) + U5 (0) + U3 (0)).
Thus we have
(U17(0), U3 (0), U3 (0)) # (0,0,0).
Therefore, there exists lo € {1,2,3} such that U) = (0,0,0).
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(1) Now we show that sup,,cy|zi,.»| < 00. Suppose that sup,,cy|2in| = 00.
Then up to a subsequence,

|$l0,n| — 0Q.

Since lim, oo Vj(2) = Vj » and U;’lf;) U ;ZO) strongly in L2 (RY), it follows
that for all ¢ € C°(RY),

lim [ Vi(@wge +ea)U 00 = [ VU™,

n—oo RN RN

Since u, is a ground state of (P., ), we have

2 _ P

—en AUy + Vi(T)urn = U, + Qg pUs
2 _ D

—en AUy + Va(T)ugn = U, + Qg pUs

2 _ P
—€HAU3’n + %(I)’U/&n = U37n + Uy nU2 pn-
Hence, we have

_AUl(lo) + VLOOUl(lo) _ (Ul(lo))p + OZUQ(ZO)U?EZO),
_AUQ(ZO) + V2,ooU2(l0) (U2(lo))p + aUl(lO)U?EZO),
_AUS(ZO) + Vz%poUg(lO) _ (Uélo))p + OzUl(lO)UQ(ZO),
U(lo) >0

;=0

Since U;ZO) € H'Y(RN), for all § > 0, there exists R > 0 such that

1 3
62
7=1

’ |VU](10)|2 +‘/j,oo(U](l0)>2 . /RN|VU;ZO)|2+‘/},W(U;ZO))2
R

/(Uj(lo))erl_/ (Uj(lo))erl
Br RN

< 0.

=1

<
Il

We have

Ce,, = Isn (un>

3 3
2 2 2 p—2 p+1
5n|vuj,n| +V}("E)u,n+ / Uin
jz:; /BsnR(xlo,n) ’ 3(p + 1) ]z:; BEnR(xlo,n) g
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4.3 Proof of Theorem 4.4

3
1
= {62 /B VU + Vi (i + ) (U))?
lo) p+l
p+1 Z/ }
gﬁ{az VU Vi (U3
j=1

3
p_2 / (lo)\p+1
+ U )P +o(l) p, asn— oo.
3(p+1)z BR(] ) (1)

Then we have

e Cep
hggggfg
3
— 92 o)

> lim inf / VUSP 4+ V(U2 4 2 / Uyt

{137 [ U S o)

3

1 Io) (10)2 (10)yp+1
> - VU + Vo (U) + Uyt

6]22: BR| J | 7 (] ) p_'_ — B

1 3 3
> = vy o)|2 Vi (U / 7o) p+1
_6; RN’ J ’+ VB (] 3(p+1]leN

_ jVoo,a(U(lo)> Y
Z ,0(‘/1,007 ‘/2,007 Vj&,oo; Oé) - 67

where Voo = (Vi.00, Va,oos Va,00). Letting § — 40, then we have

llmlnf— > pP(Vioos Varsos V3005 @)

n—o0
ETL

From Lemma 4.10 (i), we have

inf p(Vi(z), Va(x), Va(x); @) > p(Vio0; Vasos Va.e0; ).

zERN

This is a contradiction to (C1),.
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(2) and (3) From [y in Theorem 4.4 (1), up to a subsequence, there exists
Tip0 € RY such that

Ul Ul weakly in H,

l l .
Uj(ﬁ) — UJ( o) ipn ClOC(RN),
U £ (0,0,0), im0 — Ti0-

Recall that
U (y) = W, (Tig,n + EnY)-
By the same argument as in the proof of Theorem 4.4 (1),

liminf ¢,
n—0o0

3
- 1 I I
= lim inf {6 E /RN|VUJ(73>|2 + Vi(@iyn + 5ny)(U]§712))2
j=1

n—oo

3
p—2 / (lo)\p+1
to— > [ (U
3(p+1) = RN( Js )

3 3
12 lo) (1o) p—2 Z/ (Io)
> VU(O 2 V. U 0)\2 (b0 p+1

p
— jv(zlo,o)va (U(lo))

> p(Vi(21,0), Va(ziy0), Va(xy,0); @)
> inf p(Vi(z),Va(2), Va(z); ),

where
V(mlo,o) = (%(xlmo)v ‘/Q(xlmo)v ‘/?)(xlmo))'
From Lemma 4.10 (i), we have
Jim &, = inf p(Vi(2),Va(w), Vs(2); @),
PVi(@1o.0), Val@io0), Va(aig0); ) = b p(Vi(z), Va(x), Va(2); )

U is a minimizer for p(Vi(z1,.0), Va(iy0), Va(xiy0); @).
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4.3 Proof of Theorem 4.4

Similar to Remark 4.1, U®) is a ground state of (PVY@0.0)2) Moreover, we
have

lim inf / VU + Vi@ +eay)(U)0)) 2 / VU2 4V (1,0) (U2,
liminf/ (U(ZO))p+1>/ (U(lo))pﬂ
n—oo RN Jn - RN J

and

3
1 gy o))2 (o) 2 / (z 1
- vl Vil + eny) (U0 § : o))+
6 Z /RN| in | ](xlo, e y)( in p 1 o

0)(2 0 p_2 2 0)\p+1
— = Z/ VUL 4 Vi(,,0) (U™)? +3(p+1)Z/RN(U;”)+.

Thus, we have

lim [ VU + Vi +ea)(U)0) = [ VU + V(o) (U)°,

n—o0
(4.13)
1j U(lo) p+1 :/ U(lo) p-&-l‘
[ G = [ )
In addition, it follows that
lim [ YUY Vot V(ay,, + ) UL
n—oo RN J,m J lo,n ny 7y 80
= [ YUY Vo + Vi(2,0) U forall p € H'(RY 4.14
= p @+ Vi(w1,0)U; "¢ for all p € H*(RY). (4.14)
RN
From (4.13) and (4.14), we have
TJE[)IOIO RN‘VUJEZ;’)L) B Vlj](lO)|2 + ‘/j('rlo,n + gny)(Uj(Vlrs) - U](ZO))Q = 07
that is,
U — U0 — 0.
O
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Remark 4.7. Suppose that (V1),(V2) and (Cl),. If U%) is vector, then
the same conclusion as in Theorem 4.5 holds. On the other hand, if Uto)
is scalar, then the same conclusion as in Theorem 4.6 holds. Here U(0)
appeared in the proof of Theorem 4.4.

Indeed, if UM is vector, then U is also vector (I # ly). Indeed, by the
same argument as in the proof of Theorem 4.5 (1) (Step 2), U® # (0,0,0)

for all [ € {1,2,3}. Suppose that there exists ky # Iy such that U%0) is
scalar. For simplicity, we may assume that Iy = 1, ky = 2, U® = ( 1(2), 0,0),
U® # 0. By the same argument as in the proof of Theorem 4.4 (3), we
have ||U](i) — UJ(Q)HHl — 0. Since U® = (U1(2),O,O), we have Ul(? — U1(2),
Uﬁ) — 0 (j = 2,3). Since Uﬁl)(y) = U]@n)(y + (10 — ®2,)/En), we have
Uﬁf — 0 (j = 2,3). Thus we obtain UJQ) =0 (j = 2,3). This contradicts
that UM is vector. The rest of the claims of Theorem 4.5 holds by the same
argument as in the proof of Theorem 4.5.

On the other hand, if U%) is scalar, then Ul(l) =0 (I # lp). Indeed, from
Theorem 4.4, it follows that Ul(ol“) # 0 and ||U](l72) - U;lO)HHl — 0. Thus we
have Uz(,lr?) — 0 (I #lp). Since Ulﬁg(y) = Ul(frf)(y + (Tin — Tign)/€n), we have

Ul(,Q — 0 (I # lp). The rest of the claims of Theorem 4.6 holds by the same
argument as in the proof of Theorem 4.6.

4.4 Proof of Theorem 4.5

We divide the proof of Theorem 4.5 into three parts. In subsection 4.4.1, we
show Theorem 4.5 (1). Subsection 4.4.2 is devoted to the proof of Theorem
4.5 (2)—(3). Finally, Theorem 4.5 (4) is proved in subsection 4.4.3.

4.4.1 Proof of Theorem 4.5 (1)

Proof of Theorem 4.5 (1). By the same argument as in Theorem 4.4, up
to a subsequence, there exist Iy € {1,2,3}, 71,0 € RY and UV € H (I =
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1,2,3) such that

U§f> —~UY  weakly in H,
l .
Ujn = U} in Coc(RY),
l
Ul(OO) # 07
U® is a ground state of (Pv(xloyo)va)’

z€RN

(Step 1) U is vector.
If UM is scalar, then

inf p(‘/l (‘T)v ‘/Q(x)v V3<x>7 a) - p(‘/l (xlo,(J)? %(xlo,(])? ‘/E’)(xlo,(J); Oé)

zERN

= [V@pole(ylo)y > min ci/j(%‘()) > min c}/j’o.

- ]:17273 ]:1,2,3

This contradicts (C2),.

(Step 2) Forall I =1,2,3, UY is vector.
We assume that there exists ky € {1,2,3} such that U%0) = (0,0,0). Since
UX)(0) = 0 and

Uk(:kO)(O> = uk07n<l’k0,n> Z Uko,n(xl,n + Eny) - Ulg(l)),n(y> (l = 17 2’ 3)

and UV

U= UL in Gioo(RY), it follows that U = 0 (I = 1,2,3). In
particular, we have U,Ef)‘)) = (. This is contrary to Ut being vector. Also,
by the same argument as in (Step 1), there does not exist [ € {1,2,3} such

that UWY is scalar.

(Step 3) sup,ey |z, < oo forall i =1,2,3.
From (Step 2), it follows that U® £ (0,0,0). By the same argument as in
Lemma 4.4 (1), it follows that sup,,cy |21, < 0o for all [ = 1,2, 3. O
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4.4.2 Proof of Theorem 4.5 (2) and (3)

Proof of Theorem 4.5 (2) and (3). (Step 1) From Theorem 4.5 (1),
up to a subsequence, for all [ € {1,2, 3}, there exists z;9 € R" such that

UY #£(0,0,0), xp, = 20 foralll=1,2,3.

By the same argument as in Theorem 4.4 (2) and (3), it follows that for all
le{1,2,3},
¢ = inf p(Vi(z), Va(z), Va(x); ) + 0(1), ase— +0,
z€eR

Tyn — 270,

nf p(Vi(2), Va(z), Va(w); a) = p(Vi(210), Valzio), Va(wr0); ),

U is a ground state of (PV @0y,
105 = UVl — 0,

where V(z10) = (Vi(z10), Va(z10), Va(210))-

Now, we show that

sup [Zin = Benl o o ol Gk with § £ k. (4.15)
neN En
We assume that
sup [0 = ] = 00.
neN En

For simplicity, we may assume that j = 1 and k£ = 2. Then, up to a subse-
quence,

’xlm/_'xln’
En

— 0Q.
By the same argument as in the proof of Theorem 4.4 (2) and (3), we have

105 = Ul =0 for all j,1=1,2,3
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4.4 Proof of Theorem 4.5

In particular,
||Wj,n_VVj,O||H1 — 0 for all]: 1,2,3.
Then

Ce, = I, (uy,)

3
1
=53 [ A Vi,
j=1

L&
+1
- 1 Z/ (ujﬂl)p - a/ U nU2nU3,n
p+ Lo Jry RN

3

3
=e, {% ; /RN’VWJ,n!Q + Vj(@jn + eny) (Win)? — ]ﬁ ; /RN(WJ',n)p+1
—a - Win(y)Wan(y + 212,)Wan(y + :)313,“)} , (4.16)
where
Tjkn = Lin — Thn ;xkn

Since ||W;,, — Wio|lgr — 0, we have

sup/ (W;n)?—0, asR—o00, 2<g<2" (4.17)
ly|>R

neN

Indeed, since [|W;,, = W;o|lmr — 0, up to a subsequence, for all g € [2,2%),
there exists g € LI(RY) such that

W;n<g ae. in RV,

Thus,
sup (W)t < / g?—0, as R— oc.
ly>R ly|>R

neN

From (4.17), for all § > 0, there exist R, L > 0 such that

1/3 1/3
( ng(y):s) < (5, ( W17n<y)3) < 0.
ly|>L ly|>R
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Since |z12,,| — oo, for n sufficiently large, we have
Wl,n(y)WQ,n(y + le,n)Wi’),n(y + xlB,n)
RN

= Win(W)Wan(y + 2120)Wan(y + T13.)
Br

+ / Win(W)Wan(y + 2120)Wan(y + T13.)
RN\Bpg

1/3
SHWMHLS( WQ,n<y>3) Wil

ly|>L

1/3
+( wl,n<y>3) IWanllzo [ Wan 2o
ly|>R
< 0.

Thus

lim sup Win(y)Won(y + 212.0)Wan(y + 213,) < C6.

n—o00 RN

Letting 6 — 40, we have

lim Wi n(y)Won(y + T12.0)Wsn(y + 213,) = 0. (4.18)

n—oo RN
W, satisfies
_AWI,n + %(wl,n + gny)wl,n = (Wl,n>p + aW2,n<y + x12,n>W3,n(y + x13,n);
_AW2,7‘L + %(xZn + gny)WQ,n - (WQ,n>p + an,n(y + x21,n>W3,n(y + x23,n>7

_AW&n + ‘/fﬂ(x?),n + Eny)WS,n - (W3,n)p + O-/Wl,n(y + xSl,n)WQ,n(y + x32,n>-
(4.19)

Since (4.18) and W;,, — W, in HY(RY), W, satisfies

—AWi o+ Vi(z10)Wio = (Wip)?,
—AWs o + Va(x2,0)Wap = (Wap)?, (4.20)
—AWs o+ Vs(230)Ws0 = (Ws0)P.
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Indeed, noting that z2;, = —12, and 32, — T31,n, = T12,n, We have

‘xZLn‘ — o0,

|z310] = 00 oOr |T39,| = 00.

From (4.19), as in the proof of (4.18), we have (4.20). It follows that W #
(0,0,0) from Lemma 4.11. From (4.16) and noting that

ch(zj’O) = inf max ij(xj’O)(tu)
ueH (RN )\{0} t>0
> inf max ;7 (tu) = ¢,
eI RN )\{0} >0
(see for example, [3, 57]), we have
lim ¢,
n—oo
1o 1 g
=530 [ VWil 4 Vi Waol? = 2 3 [ i
2;@ il Vi Wil = 553 [
> min c}/j(xj’()) > min c}/j’o.
J=1,2,3 J=1,2,3

From Lemma 4.10 (i), we have

inf p(Vi(z), Va(2), Va(z); @) > min ¢/,

zeRN 7j=1,2,3

This contradicts the assumption (C2),. Therefore, we have proved (4.15).
Hence

T1,0 = T2,0 = T30 —: ZLo- (421)
Up to a subsequence, there exists ;0 € RY such that

Tin — Tk
]7” 7n
Tjkn = —— —7 Tjk,0-
En

From (4.19), for all ¢ € C§°(RY),

VVVl,n : VSO + V1(5171,n + €n?/)W1,n90
RN
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= /N(Wl,n)p@ + 04/ O(YIWarn(y + T120)Wan(y + T13,)-
R

RN

Since ||I/V]7n — Wj,OHL3 — 0,

/N O(Y)Wan(y + 2120)Ws (Y + T130)
R

- /N C(Y)Wa oy + 12,0)Wso(y + 213,0)
R

/N C(YIWarn(y + 2120)Wan(y + T13.)
R

- /N (Y)Y Wapo(y + 212.,)Ws0(y + 13.0)
R

_|_

/N (Y)Y Wao(y + 212.,)Ws0(y + T13.0)
R

- /RN oY) Wao(y + 2120)Wa0(y + T130)
— 0.
Then it holds that
—AWi o+ Vi(zo)Wio = (Wio)? + aWao(y + 2120)Wao(y + Z130).
By the same argument as in the above, we have
{ —AWa o + Va(z0)Wao = (Wap)? + aWio(y + 221,0)Wa0(y + 230),
— AWz + Va(z0)Wao = (Wa0)? + aWio(y + 231,0)Wao(y + 32,0)-
Thus (Wh,0, Wao(- + #12,0), Wa0(- + 130)) € NV@oa From (4.16),

p(Vi(z0), Va(x0), Va(20); @)

= lim ¢,
n—oo
1 3
= Jim {5 jzl /]RN IVWjnl® + Vi(@jn + €ny) (Win)?

3
1
_m ]z:; /RN (VVj,n)p—H -« . Wl,n(y)WZn(y + x12,n)W3,n(y + xlS,n)}
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3
1
-3 / ITWil + Vi ao) Wyo)

T o1 Z /RN o)t —a Wio(y)Wao(y + 2120)Wa0(y + 2130),

RN

Thus

(W10, Wao(- + 2120), Wa (- + 2130)) (4.22)
is a minimizer for p(Vi(xg), Va(xo), Va(zo); @). '

(Step 2) Next, we prove z;,0 = 0 for all j,k € {1,2,3}, j # k. This
means |Z;, — Txn|/en — 0.

Since U® is a ground state of (75V(xl’0)’a) for all [ = 1,2,3, then the
functions U;l) (7 =1,2,3) are satisfy

~AUY + Vi(ao) Uy = (U + U3 U3,
—A@l+%@@@ = (UMY + UM UL,
—AUL + Va(zo) UV = (0P + UL,
U >0, (j=123),

where V(z,0) = (Vi(z10), Va(zi0), V3(210)). From Theorem 4.5 (1), it follows
that U]@ % 0 for all j = 1,2,3. By the strong maximum principle, we have
U > 0in RN for all j =1,2,3.

Now we claim that there exists a point yy € RY such that the functions

U j() are radially symmetric with respect to the origin yq, that is U ;l) (y) =
)

95

] (ly — vol), j =1,2,3. Moreover,
du®

J
dr

<0 forall r=|y—yo >0.

If N > 2, then it follows from Theorem 1 in Busca-Sirakov [9]. If N = 1,
then it follows from Theorem 4.22 in Appendix. Since

UY(0) = max UY)(y), UJ(,Q - UJ@ in Choc (R™),

Jmn JeRN I
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we have

U9(0) = max U] '(y).

J yeRN

Thus we have yo = 0. Since W, = U , Wi is radially symmetric and
strictly decreasing. From Burchard HaJaleJ [8], we have

Wio(y)Waol(y + z12,0)Wso(y + 2130) < Wio0(y)Wao(y)Wso(y).

RN RN

Let to > 0 be a number such that teW, € NV where V(zg) = (Vi(x),
Va(zo), V3(zp)). Then

p(Vi(xo), Va(xo), Va(20); )

IV w0 (Wi o, Wao(- + 2120), Wao(- + 2130))
V (@), X to(Wh o, Wapo(- + 2120), Wao(- + 2130)))
’”°>a<towo> > p(Vi(wo), Va(wo), Va(o); ).

I\/ I\/

Thus we have
IVE (o (Wo, Wao (- + 120), Wao(- + 2130))) = 1V (e W),

that is,

o Wio(y)Wao(y + 2120)Wao(y + 2130) = o Wio(y)Wao(y)Wao(y).
If (z12,0,%13,0) # (0,0), from [8] we have

- Wio(y)Wao(y + T120)Wa0(y + 2130) < . Wio(y)Wao(y)Wao(y).

This is a contradiction. Thus we have 159 = x139 = 0. From (4.22), Wy is
a minimizer for p(Vi(zo), Va(20), Va(w0); ). That is, Wy is a ground state of
(PV(@)e) and it follows that

Zjn — Tpn)

— 0, asn— o0, j#k.
En
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4.4.3 Proof of Theorem 4.5 (4)

Proof of Theorem 4.5 (4). Since u,, is a non-negative ground state of
(P..) and UY (y) = u(zy, +€,y), we have

— AU, + Vi(@in + eay) UL = (UL + aUs U,
—AUY) + Va(@in + eay) UL = (U + aULMUS),
AU + Va(y + £29)USS = (USH)P + aUL UL,
U >0, (1=1,2,3).

l

Set U := Ul(l,)1 + U2(’7)1, then we have

~AUD +V,u® < 200y + U UW,

3n~n

Let n > 0 be a number such that n < V. Let ¢ > 0 be a number such that
n < Vo —e. From Lemma 4.10 (v), it follows that

ilelg Ujsl,)l(yo) — 0, as |y — oo.
Then there exists R > 0 such that if |y| > R, then
Sup{2(U1 (1) + all (4)} < =
Then if |y| > R, we have
~AUY + (Vo —e)UY < 0.

By the same argument as in the proof of Lemma 2.7 in [42], there exists
C,, > 0 such that

Uﬁ(y) <UY(y) < Cpe VMl forally e RN, neN, j=1,2.
We can prove also that
Uél,)l(y) < Cpe VT for ally e RY, n e N.
Recall Uj(li(y) = Ujn (21 + €nYy). Then we have
Ujn () < CpeVIe—mal/en for all x € RN, n €N, j,1=1,2,3.
In particular, we have

ujn(x) < Cne’\/ﬁ‘x’xﬂ"“/a" forallz e RY, neN, j=1,2,3.
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4.5 Proof of Theorem 4.6

To prove Theorem 4.6, we prove the following two lemmas needed later.

Lemma 4.12. Assume (V1),(V2) and fix a so that (C1), and (C3), hold.
In addition, we assume that there exists o/ > « such that (C3), holds. Let
yo € RY be a point such that

p(Vi(yo), Va(yo), Va(yo); a) = inf p(Vi(x), Va(2), Va(x); ).

z€RN

Let v be a ground state of (PYV®)2) where V(y0) = (Vi(10), Va(10), Va(%0))-
Then, there exists jo € {1,2,3} such that v;, # 0 and v; = 0 for j # jo.

Proof. If v; # 0 for all j = 1,2,3, by the same argument as in Theorem

%ﬁ in [30], we have p(Vi(yo), Va(yo), Va(yo); a) > p(Vi(yo), Va(yo), Va(yo); o).

inf p(Vi(x), Va(), Va(z); o) = p(Vi(yo), Va(yo), Va(bo); @)

> p(Vi(yo), Va(yo), Va(yo); @) (4.23)
> inf p(Vi(x), Va(x), Va(z); ).

zCRN

Since (C3), and (C3), hold, it follows that

inf p(Vi(z), Va(x), Vs(z); ) = inf p(Vi(z), Va(2), Vs(2); o).

z€RN z€RN
This contradicts (4.23). O

Lemma 4.13. Assume (V1),(V2) and fix « so that (C1), holds. Let
{en}22, C (0,00) such that £, — 40 and let u,, be a ground state of (P., ).

Let ;, be a maximum point of u;,. Set U](lgl(y) = wjn(21n + €ny). Then, if
SUP,en|Tin| = 00, then U](’ZQL — 0 weakly in HY(RY) for all j = 1,2, 3.

Proof. Recall that from Lemma 4.10 (iii),(iv), {Uﬂ};’;l is bounded in
HY(RYN) and up to a subsequence, there exists U]@ € H'(RY) such that
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U](?l — UJ@ weakly in HY(RY). If U® # (0,0,0), by the same argument as

in the proof of Theorem 4.4 (2) and (3), we have

inf p(Vi(z), Va(z), V3(2); @) > p(Vi o, Vaso, Vaeo; ).

zCRN

This contradicts (C1),. Hence, we obtain U® = (0,0,0). O

Proof of Theorem 4.6. From Lemma 4.10 (iv), up to a subsequence, it

follows that U} — U wealdy in H'(R"). From Theorem 4.4 and (C3),,
up to a subsequence, there exist Iy € {1,2,3} and z;,0 € R" such that

co =¥ ( int pVi(0), Vo). Vials) +o(1) )

zeRN

=N (.1_1%13 0+ 0(1)) , ase— 40,
0 (4.24)

Zign = Liy,0,

PVi(w100), Va(@io0), Va(ig0);0) = b p(Vi(2), Va(z), Va(w); ),
U is a ground state of (PY(@w0.0)e), UJ(,ZE) — UJ(ZO) in H'(R™Y).

From (C3), and (C3), and Lemma 4.12; there exists jy € {1, 2, 3} such that
UJ(ZO) = 0 for all j # jo. Since Ulglo) # 0, it follows that jo = lo. Thus it holds
that UZ(OZO) # 0 and U;lo) =0 for all j # ly. From (4.24), we have

1U52) = U | — 0,
1US 1 — 0 for all j # Iy,

Since U]Slg)(y) = UJ(JTZ (y+ (g n — Tjn)/En), we have
IU g2 — 0 for all j # lo.

Note that Ul) satisfies the following system:

(Ul(ZO))p+OéU2(ZO)U3EIO)
(UQ(ZO))p_’_O{Ul(lO)UélO)
(U + al{" U3",

— AU 4 Vi (24,.0) U
— AU + Vy (4, 0) U
— AU + Vi(1,0)Us™
[]QM >0

) > .
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Since UZ(OZO) # 0 and U(l(’) =0 (j # ), UZ(OZO) satisfies

AU(ZO) +V, (xlo O)U(lo) (U(lo))
U > 0.

Then it follows that

Vio 1o s
min ¢,”” = liminf ¢,
=123 n—00

3
1
:%Eﬁ{EE:AJV@?F+W@mﬁwwN¢?V
3
+1
p+1 Z:/ ) }

1 lo) lo) p—2 (lo)
=~ | VUL + Vi (210,0) (UL + ———= | (U7
5 | IVUR 4 Vi W + 5 [ i)
= IYZO(xlO’O)(UZ(OZO)) > CYIO(%’O) > CYZO’O > min ¢, = ¢}°.
=123
Hence we have Vi, (x;,0) = Vi;0 = Vo and min;_; o 3 c‘l/ = ZO °. From (4.24),

we have

c. =V (Ir{iglg 0+ 0(1)) =N (CYZO‘O + 0(1)) , ase— +0.
]: 1<

Moreover, since Vi, (71,,0) = Vipo = Vo, U,° (o) satisfies

_AUZ(;O) + VOUlolo = (Uz(olo))p’
Ul > 0.
By the elliptic regularity, we have
Ung) e C*(RY), lim U"(z)=0.

By the strong maximum principle, we have U, () < 0. In addition, since

UL)(0) = max UL (y), UL

lo,n yERN lo,n

— Ul in Cloe(RY),

it follows that Ul(OIO)(O) = MaX,egNy UISO) (y). Thus from [21] and [32], it holds
that U,®) = W. O
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4.6 Asymptotic behavior of inf v p(Vi(z), Va(z),
Vi(z); ) as a — 00

In this section, we consider the asymptotic expansion of inf,cg p(V1(z), Va(x),
V3(z); ) as a — oo. We prove the following proposition:

Proposition 4.14. Suppose that (V1),(V2). Then it follows that
inf p(Vi(z), Va(z), Va(z); )
zeRN
= inf p™(Vi(z), Va(x), Va(z))/a® + o(1/a?), as a — oo,

xzeRN
where
)\ = ()\1,)\2,)\3),
® (A1, A2, Ag) := inf JM®
P ( 15 N2y 3) WEIJ\I}PHOO (W)a

3
1
Jh®(w) = = / |Vw~|2+)\-w2-—/ wiwows,
2]21 RN J 97 RN

M= {w € H\ {(0,0,0)} | F**(w) = 0},

3
FA°(w) = Z/ |Vw;|? + Xjw? — 3/ W1 wWaws.
‘o1 JRY RN

To prove Proposition 4.14, we prove the following lemmas needed later.
The following lemma follows from Lemma 2.5 in [43].

Lemma 4.15. Suppose that (V1),(V2). Then it follows that
inf p(Vi(z), Va(x), Va(x); on)
zeRN

> ir]g p(Vi(z), Va(x), Va(z);a2) for all 0 < oy < a.
zeRN

Now we Set

Q(z; ) := p(Vi(2), Va(x), Va(z); ), Qo(@) := inf Q(z;0a).

zCRN

We prove the continuity of Qg over [0, 00).
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Lemma 4.16. Suppose that (V1),(V2). Then Qo : [0,00) — R is continu-
ous.

Proof. Let oy > 0 and let {a, }5°, be a positive sequence such that a,, — ay
as n — oo. We show the continuity of @)y at @ = «g. From the definition of
infimum, for all § > 0, there exists x5 € RY such that

Q(l’g; Oéo) < Qo(ao) + 0.
Then there exists a non-negative minimizer v for Q(xs; o). Moreover, there

exists ts5, > 0 such that t5,v; € NV@s.en where V(zs) = (Vi(xs), Va(xs),
Va(ws)). Since t5,vs € NV@)an it follows that

RN
(4.25)
From (4.25), {t5,}22, is bounded for all 6 > 0. Then it holds that
Qo(ao) +6 > Qw5 ag) = IV (vy) > TVED 0 (85, v5)
= [V@shan(ts vs) 4 o(1) > Q(zs; ) + o(1 ) > Qo(a) + o(1).
Thus we have
hiﬂ_gp Qo(an) < Qo(ag) +6
and letting 6 — 40, we have
lim sup Qo () < Qo). (4.26)

n—oo

On the other hand, there exists z, € R such that

Q(Zn; an) < QO(an) + %

Let v,, be a non-negative minimizer for Q(z,; a,,). Note that
1 :
Q(zn; an) — — < Qolam) = inf p(Vi(z), Va(x), Va(2); o)
n TERN

123
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< inf p(Vi(z), Va(z), Va(z); 0) < oo.

T zeRN

Then we have

inf p(Vi(x), Va(z), Va(x); 0) + % > Q(2n; ) = IV (v,,)

zERN

3 3
1 / p—2 1
=z Vil + Vi (2n)v5,, + /Iv-,nl”+
2 J Vel Vit 5Eo 3 | I

3
]' 2 2
2 = ;/RNW%M + Vi0Vj -

Thus {v,} is bounded in H. Let s, > 0 be a number such that s,v, €
NV(E)a0 Hence

3 3
S [ Va4 Vit =S [ el =m0 [ oiatmaon.
j=1 /RY j=1 /RN RY

Asin the argument in Appendix A in Kurata-Osada [30], up to a subsequence,
there exists C' > 0 such that

3
Z/ v, [P*t > C for all n € N.
j=1/RY

Then {s,} is bounded. Thus we have

1 - -
Qo) + = > Q(zn; apn) = TVEan(y, ) > [VEan (s v )
n

= V0 (5,v,) 4+ 0(1) > Q(2n5 a0) + 0(1) > Qo(a) + o(1).
Hence
lim inf Qo(an) > Qofcw). (4.27)
From (4.26)(4.27), we have

nh_g)lo Qo(@n) = Qo(ao)-
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We prove the upper bound for inf, gy p(Vi(x), Vao(z), Va(x); ).
Lemma 4.17. Suppose that (V1),(V2). Then it follows that

il p(Vi(e), Va(o), Va(w); )
< inf p®(Vi(z), Va(z),Vs(x))/a?® for all a > 0.

zeRN

Proof. From Proposition 2 (Step 1) in Kurata-Osada [30], we have
p(Vi(x), Va(z), Vs(z); o) < p®(Vi(z), Va(z), Va(x))/a? for all a > 0, = € RY.

Thus we have the desired inequality. O
Now, we prove Proposition 4.14.

Proof of Proposition 4.14. Let {a,}>°, C (0,00) be a sequence such that
o, — 00. Let 2z, € RY be a point such that

1
Q(zn; an) < Qo) + — foralln eN.
an
Let v,, be a minimizer for Q(z,; a,,). Set w,, := a,,v,,. Let s,, > 0 be a number
such that s, w, € MVE)>® where V(z,) := (Vi(zn), Va(zn), Va(z,)). By the
same argument as in the proof of Lemma 4.16, {v,, }>°, is bounded in H and
{sn}22, is bounded. Then we have

1 ~ -
Qolan) + — > Q(znan) = IVE 2 (vy) = TV (s5,v7,)

1 1
= EJV(Z")’W(San) +o(1/oy) > o2 P (Vilen), Valen), Va(zn)) + o(1/az)

> L ing p2o(Vi(2), Vala), Va()) + o(1/2).

T a2 zerN
Combining with Lemma 4.17, we have
inf p(Vi(z), Va(), Va(z); om)
z€RN
= inf p™®(Vi(z), Va(x), Vs(z)) /a2 +o(1/a?), as a, — oo.

zERN

Therefore we obtain the conclusion. O
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4.7 Positivity of o

In this section, we show the positivity of o* (see Proposition 4.18). Recall

Q(x; ) = p(Vi(x), Va(x), Vs(2); @), Qo(@) := inf Q(z;a).

z€RN

From Lemma 4.15, Lemma 4.16 and 4.17, we can define the following thresh-
old for inf crn p(Vi(z), Va(z), Va(x); ). That is,

af :=max{a > 0| Qp(a) = Qp(0)}.

Moreover, to clarify the V;(z) dependency of inf,cpn p(Vi(2), Va(x), Vs(x); @),
we introduce a positive number 6 and a functional I[w] as follows:

N 1 1
o= N oo i) == [ VoPta® - — [ @t
=1 2 2 Jon P Jan

Moreover, let w be the unique solution of the following equation:
—Aw+w=wP inRY,

w>0 inRY,

w(0) = max,cpy w(z), (4.28)

w(x) — 0, as|z| — occ.

Proposition 4.18. Assume (V1),(V2),(V3). Then a* > 0. Moreover, it
follows that

inf p(Vi(x), Va(x), Va(x); 0) = min ¢ = min inf Vj(x)'I[w)],

Furthermore, if 0 < a < o, then

inf p(Vi(x), Va(z), V3(x); ) = min ¢/ = min inf V() TTw).

Remark 4.8. We can prove a* > 0 if we assume that (C1), for a suffi-
ciently small instead of (V3).

Proof of Proposition 4.18. (Step 1) Suppose that a* = 0. Then Qy(a) <
(Qo(0) for all @ > 0. Let {a,,}>°, be a sequence such that a,, > 0 and «,, — 0
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as n — oo. From (V3), (C1), holds for all @« > 0 (see Remark 4.3). Then
there exists a point x, € RY such that inf,cpn p(Vi(2), Va(z), Va(2); i) =
p(Vi(zn), Va(xn), V3(2n); ). Then

p(Vi(@n), Valzn), Vs(zn); an) < Qo(0) < p(Vi(zn), Va(an), Va(2a); 0).

From the proof of Theorem 1.4 in [30], (PV(@n)en) has only vector ground
state where V(z,) = (Vi(z,), Va(z,), Vs(x,)). Let v, be a non-negative
ground state of (PV@n)en) Then v;,, # 0forall j = 1,2,3. Since {Vj(z,)}22,
is bounded, up to a subsequence, there exists A;o (j = 1,2,3) such that
Vi(@n) = Ajo-

(Claim 1) There exist kg € {1,2,3} and vy, o € H'(R"Y) such that ||vg,, —
Vool — 0 and ||vj, || g1 — 0 for j # k.

(Step A) We first show that p(Vi(zy,), Va(zn), Va(2n); ) < minj_q 03 04
o(1), as n — o0.

Let jo be a number such that min;—; o3 ci\“o = ¢,*". For simplicity, we
assume jo = 1. Let w; o be a positive ground state of (P). Set

WO = (Wl,Oa W2,07 W3,0)7
Wio=wip, Woyo=Ws3e=0.

Let ¢,, > 0 be a number such that t,Wg € NV@n)en  Then

IVwi o + Vi(zn)wiy =2 / wh i

RN RN

Thus {t,}°°, is bounded. Hence

Y A A A "
jglg?) ' =" =1 (wig) > I (tawe o) = [Yl(x )(tnwm) +o(1)

= IV (£, Wo) + 0(1) > p(Vi(@n), Va(@n), Va(za); o) + o(1).

(Step B) Recall v,, is a ground state of (PV@n)en). Let j, € {1,2,3} be

. A A 0 . .. .
a number such that min;—; 3 "’ = ", For simplicity, we assume jo = 1.
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From (Step A), we have

jgigg Ci\j’o + 0(1) > P(‘/l(xn)a VY2($7L)7 Vé(ﬁn)’ an)
1 3 3
- \V/ - 2 + V. . 2 / p+1
6 ;/RN| UJ7 | ](‘,E )U],n p+ 1 Z::

3
]' 2 2
2 = ; RN!VUj,n\ + VioVin

Thus {v,} is bounded in H. Then, up to a subsequence, there exists vo € H
such that

v, — vp weakly in H, (4.29)
Vjn = Vjo0 &.€. in RN, (430)
RY), 1<qg<2. (4.31)

. . q
Ujn — Y30 in Lloc

Since vg € H, for all § > 0, there exists R > 0 such that

3
1 2 2 2 2
62 /B [Vujol™ + Ajovig — /R N|VUJ‘,0| + Ajovjo
3
p+1 p+1

Since v, is a ground state of (PV@n)en) v satisfies

< 0.

P
—Avyp + Vi(20)V10 = V], + QpV2,0V3.5,
P
_AUQ,H + Vv2($n)v2,n - 'UQ’n + anvl,nvi’),n; (432)

—Avzy + V3(2,)v30 = V5, + QpV1n Vo -
From (4.29),(4.31) and «,, — 0, we have

—Avi g+ AV = Ulf,m
_ P
—Avy 0+ A oV20 = Uy, (4.33)

P
—Avg g+ A3 0U30 = V30
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Then

Aj
min_ ¢’
j=1,23

> liminf p(Vi(z,), Va(z,), V3(2,); an)

n—00
3

2
> lim inf ~ Youinl?+ Vilz, ] == pl
min Z/ [Vesal? +Vy(wa)oo +limin 3(p+1);ANvg,n

3

—2
> llgi;g.}f Z/ |VU] n| +V; ($n> Vip T llrllligjlf m Z/ U?;:l

j=1"Br
1 : 2 2 p+1
= S Vol + Aovde + Z
j=1"7Br
1< p—2
> — Vol + Njovig + =—— / PEt =6
6 ; RN J I0750 ( 1) ; RN 70
Letting 6 — +0 and from (4.33), we have

min c o> hmmfp(Vl(xn) Va(2n), Va(2,); i)

j=1,2,3

>hmmf Z/ \ijn’2+v(xn)

o
T hﬁlﬂf Z / (4.34)
3

3
1 p—2
> 1 v-?x?—/?*l
- 6;/@’ viol™ ¥ J’OUJ’°+3(10+1); an 0
3
>\.
= 1"(v;0).
j=1

If vjo #0 forall j =1,2,3,
3

3
Ao N, by
E 1777 (v0) = § ¢’ > min ¢
— 7=1,2.3
]:

j=1
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This contradicts (4.34). Hence there exists ko € {1,2,3} such that vy, o # 0
and vjo = 0 for j # k. From (4.34), we have

win ¢ > liminf p(Vi(,), V(). Va(2,); )

7=1,2,3

= Z[fj’o (vj0) = 1, (vho0) = &,"0° = min )",

— j=12,3
J:
Thus, we have
Uko,0 1s @ minimizer for ci\ko’o, 4.35)
p(Vi(2n), Va(n), Va(zn); o) — min ¢}, (4.36)

7=1,2,3

Moreover, from (4.34) and (4.35), we have

3
1
llnl lnf Z/ |VU] n‘2 + V (‘/I"n) ]2',71 Z 6 Z/ |ij70|2 + )\j70’l}]2-’0
=1 RN

: : p+1 p+1
h,{’i}}.}f Z/RN Jm 3(p+1 Z/ Yj0

Jj=1

: 2 b=z 2 +1
3

]=1

1 2 2 p+1
= 6 jZI/RN|VUj’O’ + )‘j70Uj,0 Z/RN .

7j=1

By the same argument as in Lemma 3.3, we have

H”Ukom — Uko,OHHl — O, ||Uj,n||H1 — 0 for j 7é k'(). (437)

(Step 2) The following argument is based on Theorem 1.4 in [30].

For simplicity, we assume ko = 1. From (4.32), we have
2 2 _ p+1
(Vg | + Va(2n)vs,, = / vy, + ozn/ V1002003 1
RN RN RN

2 2 p+1
|VU3771| + Vé(xn)v&n - / US n + Qp / V1,nV2,nU3 n-
RN RN

RN
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Then there exists C'; > 0 such that

Crllozallf + llvsalidn) < lloanllfass + llosnllfs + Qan/N UVLn¥2,nV3,n-
R
(4.38)
Since {v,} is bounded in H, there exist Cy, C3 > 0 such that
200, / V1 V20030 < Oy / V10 (03, +13,,)
RN RN
(4.39)

s (lvzallFrn + lvsnllzn)
< Cyag([[oanllin + lvsnll )

S 020571"/01,71

For n sufficiently large, Csa,, < C}/2. From (4.38) and (4.39), we have

Crlllvanllzn + lvsalln)
< lopallfri + lvsallZiis + Csan(lozallzn + lvsallin)
Ch

< vanllZon + sl + = (lvaallin + losalln).

Then there exists Cy > 0 such that

G

5 (lo2nllfn + llvsallin) < sl + losall g

< Cu([lvanllFr + llvsnllFn) I,

Then there exists C5 > 0 such that
Cs < (vamlfn + lvsallFn) P72,

This contradicts (4.37). Thus we obtain a* > 0.

(Step 3) From Lemma 4.1 in [30], it follows that

p(Vi(z), Va(z), Va(z);0) = min_c}’™,

§=123

In addition, it is easy to see that

e = V(@) Tw).



4.7 Positivity of o

Then
p(Vi(2). Va(w), Va(2); 0) = min ey = min V;(x)'T{u]
7=12,3 j=12,3
Since
. ] 0 > . 0
Jmin Vi(2)'T{w] > min, VieIlw],
we have
xler]gN jmin, Vi(z)’Iw] > Jmin, Viol[w]. (4.40)

On the other hand, let jo € {1,2,3} be a number such that

V:o= min V.
Jo, ]:17273 s

Let zp € RY be a point such that Vj,(z9) = Vj,0. Then, it follows that

. i 6 _ /Y _ . 0
]Lnllgg Vi(20) Iw] =V, oI w] ]1:1%13 VoI [w] (4.41)
and
3 i [ . . : ']
min, Vi(z0)'I[w] > inf min V;(z)"Ifw]. (4.42)

From (4.40)—(4.42), we have

oo 24 VT = g, Vo)

Hence,

inf p(Vi(x), Va(w), Va(); 0) = min VfpI[w] = min ¢,

z€RN j=123 0 j=1,2,3

Furthermore, if 0 < o < o, then Qo) = Qo(0). Thus, if 0 < a < a*, then

inf p(Vi(x), Va(x),Vs(z);a) = min V% I[w] = min CYj’O.

2€RN j=12,3 70 =123
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4.8 When all the ground states of (P.,) are
scalar or vector

To clear the dependence on «a, we write (P.), (755),~cs, e, I, I, NG, N, G.
and Ge as (Pe,a>7 (Ps,oz)v Ce,a; éa,aa Is,cw ]s,aa -/\/’s,on -/\/'E,cw Ge,a and Gs,a-

In this section, we consider when all the ground states of (P-,) are scalar
or vector. To state the main proposition in this section, we give thresholds
I'f) af and «f as follows:  From [30], c. , is monotone decreasing with respect
to the parameter o over [0,00) and continuous. Moreover, c. , converges to
0 as a — 0o. Thus we can define I'} as follows:

' :=max{a > 0| c.o =co}

In addition, we can define thresholds af and of such that

ag = liminfI'7 ;= lim inf I,
e—+0 r——+00<e<r

aj = limsup I := lim sup I7.
e=+0 r=+00<e<r

We can show af > 0 and of < oo under (V1),(V2) (see Lemmas 4.20 and
4.21).

The next proposition tells us when all the ground states of (P-,) become
scalar or vector depending on the size of a.

Proposition 4.19. Suppose that (V1),(V2). Then we can define the thresh-
old af and oj as above. Then the followings hold:

(i) If 0 < a < af), then there exists g > 0 such that all the ground states
of (P.,) are scalar for 0 < € < &y.

(ii) If o > af, then there exists £; > 0 such that all the ground states of
(P-o) are vector for 0 < e < ¢;.

(iii) If o > @y, then there exists {eg,,}7°, C (0, 00) such that €y, — 0 and
all the ground states of (P, ) are vector for all n € N.

(iv) If 0 < a < of, then there exists {1, }22, C (0,00) such that €;,, — 0
and all the ground states of (P, , ) are scalar for all n € N.
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Lemma 4.20. Suppose that (V1),(V2). Then, there exists » > 0 such that

(@52) nf T2 >0

Proof. (Claim 1) There exists 71 > 0 such that if 0 < & <7, a > 0, then
Es,a < minj:17273 Clj’oo.

Indeed, suppose that min;_; 3 c}/}’o = c}/l’o for simplicity. Let wyo be a
positive minimizer for ¢;*°. From (V1),(V2), let zo be a minimum point of
Vi(x). Set voe = (v1,0¢,0,0), v10(y) = w10(y — 20/€). Moreover, let to . be
a positive number such that ¢y .vo. € /\73,@. Then it follows that

1900+ Vieneto. =ttt [ ot
RN RN
that is,
/ |Vw1,0’2 + V(2o + 59)”’%,0 = tg;-l/ wzl),J(r)l-
RN RN
Note that ¢, is bounded and independent of a.. Since
tim [ ViGotenudo = [ Vit

there exists 1 > 0 such that if 0 < & < r, then

t% min; 123 CVj'OQ — min; 123 CVj’0
€ 2 2 j=1,2,3 €1 j=1,2,3 €1
- Vi(zo + ey)wiy — Vi(zo)wi,y| < :
2 RN RN 2
Then if 0 < e < 7y,
. Voo . Vio
.V 7 min —123¢C;~ — MINj—123C"
min ¢,”* > min ¢’ + : !
Jj=12,3 Jj=12,3 2
. 7 . Vio
Vie , Minj_193¢,"" —minj_123¢,’
= C]. +
2
: Vj,o0 : Vio
_ IVI,O min;—1,2,3 € — MiNj—123C
= 1" (wip) +
2
: Vj,o0 : Vio
ming;—i 23 ¢y — INiNj—=1 23 Cy

> f;/l’o (towi0) +

2
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2

tO t€+1 —+1
€ 2 VA 2 € P
2 /RN‘ vol" ¥ Vil + ey)uiy p+1/IRN b0

t2
0,e 2 2
+ —= Vi(zo)wig — Vi(zo +ey)wyi
2 N N
R R
: V'7 : V'70
minj—j23¢;"" — MiNj—1 93¢’

2
> Is,a<t0,€VO,s) Z 6{-:,01-

We can prove the following claim by the similar argument as in (Claim 1):
(Claim 2) There exists 1o > 0 such that if 0 < & < 7o, then 6;/{5 < E;/j""’ for
all j =1,2,3, where

- 1 1
Bw) = [ IVul +Viten? = — [ jup
E;/]E = in~fv_ fQVJE,
weN, 1

Ny? = {w e HYRY)\ {0} | Gy (w) = 0},
CY.w) = [ Vol + Vi(eg)u® - ol
RN

Set 2r := min{ry, ro}. We now prove info..,. I'S > 0. Suppose that info.,. [} =
0. Then there exists {e,}72; C (0,r) such that I'; — 0. Let {a,};2, C
(0,00) be a sequence such that o, — 0 and a,, > I'; . From (Claim 1), we

have ¢, o, < minj—;23 c;/j’“‘ for all n € N. From Theorem 1.4 in [30], there

exists a3, > 0 such that

7
PV 00, Varoos V3 00i @) = min, ¢’ forall0<a<ay .
j:17 Y >

Then for n sufficiently large,

. : Vi, o0
p(‘/l,ooa ‘/2,oo> ‘/3,007 Oén) = An%lgl?) Ci7 .
=14,

Then, for n sufficiently large,

Cepan < P(V1.005 Vaoos Va oo i)
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Then by the same argument as in [43], there exists a non-negative ground

state v, of (P-,.an)- Set u,(r) = v,(z/e,). Then u, is a non-negative
ground state of (P., q,). Since a,, > I'f | then c., o, < c-,,0. From Theorem
1.4 in [30], it follows that

ujn, 70 forall j=1,2,3. (4.43)

Since 0 < €, < r, up to a subsequence, there exists ¢y > 0 such that ¢,, — &.
Now, we divided the proof into the case ¢y = 0 and the case g9 > 0.

(Case 1) First, we shall prove that ey = 0 does not occur.
Recall Uj(li(y) = Wjn (210 + €ny). Since u, satisfies

2 _ P

—en Aty + Vi(2)urn = Ui, + anls sy,
2 _ P

_enAUQ,n + ‘/Q(I)UQJL - u27n + anul,nu3,n7

—e2Aug,, + Va(2)us, = Uy, + U1 U s
U J(ly)l satisfies
AU 4 Vi, + eay) UL

) _ (
AU, + Vol + eay)US) = (
AU+ Vi + ey UL = (

U + a, U U,

U + a, U U,
U + a, UL UL,

— =

Recall that from Lemma 4.10 (iii),(iv), {Ug)}j’;l is bounded in H and up to
a subsequence, there exists U® € H such that

UY —~UY  weakly in H,
U = 0D in Coe(RY).

jn j
Suppose that sup,,cy|zi,] = 00. Then up to a subsequence, |z;,| — oo.
Then from «,, — +0, we have

—AU + ViU = (U,

AU vt = W

—AUY + 3, U8 = Uy

Suppose that U® # (0,0,0). By the same argument as in the proof of
Theorem 4.4 (2) and (3), we have

. ‘/J,O . ~ . . ~
min ¢, > limsupcé;, 4, > liminfé., 4,
7=1,2,3 N—00 n—>00
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= lim inf { / VU (QL|2 + V(@ + 5n?/)(U}2)2

n—oo
p+1
sy [

3 3
1 ) ) p—2 0}
>5[ VUOP v 00+ 225 gOypt1

Jj=1
.V , :
> min ¢;”* > min ¢’
j=1,2,3 =1,2,3

This is a contradiction. Thus if sup,cy|zi.] = oo, then UV = (0,0,0).
Moreover, there exists [ € {1, 2,3} such that sup,,cy|z1,| < 00. Indeed, if for
all [ € {1,2,3}, sup,,cn|1n| = 00, then it follows that U® = (0,0,0) for all
[ € {1,2,3} by the argument as above. This contradicts Lemma 4.11. Thus,
there exists | € {1,2,3} such that sup,cy|zi,| < co0. Up to a subsequence,
there exists x;¢ € RN Such that x;, — 0. We next show there exists

jo € {1,2,3} such that U — Uz — 0 and [|UL)]| 51 — 0 for all j # jo.
If UJ@ # 0 for all j € {1,2,3}, then U® satisfies

—AUY 4+ Vi (210U = (U,

— AU 4 Va(10) U = (U,

— AU + Vi) UL = (UL,
Then

min 01 * > limsupé., o, > liminfé. o,
j=1,2,3 n—00 n— 00

3
. 1 )2 (42
= lim inf {6 Eﬁ /RN|VU ol” Vi@, +e,y)(Uj)

Z/ p+1

RN

g 0 0 p—2 <

> _ VUZ 2 V Al 2 ; / (l) p+1
_6;/RN\ PP+l OFF + 555 [ )

3
Vi(z Vio
> E clj( L) > min o
- 7=1,2,3
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4.8 When all the ground states of (P-,) are scalar or vector

This is a contradiction. Thus there exists jo € {1,2,3} such that U](é) #£0
and U]@ =0 for all 7 # jg. Then

min c1 * > lmsupée, o, > liminfé. ,,
7=1,2,3 Nn—00 n—00

— lim inf { / IVUD 4 V(i + 20y) (USD)?

n—od
U(l p+1
p+1 Z/RN Jn }
M2 b—= 2 0] p+l
> Z
> Z/ VU2 + Vi(a10) (U} 3(p+1 Z/ (U

J=1

: ] Vio
> min 1J( > min o
j=1,2,3 j=1,2,3

By the same argument as in the proof of Theorem 4.4 (2) and (3), we have

0 gy
Uy — Ujy i =0,
US| — 0 for all j # jo. (4.44)

For simplicity, we assume jo = 1. Noting (4.43), by the same argument as in
(Step 2) in Proposition 4.18, there exists C' > 0 such that

l [
U2 + [ UD 2 > C.

This contradicts (4.44). Thus the case g = 0 does not occur.

(Case 2) Next, we exclude the possibility of 5 > 0.
We first show the upper bound of ¢, ,,. To this end, we consider the follow-
ing equation and define the following minimization problem:

—&2Au+ Vi(z)u = |u|P~ (732‘/]5)
c;/j = inf ]25( )

£
u6N2]E

where

v 1 1
Bw)=g [ VP4Vl = = [,
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Np? = {u e H'(RY)\ {0} | Gy.(u) = 0},
G;fja(u) = / 2| Vul|? + Vj(z)u? — |ulPt.
RN
Now, we prove the following:

Copon < jr:nlig?) c;/fso +o(l) asn — oc. (4.45)

Indeed, let jo be a number such that c;/ffo = min;_; 23 C;/,J;O- For simplicity,

we assume jo = 1. Note that 0 < g <7 < 2r. From (Claim 2), there exists

a positive ground state ug of (732\/ L,)- Set

ug = (u10, U20,U30), U= U, U = Uz =D0.

Let ¢, > 0 be a number such that t,u, € N;, ,,. Then it follows that

3 3
2 : 2 2 2 _ p—lz p+1
/N gn’vuj70| + V}("E)uj,() - tn /N U’j,O )
j=17R j=17R

that is,

/gi|vu0|2+m(x)ugztgl/ e
RN RN

Since €, — €9 > 0, {t,}>° is bounded. Then

Cyy = Ik, (u0) 2 Iy, (tauo)
1 2 2 2 1
= V(tn Vi) (thug)? — —— [ (tnuo)’™
5 | At + Vi@t = — [ (6o

> Cepan +0(1) asn — oo.

Thus we have (4.45). For n sufficiently large,
.V >
j:1111{£3 Coleg T 0(1) = Cepar
1< p—2 ’
2 2 2 +1
== E e |Vu,n|” + Vi(z)us,, + E / ub
6 = /RN | a | ]( ) 7 3(p+ 1) 1 RN J»
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6% V 2 V 2
§| Ujn|” + Vot ,-

s

Then {u,}5°, is bounded in H. Thus, up to a subsequence, there exists
uy € H such that

u, — uy weakly in H,
Ujn — Uj5,0 n L?OC(RN)7 1 < q < 2*,

Ujn = Ujo  &.C. in ]RN.

(Claim 3) wug # (0,0,0).
If we assume ug = (0,0, 0), then it follows that

uj, — 0 in LL (RY), 1<q<2% (4.46)

loc

Let t,, > 0 be a number such that t,u,, € N.Y> . where

€0,0n 7
1o 1 <
IV=(u) = = Z/ 2| Vu; > + V-,oou? - — Z/ |u [Pt — a/ Uy UgU3,
’ 2 ‘1 JRY p+1 ‘1 JRY RN
o= o L (w),

NYx = {ueH\{(0,0,0)} | G¥z(u) = 0},
3
Gz(f(u) = Z/ 62|Vuj|2 + V]oou§ — |uj|‘”Jrl — 3a/ U UgUs.
j=1 JRY o
Then

3 3
2 2 2 _ gp-1 p+1

E / g0l Vu,n|” + V-,Ooum =t E / Wiy + 3tnan/ Up U2 U3 -

o1 RN ‘o1 RN RN

As in the argument in Appendix A in [30], up to a subsequence, there exists
C > 0 such that

3
Z/ ubtt>C foralln €N
j=1 /BN
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Since {u,}?, is bounded in H and €, — €9 and ¢ > 0, {¢,}°°, is bounded.
From the argument as in Proposition 1 in [30], it follows that

cen,an = Ignyan (un) Z ‘[Enyan (tnun)
= IV (tawn) +o(1) = IV (tau,) +o(1) > ¥ +o(1).

In addition, from Theorem 1.4 in [30], there exists o y_ > 0 such that

Ve = c;"’g = min
0 0 j=1,2,3

c;/’sff forall 0 <a<af v .
Then we have for n sufficiently large,

.. .. .V
liminf ¢ > liminf c¥> = min c;”>. 4.47
n—soo WA = TRl €0,an 7=1,2,3 2:€0 ( )

On the other hand, from (4.45) and (Claim 2), it follows that

) . V; . V;
limsupc < min ¢’ < min ¢,
o oP Ceman = Tl C2e0 = 0 e

This contradicts (4.47). Hence ug # (0,0, 0).

Since u, is a ground state of (P;, 4, ), W, satisfies

2 _ P

—&n Aty + Vi(T)urn = Uy, + Qs nUsp,
2 P

—en Aty + Vo2 )ugm = U, + Qs nUsp,

2 P
—en Augy + Va(2)usn = uf, + aniy nUop.
Since €,, — g and «,, — 0, then ug satisfies

2 _ P
—egAuy g + Vi(2)urp = uf,
2 D
—egAugg + Va(2)ugp = uj,

2 N
—€OAU370 + V;),(]?)Ug}o = U3 -

If there exist ji,j2 € {1,2,3} such that j; # jo and uj, o # 0 and wj, o # 0,
then

liminfe,, 4,
n—o0

3 3
o 1 2 2 2 p—2 p+1
:llﬁﬁf{éjz:;/ﬂw VPV T 2 fo
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3
. 1 2 2 2 il
:llggf{EZ/RN &0l Vugnl” + Vi(z)uj, + p+1 Z/RN Ui
p 2
Z/ 50‘Vu30|2+v( Ju 30+ Z/RN P+1

J=1

@I}—t

V;
250 uJO >§ :025 > HiIQSCZsO

|
H Mw

This contradicts (4.45). Thus there exists jo € {1,2,3} such that u;, 0 # 0
and u;o = 0 for all j # jo. For simplicity, we assume j, = 1. Then

liminf ¢, 4,
n—oo

3
EEETI 1 2 2 2 p“
S Dy LR EE ) S

13
N 2 2 2 +1
:=%2£f{6;;AQ5“VWm'*”“xﬂml S0+ 1) EZAQ E }

1 p—2
> - ea|Vuy o* + Vi(2)u] —I——/ ub !
> 5 [ el + ilepto + P [

V;
> IQ Eo(ul 0) > 6280 2 m1g362€0

From (4.45), we have

1 2 2 2 p—2 / +1
= — eo|Vui ol + Vi(z)uy g + — ub oo,
5 L, SHTmal Vi 3(p+ 1) Jaw 10

lim inf /N eo|Vur,|” + Vi(z)ui,, > /N eo|Vuro* + Vi(z)ui .
R R

n—oo

liminf/ ea|Vujna|* + Vi(x)u?, >0 j=2,3,
RN

n—o00 5

.. 1 1 s 1
liminf [ o}’ > ufy', liminf [ W27 >0 j=2,3.
n— oo RN RN n—00 RN o

Then we have

||U17n — Ul,OHHl — 0, ”uj,nHHl —0 ] = 2, 3. (448)
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By the same argument as in (Step 2) in Proposition 4.18, there exists C' > 0
such that

g3 + [lusnl3n > C.

This contradicts (4.48). Thus the case 9 > 0 does not occur.

From (Case 1) and (Case 2), we can conclude that

inf I'; > 0.

O<e<r

Lemma 4.21. Suppose that (V1),(V2). Then it follows that

(o <) sup I'l < 0.
0<e<1

Proof. We define the following minimization problem:

6V,oo

Vo .— inf  IV(v),

veﬁKYV“

3
~V oo 1
]Evv (V) = 5 Z/RN|VUj|2 + ‘/}(5’3/)1)]2 — /RN V1V2V3,
=1

NV = {v € H\ {(0,0,0)} | GY*(v) = 0},
3
GY>=(v) = Z/ IVu;? + Vj(ey)vs —/ V1U9U3.
j=1 /RY R

By the same argument as in Proposition 2 (Step 1) in [30] and, we obtain

Cew <EYV°/a? forall a > 0. (4.49)
We have &Y < 6}““‘“’00, where

Vmax = (‘/i,maxa ‘/Z,maxa %,max); V}',max .= sup ‘/;(l'),
zeRN
~Vmax, .
¢ o™= inf

V max 00
I] ’ (
VENV max 00

v),
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3
~ 1
Vma)uoo .
j=1

NYm = {v € H\ {(0,0,0)} | GY™>(v) = 0},

3
é}/max’oo(V) = Z/ ‘VU]"Z + Vj,maxv? — / V1U2V3.
j=1 RN RN

Indeed, from Proposition 1 in [30], there exists a minimizer v for & ™™

Note that fRN v1v9v3 > 0. By the same argument as in Lemma 2.3 in [43],

there exists ¢, > 0 such that t.v € ./\~/’€V’°°. Since v € ./\~/'1V ma0% and Lemma
2.3 in [43], it follows that I/™>*(tv) < IY™*>(v) for all t > 0. Hence, we
have

62’,00 S ];V,oo(tav) S j;/ma)hoo(tav) S fl\/tl\ax,oo(v) — 6},1113,)(700‘ (450)
Note that

C.o = min é.°
0 .
& j=1,2,3 2F

Then we have
V.

. N .
Cep = min &’ > min ¢ > 0. (4.51)
T =123 2T =123

Then there exists o > 0 (independent of €) such that

- . 7
EYmen /02 < min, ¢ for all a > ayp. (4.52)
=14

From (4.49)—(4.52), we have
Cen < Cep foralla>ap, 0<e<1.
Hence we obtain
IM<ay foralld<e< 1.

O

Suppose that (V1),(V2). From Lemma 4.20 and 4.21, it follows that o > 0
and aj < oo. Now, we prove Proposition 4.19.
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Proof of Proposition 4.19. (i) Let 0 < o < «f. By the definition of «f,
there exists g > 0 such that

inf I > a.
0<e<eg

Hence we have I'} > « for all 0 < € < gy. From Theorem 1.4 in [30], all the
ground states of (P.,) are scalar.

(ii) Let o > af. By the definition of «f, there exists 9 > 0 such that

sup I'I < a.
0<e<eg

Hence we have I'} < a for all 0 < € < gp. From Theorem 1.4 in [30], all the
ground states of (P.,) are vector.

(iii) Let a > «f. By the definition of o, there exists {g,}22, C (0,00)
such that g9, — 0 and I'; = — ag. Since of < «, up to a subsequence,
I}, < a. From Theorem 1.4 in [30], all the ground states of (P, ) are
vector.

(iv) Let 0 < o < af. By the definition of a7, there exists {€1,}22, C (0, 00)
such that €1, — 0 and I';, ~— aj. Since a < aj, up to a subsequence,
7, > a. From Theorem 1.4 in [30], all the ground states of (P, ) are
scalar. O

4.9 Appendix

In this Appendix, we consider the radial symmetry and monotonicity of clas-
sical solutions of elliptic system of the following type:

u'lil+fi(x7u17"'7uk>:0 inRv Z.Zl""’k:7
u;i(z) = 0, as |z| — oo,
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where k£ > 1.

Busca-Sirakov [9] studied the radial symmetry and monotonicity of classi-
cal solutions of elliptic systems for N > 2. Moreover, Ikoma [25] considered
the symmetry and monotonicity of the solutions in the case N = 1 and k = 2.

Here, we show the symmetry result for N = 1 after slight modification.
Let us note u = (uy,...,u;) € (0,00)* and

Ofi
A(z,u) = (&J; (:c,u)) :
1<i,j<k

We suppose that f; € C1(R x (0,00)¥,R) for all i = 1,..., k and (A0)—(A4):

(A0) fi(—z,u) = fi(z,u) forallz e R, u € (0,00)* and i =1,... k.
(A1) (0f;/0x)(z,u) <0 forall x >0,ue€ (0,00)fandi=1,...,k.

(A2) (0f;/0u;)(z,u) > 0forallz € R,u € (0,00)* and 4,5 € {1,...,k}, i #

VE

(A3) there exist constants ¢ > 0 and Ry > 0 such that for any I,.J C
{1,...,k}, INJT=0,TUJ={1,...,k}, there exist ig € I and jo € J
such that (0f;,/0uj,)(xz,u) > 0 for all (z,u) € O, where

O ={(z,u) € R x (0,00)" | |2| > Ry, |u| < ¢}

(A4) all k-principal minors of —A(z,uy,. .., u;) have positive determinants,
for all (z,u) € O, 1 <i < k. We recall that the k-principal minors of
a matrix (m;;)1<; j<x are the submatrices (m;;)1<; j<ir with 1 <k < k.

Theorem 4.22. Suppose fi, ..., fr satisfy (A0)—(A4), and u = (uq, ..., uy)
is a classical solution of (4.53). Then there exists a point yo € R such that
the functions u; are radially symmetric with respect to the origin yg, that is
ui(x) = u;(Jxr —wl), i =1,..., k. Moreover,

dui
dr

<0 forallr=|z—y|>0.
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Chapter 4 A singular perturbation problem for a nonlinear Schrodinger
system with three wave interaction

For A € R, set 3, := (A, 00) and for x € ¥, we define

=2\ —
UMz) = us(2) — ug(x) = 13 (2) — 1) — uy(2).

)

Outline of the proof of Theorem 4.22. We define
A=inf{A>0|U/>0in X, fori=1,...,k, and all p > A}.

(Step 1) Since w;(z) — 0 as |x| — oo, there exists Ry > R; such that
ui(x) < e/Vkif |z] > Ry for all i = 1,... k. We take \* > Ry, for which

max wi(r) <  min  w(x),
1<i<k 1<i<k
z€[2XA—Ro,22+Ro) z€[—Ro,Ro]

for all A > \*. Hence U} > 0 in [2\ — Ry, 2\ + Ry] C 3y for all A > \*. We
notice that the functions U} satisfy the following system

3fz

/, az .
(U + ( +Z f &17--.,§ik)Uf‘:0, i=1,...,k,

where n = n(z, \) € (0,00)* and

&ij = &ij(x, A) € (min{uy(x), u;(2)}, max{u;(z), u;(z*)}).

Since |7*| < z for x € ¥, we obtain from (A1) the following systems of
inequality for U
~ 0f

U)\// ~Jr
U+ 5

(@, &1v- o &)U <0, i=1,... k. (4.54)

Jj=1

We want to show that U} > 0 in Xy, for all A > \*. We argue by contradic-
tion. Suppose there exist A > \* and i € {1,...,k} such that infy, U} < 0.

20

Weset J ={j | U} >0in 5}, and I = {1,...,k} \ J (note that 7o € I).

Since all k-principal minors of —A(x,u) have positive determinants, for
all (z,u) € O, we do not need to introduce a function g as in [9]. Note the
following lemma stated as Lemma 2.2 in [20].
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4.9 Appendix

Lemma 4.23. Let M = (my;)1<ij<x be a matrix such that m;; < 0 for
© # j. Assume all k-principal minors of M have positive determinants. Then

(i) all minors of M obtained by dropping lines and columns of the same
order have positive determinants.

(ii) if M;; is the minor of M obtained by dropping the i th line and j th

column we have (—1)"*7 det M;; > 0.

Hence we may assume that I = {1,...,p}. Since U;‘ >0in X, for j € J,
from (A2) and (4.54), we have

p

af; ‘

(Ui)‘)// + Z 854($’&1’ . 7€zk)U])\ < O’ 7 = 17 D
j=1 "7

Since infy, U} < 0foralli =1,...,p, U} > 0in [2A— Rg, 2\ +Ry), UM(A) = 0
and UMx) — 0 as |z| — oo, there exist zy,..., 2, € 3y \ [2A — Ro, 2\ + Ry
such that U} (z;) = ming, U} < 0. Then (U})"(x;) > 0 and (U} (x;) = 0.
Substituting # = z; at i-th equation and using the fact that U} z;) < U}(x),
we have
a 8fz A .
(2,6, &)U (25) <0, i=1,...,p. (4.55)

=1 an

(4.55) can be written as

MU =Y,

U= (U 21), -, Uplay), M= (myghicijep, YV =1 0),
afi
’i>07 ij — — 7 \LiyGily -+, Gi

Yi = i, auj(x €in Eir)
Since z; € [2X — Ro, 2\ + Ro), then 2 € [— Ry, Ry|, that is, |2}| > Ry. Noting
that z; > Ry, we have u;(x;),u;(z}) < ¢/vk. Thus we have & (v;, \)? +
oo+ Gz, \)? < €2 From (A2) and (A4), we have m;; < 0 for i # j, and
all p-principal minors of M have positive determinants. Since det M > 0, it
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follows that U = M~1Y. From Lemma 4.23, U}(x;) > 0 for alli = 1,...,p.
This contradicts the fact that U;(z;) < 0. Hence A < oc.

The rest of the proof of Theorem 4.22 can be showed by the same argument
as in [9]. O
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