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Preface

In 1982, Cazenave-Lions [10] studied the existence and stability of standing
wave solutions for the following single nonlinear Schrödinger equation:

i∂tΦ +∆Φ+ |Φ|p−1Φ = 0 in RN . (0.1)

Here, the standing wave solutions is the solution of (0.1) of the form Φ(t, x) =
eiωtu(x). The solution has the spatially localized waveform which does not
progress and oscillate. Starting with this study, a similar problems for the
models with potentials and general nonlinearities have been actively studied.
In recent years, the existence and stability of standing wave solutions for
systems, such as two component interaction models describing the Bose-
Einstein condensation phenomenon, have been actively investigated.

Under such circumstances, this thesis deals with the existence and asymp-
totic behavior of standing wave solutions for the following nonlinear Schrödinger
system with three wave interaction:

iε∂tΦ1 + ε2∆Φ1 − V1(x)Φ1 + β|Φ1|p−1Φ1 = −αΦ3Φ̄2 in R× RN ,

iε∂tΦ2 + ε2∆Φ2 − V2(x)Φ2 + β|Φ2|p−1Φ2 = −αΦ3Φ̄1 in R× RN ,

iε∂tΦ3 + ε2∆Φ3 − V3(x)Φ3 + β|Φ3|p−1Φ3 = −αΦ1Φ2 in R× RN .

(0.2)

This system was introduced by Colin-Colin-Ohta in [19] as a simpli-
fied model of a quasilinear Zakharov system studied in [15, 16]. This sys-
tem describes the interaction between laser and plasma and is related to
the Raman amplification in a plasma. The physical situation is as fol-
lows. When the incident laser field enters the plasma, it is backscattered
by Raman-type processes. These two waves interact to create an electron
plasma wave. The three waves combine to produce an ion density change
that itself affects the three preceding waves. Here a solution of (0.2) of
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0.1 Fixed mass problem

the form (Φ1(t, x),Φ2(t, x),Φ3(t, x)) = (eiλ1t/εu1(x), e
iλ2t/εu2(x), e

iλ3t/εu3(x))
(λ3 = λ1 + λ2) is called a standing wave solution. Then u = (u1, u2, u3)
satisfies the following system:

−ε2∆u1 + (V1(x) + λ1)u1 = β|u1|p−1u1 + αu3ū2 in RN ,

−ε2∆u2 + (V2(x) + λ2)u2 = β|u2|p−1u2 + αu3ū1 in RN ,

−ε2∆u3 + (V3(x) + λ3)u3 = β|u3|p−1u3 + αu1u2 in RN .

(Pα,β
ε )

In this thesis, we consider the fixed mass problem and the fixed frequency
problem for (Pα,β

ε ). The fixed mass problem is the problem of finding the solu-
tion (u, λ1, λ2, λ3) of (Pα,β

ε ) satisfying L2–normalized condition
∫
RN |uj|2 = aj

for given aj > 0 (j = 1, 2, 3). The fixed frequency problem is the problem of
finding the solution u = (u1, u2, u3) of (Pα,β

ε ) for fixed λj ∈ R (j = 1, 2, 3).
The fixed mass problem is dealt with in Part I and the fixed frequency prob-
lem is dealt with in Part II in this thesis.

0.1 Fixed mass problem

For the fixed mass problem, we define the following functional:

Eα,β
ε (u) :=

1

2

3∑
j=1

∫
RN

ε2|∇uj|2 + Vj(x)|uj|2

− β

p+ 1

3∑
j=1

∫
RN

|uj|p+1 − αRe

∫
RN

u1u2ū3,

where N ≤ 3, 1 < p < 1 + 4/N , α, β, ε > 0. We also impose the following
conditions for the potential Vj(x):

(V1) for all j = 1, 2, 3, Vj ∈ L∞(RN ;R).

(V2) for all j = 1, 2, 3, Vj(x) ≤ lim|y|→∞ Vj(y) = 0 (for almost every x ∈ RN).

We consider the following minimization problem of Eα,β
ε under L2–normalized

condition:

ξα,βε (a) := inf{Eα,β
ε (u) | u ∈ H,

∫
RN |uj|2 = aj (j = 1, 2, 3)},
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where H := H1×H1×H1, H1 := H1(RN ;C). Then a minimizer u for ξα,βε (a)
satisfies (Pα,β

ε ) and λj appears as a Lagrange multiplier.
We also consider the limit minimization problem:

ξα,βε,∞(a) := inf{Eα,β
ε,∞(u) | u ∈ H,

∫
RN |uj|2 = aj (j = 1, 2, 3)},

Eα,β
ε,∞(u) :=

1

2

3∑
j=1

∫
RN

ε2|∇uj|2 −
β

p+ 1

3∑
j=1

∫
RN

|uj|p+1

− αRe

∫
RN

u1u2u3.

To prove the existence of a minimizer for ξα,βε (a), it is extremely important
to show the strict subadditivity condition

ξα,βε (a) < ξα,βε (b) + ξα,βε,∞(a− b) (0.3)

for all b = (b1, b2, b3) with b ̸= a and 0 ≤ bj ≤ aj for all j = 1, 2, 3 where
a = (a1, a2, a3), aj > 0 for all j = 1, 2, 3.

For the single minimization problem with pure power nonlinearities, it is
easy to show the strict subadditivity condition by using the scaling uθ(x) =
θu(x) for θ > 0. Also, for the single minimization problem with general non-
linearities and without potentials, we can show that the strict subadditivity
by using the scaling uλ(x) = u(λx) for λ > 0 (see [46]). But for system
minimization problems, it is more difficult to show the strict subadditivity
condition. Ardila [4] showed the existence of minimizer for ξα,βε (a) under the
condition N = 1 and Vj ≡ 0 for j = 1, 2, 3. Ardila [4] used the rearrangement
techniques to obtain the strict subadditivity for ξα,βε (a). Kurata-Osada [31]
showed the existence of minimizer for ξα,βε (a) under the condition N ≤ 3 and
(V1),(V2) and the following symmetric condition (V3):

(V3) for all j = 1, 2, 3, Vj(−x1, x′) = Vj(x1, x
′) for almost every x1 ∈ R and x′

∈ RN−1,
Vj(s, x

′) ≤ Vj(t, x
′) for almost every s, t ∈ R with 0 ≤ s < t and

x′ ∈ RN−1.

Kurata-Osada [31] used the coupled rearrangement techniques developed
by Shibata [47] on another system. However, it is more difficult to show
the strict subadditivity condition (0.3) without assuming symmetry for the
potentials.
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0.2 Fixed frequency problem

Recently, Ikoma-Miyamoto [27] established a method of showing the strict
subadditivity condition for two component system arising Bose-Einstein con-
densates model without assuming symmetry for the potentials. In Chapter
1, we confirm that the method of [27] is also applicable to the three wave
interaction model without assuming symmetry for the potentials.

Osada [42] obtained the following existence result of a minimizer (see
Theorem 1.1 in Chapter 1):

Theorem 0.1. (Theorem 1.1 in [42], the existence of a minimizer
for ξ1,11 (a)) Assume that N ≤ 3, 1 < p < 1 + 4/N and (V1)–(V2) and
(V1, V2, V3) ̸≡ (0, 0, 0) and aj > 0 for all j = 1, 2, 3. Then for any minimizing
sequence {un}∞n=1 for ξ1,11 (a), up to a subsequence, there exists a minimizer
u ∈ H for ξ1,11 (a) such that

∥un − u∥H → 0.

0.2 Fixed frequency problem

In the fixed frequency problem, functions are considered as real-valued func-
tions. Also, rewrite Vj(x) + λj as Vj(x). For fixed frequency problem, we
define the following functional Iα,βε which characterizes the solution of (Pα,β

ε )
as a critical point:

Iα,βε (u) :=
1

2

3∑
j=1

∫
RN

ε2|∇uj|2 + Vj(x)u
2
j

− β

p+ 1

3∑
j=1

∫
RN

|uj|p+1 − α

∫
RN

u1u2u3.

We consider H := H1(RN)×H1(RN)×H1(RN) as the space to consider the
solution. Then we say that u is a ground state of (Pα,β

ε ) if u is a nontrivial
solution of (Pα,β

ε ) and minimizes Iα,βε among all nontrivial solutions of (Pα,β
ε ).

To search a ground state solution, we consider the following constrained
minimization problem:

cα,βε := inf
u∈Nα,β

ε

Iα,βε (u),

N α,β
ε := {u ∈ H \ {(0, 0, 0)} | Gα,β

ε (u) = 0},
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Gα,β
ε (u) :=

3∑
j=1

∫
RN

ε2|∇uj|2 + Vj(x)u
2
j − β|uj|p+1 − 3α

∫
RN

u1u2u3.

It is well-known that u is a ground state of (Pα,β
ε ) if and only if u is a

minimizer for cα,βε . Therefore, to show the existence of a ground state of
(Pα,β

ε ), it is sufficient to show the existence of a minimizer for cα,βε . In the
following, we mention the historical background of the singular perturbation
problem.

Rabinowitz [44] showed that there exists a ground state solution of

−ε2∆u+ V (x)u = |u|p−1u in RN (0.4)

for ε sufficiently small if 0 < infx∈RN V (x) < lim inf |x|→∞ V (x). Here we say
that u is a ground state of (0.4) if u is a nontrivial solution with least energy

1

2

∫
RN

ε2|∇u|2 + V (x)u2 − 1

p+ 1

∫
RN

|u|p+1

among all nontrivial H1(RN) solutions of (0.4).

Wang [54] studied the concentration behavior of positive ground state
solutions of (0.4). That solutions concentrate at a global minimum point of
V as ε→ +0, have a unique local maximum (hence global maximum) point
and exponential decay rapidly around the minimum point.

Lin-Wei [33] considered the following nonlinear Schrödinger system
−ε2∆u1 + λ1u1 = µ1u

3
1 + βu1u

2
2 in Ω,

−ε2∆u2 + λ2u2 = µ2u
3
2 + βu21u2 in Ω,

u1, u2 > 0 in Ω,

u1 = u2 = 0 on ∂Ω,

(0.5)

where Ω ⊂ RN is a smooth and bounded domain. They showed that as
ε → +0, there are two spikes for both u1,ε and u2,ε, where (u1,ε, u2,ε) is a
positive ground state of (0.5). If β < 0, the locations of two spikes reach a
sphere-packing position (the positions that maximize the minimum distance
from the boundary and the distance from each other) in the domain Ω. On
the other hand, if β > 0, the locations of two spikes reach the position
farthest from the boundary.
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0.2 Fixed frequency problem

Lin-Wei [34] considered the following system with potentials:
−ε2∆u1 + V1(x)u1 = µ1u

3
1 + βu1u

2
2 in RN ,

−ε2∆u2 + V2(x)u2 = µ2u
3
2 + βu21u2 in RN ,

u1, u2 > 0 in RN .

(0.6)

For this system, they showed the spikes are trapped at the minimum points
of Vj(x) if β < 0. On the other hand, if β > 0, they introduced a certain
function ρ(V1(x), V2(x); β) and the spikes are trapped at the minimum points
of ρ(V1(x), V2(x); β) or trapped at the minimum points of Vj(x).

0

V1(x)

V2(x)

ρ(V1(x), V2(x); β)

u2,ε

u1,ε

Figure 0.1: infx∈RN ρ(V1(x), V2(x); β) < d
V1,0

1 + d
V2,0

1

0

V1(x)

V2(x)

u2,ε
u1,ε

Figure 0.2: infx∈RN ρ(V1(x), V2(x); β) > d
V1,0

1 + d
V2,0

1

Here, ρ(V1(x0), V2(x0); β) and d
Vj,0

1 are the least energies of the follow-

ing equations respectively: Here, ρ(V1(x0), V2(x0); β) and d
Vj,0

1 are the least
energies of the following equations respectively:

−∆u1 + V1(x0)u1 = u31 + βu1u
2
2 in RN ,

−∆u2 + V2(x0)u2 = u32 + βu21u2 in RN ,

u1 > 0, u2 > 0 in RN

vi



and {
−∆u+ Vj,0u = u3 in RN ,

u > 0 in RN .

The least energy means the energy which ground state has.
Montefusco-Pellacci-Squassina [39] considered (0.6) for the case N = 3.

They showed that the least energy solution of (0.6) converges (up to scalings)
to a least energy solution of corresponding limit problem as ε → +0. They
adopt a definition of Nehari manifolds similar to Pomponio [43] and ours.
They also proved that if β is sufficiently large, then the limit state is vector,
on the other hand, if β is sufficiently small, then the limit state is scalar.

We now introduce the main result in the setting of the singular pertur-
bation problem. In the following, we state the main results in Chapter 4.
We assume β = 1. To state main results in Chapter 4, we also consider the
following system and define the following corresponding functional:

−∆v1 + λ1v1 = |v1|p−1v1 + αv2v3,

−∆v2 + λ2v2 = |v2|p−1v2 + αv1v3,

−∆v3 + λ3v3 = |v3|p−1v3 + αv1v2,

(P̃λ,α)

Ĩλ,α(v) :=
1

2

3∑
j=1

∫
RN

|∇vj|2 + λjv
2
j

− 1

p+ 1

3∑
j=1

∫
RN

|vj|p+1 − α

∫
RN

v1v2v3,

where λ := (λ1, λ2, λ3) with λj > 0 (j = 1, 2, 3). Define the least energy as
follows:

ρ(λ1, λ2, λ3;α) := inf
v∈Ñλ,α

Ĩλ,α(v),

Ñ λ,α := {v ∈ H \ {(0, 0, 0)} | G̃λ,α(v) = 0},

G̃λ,α(v) :=
3∑

j=1

∫
RN

|∇vj|2 + λjv
2
j − |vj|p+1 − 3α

∫
RN

v1v2v3.

We assume the following condition for the potentials:

(V1) for all j = 1, 2, 3, Vj ∈ L∞(RN) ∩ C1(RN),
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0.2 Fixed frequency problem

(V2) for all j = 1, 2, 3, 0 < Vj,0 := infx∈RN Vj(x) < lim|x|→∞ Vj(x) =: Vj,∞.

(C1)α infx∈RN ρ(V1(x), V2(x), V3(x);α) < ρ(V1,∞, V2,∞, V3,∞;α).

We now state main results for the singular perturbation problem. First,
we state the existence of a ground state of (Pα,1

ε ) for ε sufficiently small (see
Theorem 4.3 in Chapter 4).

Theorem 0.2. We assume that (V1),(V2) and fix α so that (C1)α holds.
Then it follows that

cα,1ε ≤ εN
(

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1)

)
, as ε→ +0.

Moreover, there exists a non-negative ground state u of (Pα,1
ε ) for ε suffi-

ciently small.

Next, we state the precise asymptotic behavior of a ground state of (Pα,1
ε )

as ε → +0. To obtain the asymptotic behavior precisely, we introduce the
following condition:

(C2)α infx∈RN ρ(V1(x), V2(x), V3(x);α) < minj=1,2,3 c
Vj,0

1 ,

where

λ > 0,

Iλ1 (u) :=
1

2

∫
RN

|∇u|2 + λu2 − 1

p+ 1

∫
RN

|u|p+1,

cλ1 := inf
u∈Nλ

1

Iλ1 (u),

N λ
1 := {u ∈ H1(RN) \ {0} | Gλ

1(u) = 0},

Gλ
1(u) :=

∫
RN

|∇u|2 + λu2 − |u|p+1.

We also consider the following equation associated the above minimization
problem:

−∆u+ λu = |u|p−1u (Pλ
1 )

Now, we state the precise asymptotic behavior for a non-negative ground
state of (Pα,1

ε ) as ε→ +0 (see Theorem 4.5 in Chapter 4).
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Theorem 0.3. We assume that (V1),(V2) and fix α so that (C1)α and
(C2)α hold. Let {εn}∞n=1 ⊂ (0,∞) with εn → 0 as n → ∞ and let un be a
non-negative ground state of (Pα,1

εn ). Let xj,n be a maximum point of uj,n.

(1) Then, it follows that {xj,n}∞n=1 is bounded for all j = 1, 2, 3.

(2) It holds that

cα,1ε = εN
(

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1)

)
, as ε→ +0.

(3) Furthermore, up to a subsequence, there exist W0 ∈ H and x0 ∈ RN

such that

xj,n → x0,

|xj,n − xk,n|
εn

→ 0, as n→ ∞, j ̸= k,

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(x0), V2(x0), V3(x0);α),

uj,n(xj,n + εny) → Wj,0 in H1(RN),

W0 is a ground state of (P̃V(x0),α)

Wj,0 is positive, radially symmetric and strictly decreasing

for all j = 1, 2, 3,

where V(x0) = (V1(x0), V2(x0), V3(x0)).

(4) Moreover, for any 0 < η < V0, there exists Cη > 0 such that

uj,n(x) ≤ Cηe
−√

η|x−xj,n|/εn for all x ∈ RN , n ∈ N, j = 1, 2, 3,

where V0 := min{V1,0, V2,0, V3,0}.

Finally, we state the main result in the asymptotic behavior of a non-
negative ground state of (Pα,1

ε ) as ε → +0 for the case where (C2)α does
not hold (see Theorem 4.6 in Chapter 4). When (C2)α does not hold, the
following condition holds (see Lemma 4.15 and Proposition 4.18):

(C3)α infx∈RN ρ(V1(x), V2(x), V3(x);α) = minj=1,2,3 c
Vj,0

1 .
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0.2 Fixed frequency problem

Theorem 0.4. We assume that (V1),(V2) and fix α so that (C1)α and
(C3)α hold. In addition, we assume that there exists α′ > α such that (C3)α′

holds. Let {εn}∞n=1 ⊂ (0,∞) such that εn → +0 and let un be a non-negative
ground state for (Pα,1

εn ). Let xj,n be a maximum point of uj,n. Then, up to a
subsequence, there exist l0 ∈ {1, 2, 3} and xl0,0 ∈ RN such that

xl0,n → xl0,0, Vl0(xl0,0) = Vl0,0 = V0,

cα,1ε = εN
(

min
j=1,2,3

c
Vj,0

1 + o(1)

)
= εN

(
c
Vl0,0

1 + o(1)
)
, as ε→ +0,

ul0,n(xl0,n + εny) → W in H1(RN),

uj,n(xj,n + εny) → 0 in H1(RN) j ̸= l0,

where W is the unique solution of the following equation:
−∆W + V0W = W p in RN ,

W > 0 in RN ,

W (0) = maxx∈RN W (x),

W (x) → 0, as |x| → ∞.

In the problem considered Lin-Wei [34], they consider the least energy
solution among all vector solutions (the solution which has all components
are non-zero) of {

−ε2∆u1 + V1(x)u1 = u31 + βu1u
2
2,

−ε2∆u2 + V2(x)u2 = u32 + βu21u2.

On the other hand, in our setting, we consider the least energy solution
among all nontrivial solutions (includes scalar solution (the solution which
only one component survive)) of

−ε2∆u1 + V1(x)u1 = |u1|p−1u1 + αu3u2 in RN ,

−ε2∆u2 + V2(x)u2 = |u2|p−1u2 + αu3u1 in RN ,

−ε2∆u3 + V3(x)u3 = |u3|p−1u3 + αu1u2 in RN .

(Pα,1
ε )

Therefore, in the result of Theorem 0.4, the case which each component of
ground states survives and converges to a minimum point of corresponding
potential respectively as in the result in Lin-Wei [34] does not occur.
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The difference in the range of N and p arising the fixed mass problem
and the fixed frequency problem is due to the difference in the conditions
for ensuring that the functional is bounded below due to the difference in
the constraints. The purpose of this thesis is to analyze the existence and
asymptotic behavior of the solutions of minimization problems for the fixed
mass problem and the fixed frequency problem using variational methods.

The rest of the thesis is organized as follows.
In Part I, we consider the fixed mass problem. Part I consists of Chapter

1 and 2. In Part II, we consider the fixed frequency problem. Part II consists
of Chapter 3 and 4.

In Chapter 1, we show that the existence of a minimizer for ξ1,11 (a) under
without assuming symmetry for Vj(x). This result is an extension of the
result of Kurata-Osada [31]. In doing so, a technique interaction estimate
developed by Ikoma and Miyamoto in [26] plays an important role. Chapter
1 is based on the result in Osada [42] and Kurata-Osada [31].

In Chapter 2, we consider the asymptotic behavior of a minimizer for
ξα,β1 (a) as β → ∞ under supposing α = βκ for given κ ∈ R. We show
that the asymptotic behavior of a minimizer can be classified into five types
depending on the size of κ ∈ R. Moreover, we investigate the asymptotic
behavior of a minimizer for ξα,β1 (a) as α → ∞ under supposing β = ατ for
given τ ∈ R. This is an extension of the result of [31]. Chapter 2 is based on
the result in Osada [41].

In Chapter 3, we investigate the asymptotic behavior of a ground state of
(Pα,1

1 ) as α → ∞. Moreover, we obtain the result that there exists a positive
constant α∗ such that all ground states of (Pα,1

1 ) is scalar (a state in which
only one component survives) if 0 ≤ α < α∗, and all ground states of (Pα,1

1 )
is vector (a state in which all components survive) if α > α∗. Chapter 3 is
based on the result in Kurata-Osada [30].

In Chapter 4, we consider the existence of a non-negative ground state
of (Pα,1

ε ) for ε sufficiently small and the asymptotic behavior of the non-
negative ground state of (Pα,1

ε ) as ε → +0. In particular, it is clarified
that the asymptotic form becomes spike-like, and the position of the spike
is determined by the shape of the potential Vj(x) and the attractive force of
the three wave interaction α. Chapter 4 is based on the result in Osada [40].
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Chapter 1

Existence of a minimizer for a
nonlinear Schrödinger system
with three wave interaction
under non-symmetric potentials

1.1 Introduction

We consider the following L2-constrained minimization problem associated
with a nonlinear Schrödinger system with three wave interaction: for a =
(a1, a2, a3), a1, a2, a3 ≥ 0,

ξ(a) := inf{E(u) | u ∈M(a)}, (1.1)

E(u) :=
1

2

3∑
j=1

∫
RN

|∇uj|2 + Vj(x)|uj|2 dx

− β

p+ 1

3∑
j=1

∫
RN

|uj|p+1 dx− αRe

∫
RN

u1u2u3 dx,

M(a) := {u ∈ H | ∥uj∥22 = aj (j = 1, 2, 3)},
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where u = (u1, u2, u3), H := H1 ×H1 ×H1, H1 := H1(RN ;C), 1 ≤ N ≤ 3,
1 < p < 1 + 4/N , α, β > 0 and each potential Vj satisfies the following
conditions:

(V1) for all j = 1, 2, 3, Vj ∈ L∞(RN ;R).

(V2) for all j = 1, 2, 3, Vj(x) ≤ lim|y|→∞ Vj(y) = 0 (for almost every x ∈ RN).

The minimization problem (1.1) is related to the existence of a standing
wave solution of the nonlinear Schrödinger system with three wave interac-
tion: 

i∂tv1 − V1(x)v1 +∆v1 + β|v1|p−1v1 = −αv̄2v3,
i∂tv2 − V2(x)v2 +∆v2 + β|v2|p−1v2 = −αv̄1v3,
i∂tv3 − V3(x)v3 +∆v3 + β|v3|p−1v3 = −αv1v2.

(1.2)

(1.3)

(1.4)

As explained in [4], once we show the existence of a minimizer of (1.1), we can
also show the existence of a minimizer of the energy E under the constraints

∥u1∥22 + ∥u3∥22 = a1, ∥u2∥22 + ∥u3∥22 = a2,

for given a1 > 0 and a2 > 0. Then if u is a minimizer of the energy E under
the constraints ∥u1∥22 + ∥u3∥22 = a1 and ∥u2∥22 + ∥u3∥22 = a2, there exist ω1

and ω2 such that
−∆u1 + (ω1 + V1(x))u1 − β|u1|p−1u1 = αū2u3,

−∆u2 + (ω2 + V2(x))u2 − β|u2|p−1u2 = αū1u3,

−∆u3 + (ω3 + V3(x))u3 − β|u3|p−1u3 = αu1u2,

where ω3 = ω1 + ω2. That is,

(eiω1tu1(x), e
iω2tu2(x), e

i(ω1+ω2)tu3(x))

is a standing wave solution of (1.2)–(1.4). In that sense, it is important to
show the existence of a minimizer of the minimization problem (1.1).

The system (1.2)–(1.4) was introduced by Colin-Colin-Ohta [19] with Vj(x) ≡
0 and β = 1 (see also [15, 16]). Colin-Colin-Ohta [19] showed that the stand-
ing wave solutions (eiωtφ, 0, 0) and (0, eiωtφ, 0) is orbitally stable for all α > 0,
where ω > 0 and φ is the unique positive radial solution of

−∆v + ωv − |v|p−1v = 0 in RN .
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On the other hand, (0, 0, eiωtφ) is orbitally stable if 0 < α < α∗ and is
orbitally unstable if α > α∗ where α∗ is suitable positive constant (see [19]
for more detail).

We say that {un}∞n=1 ⊂M(a) is a minimizing sequence for ξ(a) if E(un) →
ξ(a) as n→ ∞. We state the main result in this chapter.

Theorem 1.1. Assume that N ≤ 3, 1 < p < 1 + 4/N , α, β > 0 and (V1)–
(V2) and (V1, V2, V3) ̸≡ (0, 0, 0) and aj > 0 for all j = 1, 2, 3. Then for any
minimizing sequence {un}∞n=1 ⊂ M(a) for ξ(a), up to a subsequence, there
exists a minimizer u ∈ H for ξ(a) such that

∥un − u∥H → 0.

We also consider the limit minimization problem:

ξ∞(a) := inf{E∞(u) | u ∈M(a)},

E∞(u) :=
1

2

3∑
j=1

∫
RN

|∇uj|2 dx−
β

p+ 1

3∑
j=1

∫
RN

|uj|p+1 dx

− αRe

∫
RN

u1u2u3 dx.

To prove Theorem 1.1, it is extremely important to show the strict subaddi-
tivity condition

ξ(a) < ξ(b) + ξ∞(a− b) (1.5)

for all b = (b1, b2, b3) with b ̸= a and 0 ≤ bj ≤ aj for all j = 1, 2, 3 where a =
(a1, a2, a3), aj > 0 for all j = 1, 2, 3. In previous paper [31], we showed the
existence of a minimizer under the conditions (V1),(V2) and the additional
assumption:

(V3) for all j = 1, 2, 3, Vj(−x1, x′) = Vj(x1, x
′) for almost every x1 ∈ R and x′

∈ RN−1,
Vj(s, x

′) ≤ Vj(t, x
′) for almost every s, t ∈ R with 0 ≤ s < t and

x′ ∈ RN−1.
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Thus Theorem 1.1 improves the result in [31]. The condition V (x) ≤ lim|y|→∞
V (y) = 0 (for almost every x ∈ RN) is almost necessary even for the scalar
case (see e.g. [35, 36]). However it is known that the condition (V3) is not
necessary for the scalar case or some systems (see e.g. [26, 27]). The key
point of the proof of Theorem 1.1 is to show a quantitative estimate (1.41)
(see the proof of Proposition 1.9) for our system, which implies the strict
subadditivity (1.5) without symmetric condition (V3) by using the idea in
[26, 27].

For the single minimization problem with pure power nonlinearities, it is
easy to show the strict subadditivity condition by using the scaling uθ(x) =
θu(x) for θ > 0. Also, for the single minimization problem with general non-
linearities and without potentials, we can show that the strict subadditivity
by using the scaling uλ(x) = u(λx) for λ > 0 (see [46]). But for system
minimization problems, it is more difficult to show the strict subadditivity
condition. Ardila [4] showed the existence of a minimizer for ξ(a) under the
condition N = 1 and Vj ≡ 0 for j = 1, 2, 3. Ardila [4] used the rearrange-
ment techniques to obtain the strict subadditivity for ξ(a). Kurata-Osada
[31] showed the existence of a minimizer for ξ(a) under the condition N ≤ 3
and (V1),(V2) and the symmetric condition (V3). Kurata-Osada [31] used
the coupled rearrangement techniques developed by Shibata [47] (see Gou
[23] and Gou-Jeanjean [24] for other studies using coupled rearrangement).
However, it is more difficult to show the strict subadditivity condition (1.5)
without assuming symmetry for the potentials. Recently, Ikoma-Miyamoto
[27] established a method of showing the strict subadditivity condition for
two component system arising Bose-Einstein condensates model without as-
suming symmetry for the potentials. So in this chapter, we prove Theorem
1.1 based on the technique due to [27].

We also mention other studies on nonlinear Schrödinger system with three
wave interaction. Pomponio [43] studied the existence of vector ground state
of the system 

−∆u1 + V1(x)u1 − |u1|p−1u1 = αu2u3,

−∆u2 + V2(x)u2 − |u2|p−1u2 = αu1u3,

−∆u3 + V3(x)u3 − |u3|p−1u3 = αu1u2,

(1.6)

(1.7)

(1.8)

for α > 0 sufficiently large. Here, N ≤ 5, 2 < p < 2∗−1, 2∗ := ∞ (N = 1, 2),
2∗ := 2N/(N−2) (N ≥ 3) and the potential Vj satisfies a suitable conditions
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(see [43] for more details). After that, Kurata-Osada [30] showed that the
asymptotic expansion of ground state energy as α → ∞ and there exists
a positive threshold α∗ such that all ground state for (1.6)–(1.8) is scalar
if 0 ≤ α < α∗ and is vector if α > α∗. Moreover, Osada [41] showed the
asymptotic expansion of ξ(a) as β → ∞ with α = βθ (θ ∈ R).

The rest of this chapter is organized as follows: In Section 1.2, we note
that a property of a minimizing sequence for ξ(a) and an exponential decay
estimate for a non-negative solution of a corresponding nonlinear elliptic
system (see Lemma 1.8). In Section 1.3, we prove the strict subadditivity
for ξ(a) by using the idea in [27]. In Section 1.4 we prove Theorem 1.1. In
Appendix, we prove the existence of a minimizer for ξ(a) under symmetric
conditions for potentials Vj(x). Although this result have been proved in
[31], we give the proof for the reader’s convenience.

Notation

|u| = (|u1|, |u2|, |u3|),

(u, v)2 :=

∫
RN

uv dx,

∥u∥22 = (u, u)2,

(u, v)H1 :=

∫
RN

∇u · ∇v + uv dx,

∥u∥2H1 := (u, u)H1 ,

(u,v)H :=
3∑

j=1

(uj, vj)H1 ,

∥u∥2H := (u,u)H ,

⟨u, v⟩Vj
:= Re

∫
RN

∇u · ∇v + Vj(x)uv dx,

FVj
(u) := ⟨u, u⟩Vj

.
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1.2 Preliminaries

From now on, in this chapter, we assume that α = β = 1 for simplicity.

1.2.1 Existence of the nice minimizing sequence

The following lemma can be proved as in Lemma 2.2 in [27].

Lemma 1.2. Assume that N ≤ 3, 1 < p < 1 + 4/N and (V1),(V2) and
let {un}∞n=1 ⊂ M(a) be a minimizing sequence for ξ(a). Then {|un|}∞n=1 is
also a minimizing sequence for ξ(a). Moreover, if {|un|}∞n=1 has a strongly
convergent subsequence in H, then {un}∞n=1 has also a strongly convergent
subsequence in H.

Although the following lemma can be proved as in Lemma 2.3 in [27],
we give a proof for the reader’s convenience according to the setting of this
chapter.

Lemma 1.3. Suppose that (V1) and let {un}∞n=1 ⊂M(a) be a minimizing
sequence for ξ(a). Then there exist {vn}∞n=1 ⊂ M(a) and {λj,n} ⊂ R such
that {λj,n}∞n=1 are bounded and

∥un − vn∥H → 0,

E ′(vn) + λ1,nQ
′
1(vn) + λ2,nQ

′
2(vn) + λ3,nQ

′
3(vn) → 0 strongly in H∗,

where

E ′(u)[v] = Re
3∑

j=1

∫
RN

∇uj · ∇vj + Vj(x)ujvj dx− Re
3∑

j=1

∫
RN

|uj|p−1ujvj dx

− Re

∫
RN

v1u2u3 + u1v2u3 + u1u2v3 dx,

Qj(u) :=
1

2
∥uj∥22, Q′

j(u)[v] = Re(uj, vj)2.

Proof. Applying Ekeland’s variational principle for E and {un} on M(a)
(see [38, Theorem 4.1 and Remark 4.1]), there exists {vn}∞n=1 ⊂ M(a) such
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1.2 Preliminaries

that for εn := E(un)− ξ(a) ≥ 0,

E(vn) ≤ E(un), ∥un − vn∥H ≤
√
εn,

E(vn) ≤ E(w) +
√
εn∥vn −w∥H for all w ∈M(a). (1.9)

Thus, {vn}∞n=1 also a minimizing sequence for ξ(a).

For u ∈M(a), set

TuM(a) := {v ∈ H | Re(uj, vj)2 = 0 (j = 1, 2, 3)}.

By the Riesz representation theorem, there exists unique ũj ∈ H1 such that

(uj, vj)2 = (ũj, vj)H1 for all vj ∈ H1,

∥uj∥2 = ∥ũj∥H1 . (1.10)

Set ∇Q1(u) := (ũ1, 0, 0), ∇Q2(u) := (0, ũ2, 0), ∇Q3(u) := (0, 0, ũ3) and

span {∇Q1(u),∇Q2(u),∇Q3(u)}
:= {c1∇Q1(u) + c2∇Q2(u) + c3∇Q3(u) | c1, c2, c3 ∈ R}.

Then we have

TuM(a) = {v ∈ H | Re(∇Qj(u),v)H = 0 (j = 1, 2, 3)}
= span {∇Q1(u),∇Q2(u),∇Q3(u)}⊥,

H = TuM(a)⊕ span {∇Q1(u),∇Q2(u),∇Q3(u)} (1.11)

Noting that (1.11), for all u ∈ H, there exist h ∈ TvnM(a) and c1, c2, c3 ∈ R
such that

u = h+ c1∇Q1(vn) + c2∇Q2(vn) + c3∇Q3(vn).

Setting λj,n := −E ′(vn)[∇Qj(vn)]/∥∇Qj(vn)∥2H , we have

(E ′(vn) + λ1,nQ
′
1(vn) + λ2,nQ

′
2(vn) + λ3,nQ

′
3(vn))[u] = E ′(vn)[h]. (1.12)

Here, we define c(t) : (−ε, ε) →M(a) as follows:

c(t) =

(
√
a1

v1,n + th1
∥v1,n + th1∥2

,
√
a2

v2,n + th2
∥v2,n + th2∥2

,
√
a3

v3,n + th3
∥v3,n + th3∥2

)
.
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Then c(t) is a C1-curve satisfying c(0) = vn and c′(0) = h. From (1.9),

E(c(t))− E(vn)

t
≥ −

√
εn

∥∥∥∥c(t)− vn

t

∥∥∥∥
H

if t > 0, (1.13)

E(c(t))− E(vn)

t
≤

√
εn

∥∥∥∥c(t)− vn

t

∥∥∥∥
H

if t < 0. (1.14)

Since E is Fréchet differentiable,

E(c(t))− E(vn)

t
→ E ′(vn)[h], as t→ 0. (1.15)

From (1.13)–(1.15), we have

|E ′(vn)[h]| ≤
√
εn∥h∥H . (1.16)

Thus from (1.12) and (1.16),

∥E ′(vn) + λ1,nQ
′
1(vn) + λ2,nQ

′
2(vn) + λ3,nQ

′
3(vn)∥H∗

= sup
u∈H, ∥u∥H≤1

|(E ′(vn) + λ1,nQ
′
1(vn) + λ2,nQ

′
2(vn) + λ3,nQ

′
3(vn))[u]|

≤
√
εn → 0.

Since {vn} is bounded in H and (1.10) and vn ∈ M(a), there exista M > 0
such that

∥∇Qj(vn)∥H =
√
aj,

|E ′(vn)[∇Qj(vn)]| ≤M for all n ∈ N.

Therefore {λj,n} is bounded. 2

1.2.2 Exponential decay estimate

We introduce the following terminology for convenience.

Definition 1.4. Let f be a non-negative function defined on RN and λ >
0. We say that f has an essentially exponential decay order

√
λ if for all

0 <
√
η1 <

√
λ <

√
η2, there exist Cη1 , Cη2 > 0 such that

Cη2e
−√

η2|x| ≤ f(x) ≤ Cη1e
−√

η1|x| for all x ∈ RN .

9
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Definition 1.5. Let {an}∞n=1 be a non-negative sequence and λ > 0. We
say that {an}∞n=1 has an essentially exponential decay order

√
λ if for all

0 <
√
η1 <

√
λ <

√
η2, there exist Cη1 , Cη2 > 0 such that

Cη2e
−√

η2n ≤ an ≤ Cη1e
−√

η1n for all n ∈ N.

We give a simple proof of the following weak version of the interaction
estimate due to Bahri-Li [5].

Lemma 1.6. Let f and g be non-negative functions and λ1, λ2 > 0. We
assume that f and g have an essentially exponential decay order

√
λ1 and√

λ2 respectively. Set

an :=

∫
RN

f(x)g(x− ne1) dx.

Then {an}∞n=1 has an essentially exponential decay order min{
√
λ1,

√
λ2}.

Proof. Without loss of generality, we may assume that λ1 ≤ λ2. We first
prove that for any 0 <

√
η1 <

√
λ1, there exists Cη1 > 0 such that

an ≤ Cη1e
−√

η1n for all n ∈ N.

Indeed, since f and g have an essentially exponential decay order
√
λ1 and√

λ2, it follows that for any 0 <
√
η3 <

√
λ1, there exist

√
η3 <

√
η4 <

√
λ2,

Cη3 , Cη4 > 0 such that

f(x) ≤ Cη3e
−√

η3|x| for all x ∈ RN ,

g(x) ≤ Cη4e
−√

η4|x| for all x ∈ RN .

Thus, we have

an ≤ Cη3Cη4

∫
RN

e−
√
η3|x+ne1|e−

√
η4|x| dx

≤ Cη3Cη4

∫
RN

e−(
√
η4−

√
η3)|x| dx e−

√
η3n for all 0 <

√
η3 <

√
λ1.
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Secondly, we prove that for any
√
η2 >

√
λ1, there exists Cη2 > 0 such that

an ≥ Cη2e
−√

η2n for all n ∈ N.

Since f and g have an essentially exponential decay order
√
λ1 and

√
λ2,

for any
√
η5 >

√
λ1,

√
η6 >

√
λ2, there exist Cη5 > 0 and Cη6 > 0 such that

f(x) ≥ Cη5e
−√

η5|x| for all x ∈ RN ,

g(x) ≥ Cη6e
−√

η6|x| for all x ∈ RN .

Thus, we have

an ≥ Cη5Cη6

∫
RN

e−
√
η5|x+ne1|e−

√
η6|x| dx

≥ Cη5Cη6

∫
RN

e−(
√
η5+

√
η6)|x| dx e−

√
η5n.

2

Lemma 1.7. Let f and g be a non-negative functions and p, q ≥ 0 with
(p, q) ̸= (0, 0) and λ1, λ2 > 0. We assume that f and g have an essentially
exponential decay order

√
λ1 and

√
λ2 respectively. Then it follows that fpgq

has an essentially exponential decay order p
√
λ1 + q

√
λ2.

To show the strict subadditivity for ξ(a), we prove the exponential decay
estimate for the non-negative solution of the following system (1.17)–(1.19).

Lemma 1.8. (cf Lemma 3.1 in [27]) Let u1, u2, u3 ∈ H1(RN) be a
non-negative weak solution of the following elliptic system:

−∆u1 + (λ1 + V1(x))u1 = up1 + u2u3,

−∆u2 + (λ2 + V2(x))u2 = up2 + u1u3,

−∆u3 + (λ3 + V3(x))u3 = up3 + u1u2,

(1.17)

(1.18)

(1.19)

where N ≤ 3, 1 < p < 1 + 4/N , 0 < λ1 ≤ λ2 ≤ λ3, Vj satisfies (V1) and
(V2). Then it follows that

(i) if u1 > 0, then u1 has an essentially exponential decay
√
λ1.

11
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(ii) if u2 > 0, then u2 has an essentially exponential decay
√
λ2.

(iii) if u1 = u2 = 0 and u3 > 0, then u3 has an essentially exponential decay√
λ3.

(iv) if u1, u2, u3 > 0, then u3 has an essentially exponential decay
√
λ4 :=

min{
√
λ1 +

√
λ2,

√
λ3}.

Proof. (i): For the case of u1 > 0, u2 = u3 = 0, we can prove easily (i). So
we assume that u1, u2, u3 ̸≡ 0. By the strong maximum principle, it follows
that u1, u2, u3 > 0. First, we prove upper estimate for u1. For all 0 < η1 < λ1,
there exists ε > 0 such that 0 < η1 < λ1 − ε. Set u := u1 + u2, V := V1 + V2.
Note that u1, u2 ≥ 0, V1, V2 ≤ 0 and 0 < λ1 ≤ λ2. From (1.17) and (1.18),

−∆u+ (λ1 + V (x))u

≤ −∆u1 −∆u2 + λ1u1 + λ2u2 + V1(x)u1 + V2(x)u2

= up1 + up2 + (u1 + u2)u3

≤ 2up + uu3. (1.20)

From N ≤ 3 and the elliptic regularity, uj ∈ H2(RN) ∩ L∞(RN) ∩ C(RN)
and

lim
|x|→∞

uj(x) = 0.

Note that Vj(x) → 0 as |x| → ∞. There exists R > 0 such that if |x| ≥ R
then

−V (x) + 2up−1 + u3 ≤ ε.

From (1.20), if |x| ≥ R, then

−∆u+ (λ1 − ε)u ≤ 0.

On the other hand, we define the comparison function ψ as

ψ(x) := Ce−
√
η1|x|.

Noting η1 < λ1 − ε, we have

−∆ψ + (λ1 − ε)ψ = (
√
η1(N − 1)/|x|+ λ1 − ε− η1)Ce

−√
η1|x| ≥ 0.

12
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Thus

−∆u+ (λ1 − ε)u ≤ −∆ψ + (λ1 − ε)ψ for all |x| ≥ R.

From the comparison principle, there exists Cη1 > 0 such that

u1(x) ≤ u(x) ≤ Cη1e
−√

η1|x| for all x ∈ RN .

Secondly, we prove lower estimate for u1. Since u1 ≥ 0 and V1 ≤ 0, we
have

−∆u1 + λ1u1 ≥ 0.

By the same argument as above, we can prove that for all η2 > λ1, there
exists Cη2 > 0 such that

u1(x) ≥ Cη2e
−√

η2|x| for all x ∈ RN .

(ii),(iii): They can be proved by the same argument as in (i).

(iv): We first prove upper estimate for u3. For all 0 <
√
η5 <

√
λ4 :=

min{
√
λ1+

√
λ2,

√
λ3}, there exist 0 <

√
η1 <

√
λ1 and 0 <

√
η3 <

√
λ2 such

that

√
η5 <

√
η1 +

√
η3.

From the upper bound for u1, u2, we have

u1(x) ≤ Cη1e
−√

η1|x| for all x ∈ RN ,

u2(x) ≤ Cη3e
−√

η3|x| for all x ∈ RN .

From (1.19),

−∆u3 + (λ3 + V3(x))u3 − up3 ≤ Cη1Cη2e
−(

√
η1+

√
η3)|x|.

Since η5 < λ3, thre exists ε > 0 such that η5 < λ3 − ε. Note that

lim
|x|→∞

u3(x) = lim
|x|→∞

V3(x) = 0.
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1.2 Preliminaries

Thus, for |x| sufficiently large,

V3(x)− up−1
3 ≥ −ε.

Hence, for |x| sufficiently large, we have

−∆u3 + (λ3 − ε)u3 ≤ Cη1Cη3e
−(

√
η1+

√
η3)|x|. (1.21)

On the other hand, we set ψ(x) := Ce−
√
η5|x|. Then

−∆ψ + (λ3 − ε)ψ = (
√
η5(N − 1)/|x|+ λ3 − ε− η5)Ce

−√
η5|x|. (1.22)

Since
√
η5 <

√
η1 +

√
η3, for |x| sufficiently large, it follows from (1.21) and

(1.22) that

−∆u3 + (λ3 − ε)u3 ≤ −∆ψ + (λ3 − ε)ψ.

By the comparison principle, there exists Cη5 > 0 such that

u3(x) ≤ Cη5e
−√

η5|x| for all x ∈ RN .

Secondly, we show the lower estimate for u3. Let
√
η6 >

√
λ4 := min{

√
λ1+√

λ2,
√
λ3}. If λ4 = λ3, then we can prove the lower estimate for u3 by the

same argument as in the lower estimate for u1. So we consider the case of√
λ4 =

√
λ1 +

√
λ2. Then there exist

√
η2 >

√
λ1 and

√
η4 >

√
λ2 such that

√
η6 >

√
η2 +

√
η4.

From (1.19), we have

−∆u3 + λ3u3 = −V3(x)u3 + up3 + u1u2

≥ u1u2.

From the lower estimate for u1, u2, there exist Cη2 , Cη4 > 0 such that

u1(x) ≥ Cη2e
−√

η2|x| for all x ∈ RN ,

u2(x) ≥ Cη4e
−√

η4|x| for all x ∈ RN .

Thus

−∆u3 + λ3u3 ≥ Cη2Cη4e
−(

√
η2+

√
η4)|x|.

14



Chapter 1 Existence of a minimizer for a nonlinear Schrödinger system
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On the other hand, we set ψ(x) := Ce−
√
η6|x|. Then

−∆ψ + λ3ψ = (
√
η6(N − 1)/|x|+ λ3 − η6)Ce

−√
η6|x|.

Since
√
η6 >

√
η2 +

√
η4, for |x| sufficiently large,

−∆u3 + λ3u3 ≥ −∆ψ + λ3ψ.

By the comparison principle, there exists Cη6 > 0 such that

u3(x) ≥ Cη6e
−√

η6|x| for all x ∈ RN .

2

1.3 Strict subadditivity for ξ(a)

The next proposition plays a crucial role to prove Theorem 1.1.

Proposition 1.9. Let a, b, c ∈ R3
≥0 satisfying b, c ̸= (0, 0, 0) and aj =

bj + cj > 0 and let u0 and w0 be a minimizer for ξ(b) and ξ∞(c) respectively
satisfying

uj,0 ≥ 0, wj,0 ≥ 0 a.e. in RN ,
−∆u1,0 + (λ1,0 + V1(x))u1,0 − up1,0 = u2,0u3,0 in RN ,

−∆u2,0 + (λ2,0 + V2(x))u2,0 − up2,0 = u1,0u3,0 in RN ,

−∆u3,0 + (λ3,0 + V3(x))u3,0 − up3,0 = u1,0u2,0 in RN ,

(1.23)

(1.24)

(1.25)
−∆w1,0 + λ1,0w1,0 − wp

1,0 = w2,0w3,0 in RN ,

−∆w2,0 + λ2,0w2,0 − wp
2,0 = w1,0w3,0 in RN ,

−∆w3,0 + λ3,0w3,0 − wp
3,0 = w1,0w2,0 in RN ,

(1.26)

(1.27)

(1.28)

where 0 < λ1,0 ≤ λ2,0 ≤ λ3,0 for all j = 1, 2, 3. Then we have

ξ(a) < ξ(b) + ξ∞(c).
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1.3 Strict subadditivity for ξ(a)

Proof. We borrowed the ideas from Theorem 1.1 in Ikoma-Miyamoto [27].
Set

wj,n(x) := wj,0(x− ne1), τj,n :=

√
aj

∥uj,0 + wj,n∥2
, κj,n := (uj,0, wj,n)2.

Remark that

(τ1,n(u1,0 + w1,n), τ2,n(u2,0 + w2,n), τ3,n(u3,0 + w3,n)) ∈M(a),

0 ≤ κj,n → 0.

By the strong maximum principle, it is sufficient to consider the cases

(i) u0 = (u1,0, 0, 0), w0 = (w1,0, w2,0, w3,0),

(ii) u0 = (0, u2,0, 0), w0 = (w1,0, w2,0, w3,0),

(iii) u0 = (0, 0, u3,0), w0 = (w1,0, w2,0, w3,0),

(iv) u0 = (u1,0, u2,0, u3,0), w0 = (w1,0, 0, 0),

(v) u0 = (u1,0, u2,0, u3,0), w0 = (0, w2,0, 0),

(vi) u0 = (u1,0, u2,0, u3,0), w0 = (0, 0, w3,0),

(vii) u0 = (u1,0, u2,0, u3,0), w0 = (w1,0, w2,0, w3,0).

So it is sufficient to consider the cases

(A) κ1,n > 0,

(B) κ1,n = 0 < κ2,n,

(C) κ1,n = κ2,n = 0 < κ3,n.

Noting that

E(τ1,n(u1,0 + w1,n), τ2,n(u2,0 + w2,n), τ3,n(u3,0 + w3,n))

16
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=
3∑

j=1

τ 2j,n
2
FVj

(uj,0 + wj,n)−
3∑

j=1

τ p+1
j,n

p+ 1

∫
RN

(uj,0 + wj,n)
p+1 dx

− τ1,nτ2,nτ3,n

∫
RN

(u1,0 + w1,n)(u2,0 + w2,n)(u3,0 + w3,n) dx,

we compute each term.

(Step 1) Since aj = bj + cj, we have

∥uj,0 + wj,n∥22 = aj + 2κj,n.

Hence,

τ qj,n =

(
aj

aj + 2κj,n

)q/2

= 1− q

aj
κj,n +O(κ2j,n).

First, we estimate each term as Claim A, B and C as follows.

Claim A. There exists θ1 ∈ (0, 1) such that

τ 2j,n
2
FVj

(uj,0 + wj,n)

≤
(
1

2
− κj,n

aj

)
(FVj

(uj,0) + ∥∇wj,0∥22)− λj,0κj,n +

∫
RN

upj,0wj,n dx

+


∫
RN w1,nu2,0u3,0 dx (j = 1)∫
RN u1,0w2,nu3,0 dx (j = 2)∫
RN u1,0u2,0w3,n dx (j = 3)

+ o(κ1+θ1
j,n ), if κj,n > 0. (1.29)

Claim B. There exists θ2 ∈ (0, 1) such that

τ p+1
j,n

p+ 1

∫
RN

(uj,0 + wj,n)
p+1 dx

≥
(

1

p+ 1
− κj,n

aj

)∫
RN

up+1
j,0 + wp+1

j,0 dx

+

∫
RN

upj,0wj,n + uj,0w
p
j,n dx+ o(κ1+θ2

j,n ), if κj,n > 0. (1.30)
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1.3 Strict subadditivity for ξ(a)

Claim C. There exists θ3 ∈ (0, 1) such that

τ1,nτ2,nτ3,n

∫
RN

(u1,0 + w1,n)(u2,0 + w2,n)(u3,0 + w3,n) dx

≥

(
1−

(
3∑

j=1

κj,n
aj

))∫
RN

u1,0u2,0u3,0 + w1,0w2,0w3,0 dx

+

∫
RN

w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n + w1,nw2,nu3,0 dx

+


o(κ1+θ3

1,n ) if κ1,n > 0,

o(κ1+θ3
2,n ) if κ1,n = 0 < κ2,n,

o(κ1+θ3
3,n ) if κ1,n = κ2,n = 0 < κ3,n.

(1.31)

Proof of Claim A. It follows from (3.44) in [27] that

τ 2j,n
2
FVj

(uj,0 + wj,n)

≤
(
1

2
− κj,n

aj

)
(FVj

(uj,0) + ∥∇wj,0∥22) + ⟨uj,0, wj,n⟩Vj

+O(κ2j,n) +O(κj,n⟨uj,0, wj,n⟩Vj
).

Since u0 is a solution of (1.23)–(1.25), one sees

⟨uj,0, wj,n⟩Vj
= −λj,0κj,n +

∫
RN

upj,0wj,n dx

+


∫
RN w1,nu2,0u3,0 dx (j = 1)∫
RN u1,0w2,nu3,0 dx (j = 2)∫
RN u1,0u2,0w3,n dx (j = 3)

. (1.32)

Now, we prove that if κj,n > 0, then there exists θ1,j ∈ (0, 1) such that

⟨uj,0, wj,n⟩Vj
= o(κ

θ1,j
j,n ).

Indeed, if κ1,n > 0, then u1,0, w1,0 > 0. From Lemma 1.8, u1,0 and w1,0

have an essentially exponential decay order
√
λ1,0. Thus from Lemma 1.6

and 1.7, there exist η1, η2 > 0 and C1, C2 > 0 such that

C1e
−√

η1n ≤ κ1,n for all n ∈ N, (1.33)
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∫
RN

up1,0w1,n dx ≤ C2e
−√

η2n for all n ∈ N. (1.34)

If u2,0, u3,0 > 0, then u2,0 and u3,0 have an essentially exponential decay order√
λ2 and

√
λ4 respectively. Hence from Lemma 1.6 and 1.7, there exist η3 > 0

and C3 > 0 such that∫
RN

w1,nu2,0u3,0 dx ≤ C3e
−√

η3n for all n ∈ N. (1.35)

From (1.32)–(1.35), there exists 0 < θ1,1 < 1 such that

⟨u1,0, w1,n⟩V1 = o(κ
θ1,1
1,n ).

We can prove the cases κ2,n > 0 or κ3,n > 0 by the same argument.

Set θ1 := min{θ1,1, θ1,2, θ1,3} ∈ (0, 1). We have ⟨uj,0, wj,n⟩Vj
= o(κθ1j,n).

Hence, if κj,n > 0,

κj,n⟨uj,0, wj,n⟩Vj
= o(κ1+θ1

j,n ).

Thus we have (1.29).

Proof of Claim B. We can prove (1.30) by the same argument as in page
21 in [27]. So we omit the details.

Proof of Claim C. It follows that

τ1,nτ2,nτ3,n

∫
RN

(u1,0 + w1,n)(u2,0 + w2,n)(u3,0 + w3,n) dx

≥
(
1− κ1,n

a1
+O(κ21,n)

)(
1− κ2,n

a2
+O(κ22,n)

)(
1− κ3,n

a3
+O(κ23,n)

)
×
∫
RN

(u1,0u2,0u3,0 + w1,0w2,0w3,0 + w1,nu2,0u3,0 + u1,0w2,nu3,0

+ u1,0u2,0w3,n + w1,nw2,nu3,0) dx

=

∫
RN

(u1,0u2,0u3,0 + w1,0w2,0w3,0 + w1,nu2,0u3,0 + u1,0w2,nu3,0

+ u1,0u2,0w3,n + w1,nw2,nu3,0) dx
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1.3 Strict subadditivity for ξ(a)

−
3∑

j=1

κj,n
aj

∫
RN

(u1,0u2,0u3,0 + w1,0w2,0w3,0) dx

−
3∑

j=1

κj,n
aj

∫
RN

(w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n

+ w1,nw2,nu3,0) dx+O(κ21,n + κ22,n + κ23,n).

Here we show that there exists θ3,j ∈ (0, 1) such that

3∑
j=1

κj,n
aj

∫
RN

w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n + w1,nw2,nu3,0 dx

=


o(κ

1+θ3,1
1,n ) if κ1,n > 0,

o(κ
1+θ3,2
2,n ) if κ1,n = 0 < κ2,n,

o(κ
1+θ3,3
3,n ) if κ1,n = κ2,n = 0 < κ3,n.

(1.36)

If κ1,n > 0, from Lemma 1.6–Lemma 1.8, there exist η1 > 0 and C1 > 0
such that

κ1,n ≥ C1e
−√

η1n for all n ∈ N. (1.37)

If
∫
RN w1,nu2,0u3,0 dx > 0, then from Lemma 1.6–Lemma 1.8, there exist

η2 > 0 and C2 > 0 such that∫
RN

w1,nu2,0u3,0 dx ≤ C2e
−√

η2n for all n ∈ N.

Since other terms can be estimated in the same way, there exist η3 > 0 and
C3 > 0 such that∫

RN

(w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n

+ w1,nw2,nu3,0) dx ≤ C3e
−√

η3n for all n ∈ N. (1.38)

If κ2,n, κ3,n > 0, it follows from
√
λ1,0 ≤

√
λ2,0 ≤

√
λ4,0 := min{

√
λ1,0 +√

λ2,0,
√
λ3,0} that for all θ ∈ (0, 1),

κ2,n = o(κθ1,n), κ3,n = o(κθ1,n).
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In any case, it follows from (1.37),(1.38) that there exists θ3,1 ∈ (0, 1) such
that

3∑
j=1

κj,n
aj

∫
RN

(w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n

+ w1,nw2,nu3,0) dx = o(κ
1+θ3,1
1,n ).

For the case κ1,n = 0 < κ2,n or κ1,n = κ2,n = 0 < κ3,n, (1.36) can be proved
by the same argument.

In the same way, it follows that there exists θ3 ∈ (0, θ3,j) such that

κ21,n + κ22,n + κ23,n =


o(κ1+θ3

1,n ) if κ1,n > 0,

o(κ1+θ3
2,n ) if κ1,n = 0 < κ2,n,

o(κ1+θ3
3,n ) if κ1,n = κ2,n = 0 < κ3,n.

Therefore we have (1.31).

(Step 2) From (1.29)–(1.31), setting θ4 := min{θ1, θ2, θ3}/2 ∈ (0, 1), we
have

E(τ1,n(u1,0 + w1,n), τ2,n(u2,0 + w2,n), τ3,n(u3,0 + w3,n))

≤ 1

2

3∑
j=1

(FVj
(uj,0) + ∥∇wj,0∥22)−

3∑
j=1

κj,n
aj

(λj,0aj + FVj
(uj,0) + ∥∇wj,0∥22)

+
3∑

j=1

∫
RN

upj,0wj,n dx+

∫
RN

w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n dx

− 1

p+ 1

3∑
j=1

∫
RN

up+1
j,0 + wp+1

j,0 dx−
3∑

j=1

∫
RN

upj,0wj,n + uj,0w
p
j,n dx

+
3∑

j=1

κj,n
aj

∫
RN

up+1
j,0 + wp+1

j,0 dx−
∫
RN

u1,0u2,0u3,0 + w1,0w2,0w3,0 dx

−
∫
RN

w1,nu2,0u3,0 + u1,0w2,nu3,0 + u1,0u2,0w3,n + w1,nw2,nu3,0 dx

+
3∑

j=1

κj,n
aj

∫
RN

u1,0u2,0u3,0 + w1,0w2,0w3,0 dx
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1.3 Strict subadditivity for ξ(a)

+


o(κ1+θ4

1,n ) if κ1,n > 0,

o(κ1+θ4
2,n ) if κ1,n = 0 < κ2,n,

o(κ1+θ4
3,n ) if κ1,n = κ2,n = 0 < κ3,n

= E(u0) + E∞(w0)−
3∑

j=1

κj,n
aj

(λj,0aj + FVj
(uj,0) + ∥∇wj,0∥22

−
∫
RN

up+1
j,0 + wp+1

j,0 dx−
∫
RN

u1,0u2,0u3,0 + w1,0w2,0w3,0 dx)

−
3∑

j=1

∫
RN

uj,0w
p
j,n dx−

∫
RN

w1,nw2,nu3,0 dx

+


o(κ1+θ4

1,n ) if κ1,n > 0,

o(κ1+θ4
2,n ) if κ1,n = 0 < κ2,n,

o(κ1+θ4
3,n ) if κ1,n = κ2,n = 0 < κ3,n.

(1.39)

(Step 3) By (1.23)–(1.25) and (1.26)–(1.28), we have

FVj
(uj,0) = −λj,0∥uj,0∥22 +

∫
RN

up+1
j,0 + u1,0u2,0u3,0 dx,

∥∇wj,0∥22 = −λj,0∥wj,0∥22 +
∫
RN

wp+1
j,0 + w1,0w2,0w3,0 dx.

Recalling that aj = ∥uj,0∥22 + ∥wj,0∥22, we have

FVj
(uj,0) + ∥∇wj,0∥22 = −λj,0aj +

∫
RN

up+1
j,0 + wp+1

j,0 dx

+

∫
RN

u1,0u2,0u3,0 + w1,0w2,0w3,0 dx. (1.40)

From (1.39) and (1.40), we have

ξ(a) ≤ ξ(b) + ξ∞(c)−Rn +


o(κ1+θ4

1,n ) if κ1,n > 0,

o(κ1+θ4
2,n ) if κ1,n = 0 < κ2,n,

o(κ1+θ4
3,n ) if κ1,n = κ2,n = 0 < κ3,n,

(1.41)

where

Rn :=
3∑

j=1

∫
RN

uj,0w
p
j,n dx+

∫
RN

w1,nw2,nu3,0 dx.
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(Step 4) Now, we prove that

κ1+θ4
1,n = o(Rn) if κ1,n > 0, (1.42)

κ1+θ4
2,n = o(Rn) if κ1,n = 0 < κ2,n, (1.43)

κ1+θ4
3,n = o(Rn) if κ1,n = κ2,n = 0 < κ3,n. (1.44)

Proof of (1.42) Since κ1,n > 0, from Lemma 1.8, u1,0 and w1,0 have an
essentially exponential decay order

√
λ1,0. From Lemma 1.6 and Lemma 1.7,∫

RN u1,0w
p
1,n dx has an essentially exponential decay order min{

√
λ1,0, p

√
λ1,0

} =
√
λ1,0. Since κ1,n has also an essentially exponential decay order

√
λ1,0,

for all θ > 1, there exists Cθ > 0 such that∫
RN

u1,0w
p
1,n dx ≥ Cθκ

θ
1,n.

Assume θ < 1 + θ4. Then we have

κ1+θ4
1,n /Rn ≤ C−1

θ κ1+θ4−θ
1,n → 0.

Proof of (1.43) (1.43) can be proved as in (1.42).

Proof of (1.44) Since κ1,n = κ2,n = 0 < κ3,n, there are two possibilities,

(a) u1,0, u2,0, u3,0, w3,0 > 0 and w1,0 = w2,0 = 0.

(b) u3,0, w1,0, w2,0, w3,0 > 0 and u1,0 = u2,0 = 0.

Case (a) By Lemma 1.8, u3,0 and w3,0 have an essentially exponential
decay order

√
λ4,0 := min{

√
λ1,0 +

√
λ2,0,

√
λ3,0} and

√
λ3,0 respectively.

From
√
λ4,0 ≤

√
λ3,0 and Lemma 1.6 and Lemma 1.7,

∫
RN u3,0w

p
3,n dx has an

essentially exponential decay order min{
√
λ4,0, p

√
λ3,0} =

√
λ4,0. Since κ3,n

has also an essentially exponential decay order
√
λ4,0, we can prove (1.44) in

the case (a) by the same argument as in (1.42).
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Case (b) By (1.25) and (1.28) with u1,0 = u2,0 = 0, one sees∫
RN

u3,0w
p
3,n + w1,nw2,nu3,0 dx ≥

∫
RN

up3,0w3,n dx.

Since
∫
RN u

p
3,0w3,n dx and κ3,n have an essentially exponential decay order

min{p
√
λ3,0,

√
λ4,0} =

√
λ4,0, for all θ > 1, there exists Cθ > 0 such that∫
RN

up3,0w3,n dx ≥ Cθκ
θ
3,n.

Thus we can prove (1.44) in the case (b) by the same argument as in (1.42).

From (1.41) and (1.42)–(1.44), we have

ξ(a) < ξ(b) + ξ∞(c).

2

1.4 Proof of Theorem 1.1

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Let {un}∞n=1 ⊂ M(a) be a minimizing sequence
for ξ(a). By Lemma 1.2 and 1.3, we may assume that

∥E ′(un) + λ1,nQ
′
1(un) + λ2,nQ

′
2(un) + λ3,nQ

′
3(un)∥H∗ → 0, ∥(uj,n)−∥2 → 0.

(1.45)

In addition, since {λj,n}∞n=1 and {un}∞n=1 is bounded, we may assume that

λj,n → λj,0, un ⇀ u0 weakly in H. (1.46)

Remark that

bj := ∥uj,0∥22 ≤ lim inf
n→∞

∥uj,n∥22 = aj.

Set b := (b1, b2, b3). If b = a, we have ∥un − u0∥H → 0 as in [31].
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Now, we aim to prove that b = a. We prove by contradiction. Assume
that b ̸= a. As in Theorem 1.10 in Appendix in this chapter, we have

∥uj,n∥22 = ∥uj,0∥22 + ∥uj,n − uj,0∥22 + o(1),

E(un) = E(u0) + E∞(un − u0) + o(1),

ξ(a) = ξ(b) + ξ∞(a− b), (1.47)

E(u0) = ξ(b),

lim
n→∞

E∞(un − u0) = ξ∞(a− b).

In addition, since Lemma 1.13 in Appendix in this chapter and (1.47), we
have b ̸= (0, 0, 0). Since {un−u0}∞n=1 is a minimizing sequence for ξ∞(a− b),
up to a subsequence, there exist R > 0 and ε > 0 and {yn}∞n=1 ⊂ RN such
that ∫

|x−yn|<R

3∑
j=1

|uj,n(x)− uj,0(x)|2 dx ≥ ε for all n ∈ N

by Lemma 4.2 in [31]. Since uj,n → uj,0 in L2
loc(RN), up to a subsequence,

we have |yn| → ∞. Since {(un − u0)(· + yn)} is bounded in H, there exists
w0 ∈ H such that

(un − u0)(·+ yn)⇀ w0 weakly in H.

Then we have

un(·+ yn)⇀ w0 weakly in H. (1.48)

Moreover, as in Theorem 1.10 for the case without potentials in Appendix in
this chapter, up to a subsequence, we have

c = a− b,

E∞(w0) = ξ∞(c),

∥(un − u0)(·+ yn)−w0∥H → 0

where cj := ∥wj,0∥22, c := (c1, c2, c3).

From (1.45)–(1.48), we derive that

uj,0 ≥ 0, wj,0 ≥ 0 a.e. in RN ,
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−∆u1,0 + (λ1,0 + V1(x))u1,0 − up1,0 = u2,0u3,0,

−∆u2,0 + (λ2,0 + V2(x))u2,0 − up2,0 = u1,0u3,0,

−∆u3,0 + (λ3,0 + V3(x))u3,0 − up3,0 = u1,0u2,0,
−∆w1,0 + λ1,0w1,0 − wp

1,0 = w2,0w3,0,

−∆w2,0 + λ2,0w2,0 − wp
2,0 = w1,0w3,0,

−∆w3,0 + λ3,0w3,0 − wp
3,0 = w1,0w2,0.

Since ∥uj,0∥22 + ∥wj,0∥22 = aj > 0, we have uj,0 ̸≡ 0 or wj,0 ̸≡ 0. By Lemma
3.7 in [27], we have λj,0 > 0 for all j = 1, 2, 3. Without loss of generality, we
may assume that 0 < λ1,0 ≤ λ2,0 ≤ λ3,0. From Proposition 1.9, we have

ξ(a) < ξ(b) + ξ∞(a− b).

This contradicts (1.47). So we have b = a. 2

1.5 Appendix

In this Appendix, we prove that the strict subadditivity of ξ and the existence
of a minimizer for ξ(a) under symmetric conditions for the potentials (see
Proposition 1.12 and Theorem 1.10). This result is an extension of Ardila’s
result [4] to a model with higher spatial dimensions and potentials. Although
this result was obtained in Kurata-Osada [31], for the reader’s convenience,
we mention this symmetric case result and the method used in the proofs.

We assume the following condition (V3) in addition to the assumptions in
Chapter 1.

(V3) for all j = 1, 2, 3, Vj(−x1, x′) = Vj(x1, x
′) for almost every x1 ∈ R and x′

∈ RN−1,
Vj(s, x

′) ≤ Vj(t, x
′) for almost every s, t ∈ R with 0 ≤ s < t and

x′ ∈ RN−1.

The following Theorem is mentioned as Theorem 1.1 in [31].

Theorem 1.10. (the existence of a minimizer for ξ(a)) Suppose a1,
a2, a3 > 0, N = 1, 2, 3, 1 < p < 1 + 4/N and Vj(x) (j = 1, 2, 3) satisfies the
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conditions (V1)–(V3), respectively. Then, any minimizing sequence {un}∞n=1

for ξ(a1, a2, a3) is relatively compact in H up to translations. That is, there
exist {yn}∞n=1 ⊂ RN and u ∈ H such that {un(·+ yn)}∞n=1 has a subsequence
converging strongly in H to u. Moreover, u is a minimizer for ξ(a1, a2, a3).

Remark 1.1. In Theorem 1.10, if there exists j ∈ {1, 2, 3} such that Vj ̸≡ 0,
then we can take yn = 0 for all n ∈ N.

For x ∈ RN , we denote by x = (x1, x
′) (x1 ∈ R, x′ ∈ RN−1) and also we

denote by L1 the 1-dimensional Lebesgue measure.

First, we state the definition of the coupled rearrangement developed by
Shibata [47].

Definition 1.11. (coupled rearrangement, cf. Shibata [47]) Let
u, v be measurable functions defined on RN such that

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0.

Then the coupled rearrangement u ⋆ v is defined by

(u ⋆ v)(x1, x
′) :=

∫ ∞

0

χ{|u(·,x′)|>t}⋆{|v(·,x′)|>t}(x1) dt, x1 ∈ R, x′ ∈ RN−1

for any measurable subsets A,B ⊂ R, where A ⋆ B is defined as follows:

A ⋆ B :=
(
−(L1(A) + L1(B))/2, (L1(A) + L1(B))/2

)
.

The following proposition is mentioned as Proposition 3 in [31].

Proposition 1.12. (Strict subadditivity for ξ∞) Assume the condi-
tions (V1)–(V3) for Vj(x), j = 1, 2, 3. Let b1,b2,b3,c1,c2,c3 ≥ 0 and we assume
ξ∞(b1, b2, b3) and ξ∞(c1, c2, c3) have a minimizer respectively. If b1, c1 > 0 or
b2, c2 > 0 or b3, c3 > 0, then we have

ξ(b1 + c1, b2 + c2, b3 + c3) < ξ(b1, b2, b3) + ξ∞(c1, c2, c3),

where we denote by ξ∞ instead of ξ if Vj ≡ 0 for all j = 1, 2, 3.
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Proof. Suppose that u and v are minimizers for ξ(b1, b2, b3) and ξ∞(c1, c2, c3)
respectively. We consider only the case b1 > 0 and c1 > 0. Since b1 > 0 and
c1 > 0, from Lemma 3.3 in [31], u⋆ and v⋆ are minimizers for ξ(b1, b2, b3) and
ξ∞(c1, c2, c3) respectively and for all j ∈ {1, 2, 3},

u⋆1 > 0 almost everywhere in RN , u⋆2, u
⋆
3 ≥ 0 for almost every x ∈ RN ,

(1.49)

u⋆j ∈ H1(RN) ∩ C1(RN), lim
|x|→∞

u⋆j(x) = 0, (1.50)

u⋆j(−x1, x′) = u⋆j(x1, x
′) for almost every x1 ∈ R and (1.51)

for almost every x′ ∈ RN−1,

u⋆j(s, x
′) ≥ u⋆j(t, x

′) for almost every s, t ∈ R with 0 ≤ s < t and (1.52)

for almost every x′ ∈ RN−1,

and

v⋆1 > 0 almost everywhere in RN , v⋆2, v
⋆
3 ≥ 0 almost everywhere in RN ,

(1.53)

v⋆j ∈ H1(RN) ∩ C1(RN), lim
|x|→∞

v⋆j (x) = 0, (1.54)

v⋆j (−x1, x′) = v⋆j (x1, x
′) for almost every x1 ∈ R and (1.55)

for almost every x′ ∈ RN−1,

v⋆j (s, x
′) ≥ v⋆j (t, x

′) almost every s, t ∈ R with 0 ≤ s < t and (1.56)

for almost every x′ ∈ RN−1,

where u⋆ is the Steiner rearrangement of u with respect to the hyperplane
x1 = 0. We refer [28] for the definition of the Steiner rearrangement. From
(1.49)–(1.56), Lemma 2.12, Corollary 1 in [31] and the results in [47], we have∫

RN

|∇(u⋆1 ⋆ v
⋆
1)|2 dx <

∫
RN

|∇u⋆1|2 dx+
∫
RN

|∇v⋆1|2 dx, (1.57)∫
RN

|∇(u⋆j ⋆ v
⋆
j )|2 dx ≤

∫
RN

|∇u⋆j |2 dx+
∫
RN

|∇v⋆j |2 dx (j = 2, 3), (1.58)∫
RN

(−Vj(x))(u⋆j)2 dx ≤
∫
RN

(−Vj(x))(u⋆j ⋆ v⋆j )2 dx, (1.59)∫
RN

u⋆1u
⋆
2u

⋆
3 dx+

∫
RN

v⋆1v
⋆
2v

⋆
3 dx ≤

∫
RN

(u⋆1 ⋆ v
⋆
1)(u

⋆
2 ⋆ v

⋆
2)(u

⋆
3 ⋆ v

⋆
3) dx, (1.60)
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∫
RN

|u⋆j ⋆ v⋆j |q dx =

∫
RN

|u⋆j |q dx+
∫
RN

|v⋆j |q dx (q = 2, p+ 1). (1.61)

From (1.57)–(1.61), it holds that

ξ(b1 + c1, b2 + c2, b3 + c3) ≤ E(u⋆1 ⋆ v
⋆
1, u

⋆
2 ⋆ v

⋆
2, u

⋆
3 ⋆ v

⋆
3)

< E(u⋆1, u
⋆
2, u

⋆
3) + E∞(v⋆1, v

⋆
2, v

⋆
3)

= ξ(b1, b2, b3) + ξ∞(c1, c2, c3).

2

Now we prove Theorem 1.10 for the case without potentials.

Proof of Theorem 1.10 for the case without potentials. Let {un}∞n=1 ⊂
H be a minimizing sequence for ξ∞(a1, a2, a3). The proof proceeds in five
steps:

(Step 1) First, we prove that taking a subsequence, there exist {xn}∞n=1 ⊂
RN and u ∈ H such that

uj,n(·+ xn)⇀ uj weakly in H1(RN) (j = 1, 2, 3, n→ ∞),

u1 ̸≡ 0.

Since a1 > 0, by Lemma 4.2 in [31], taking a subsequence, there exist ε1 > 0
and R1 > 0 such that

sup
y∈RN

∫
|x−y|<R1

|u1,n|2 dx ≥ ε1 for all n ∈ N.

Therefore, there exists {xn}∞n=1 ⊂ RN such that∫
|x−xn|<R1

|u1,n|2 dx >
ε1
2

for all n ∈ N.

On the other hand, since {un}∞n=1 is bounded in H from Lemma 2.4 in [31],
taking a subsequence, there exists u ∈ H such that

uj,n(·+ xn)⇀ uj weakly in H1(RN) (j = 1, 2, 3).
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Now, we remark that∫
|x|<R1

|u1,n(x+ xn)|2 dx =

∫
|x−xn|<R1

|u1,n|2 dx >
ε1
2

for all n ∈ N.

Since the embedding H1({|x| < R1}) ⊂ L2({|x| < R1}) is compact, we have∫
|x|<R1

|u1|2 dx ≥ ε1
2
> 0,

that is, we have u1 ̸≡ 0.

(Step 2) Let b1 := ∥u1∥22 (> 0), b2 := ∥u2∥22, b3 := ∥u3∥22. Moreover, we
set vj,n(x) := uj,n(x + xn) − uj(x) (j = 1, 2, 3). Then, we prove that u is a
minimizer for ξ∞(b1, b2, b3) and taking a subsequence, the followings hold:

∥uj,n∥22 = ∥uj∥22 + ∥vj,n∥22 + o(1) (j = 1, 2, 3, as n→ ∞),

E∞(un) = E∞(u) + E∞(vn) + o(1) (as n→ ∞),

ξ∞(a1, a2, a3) = ξ∞(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3).

Claim 1. Taking a subsequence, for q = 2 and q = p+ 1, we have∫
RN

|uj,n|q dx =

∫
RN

|uj|q dx+
∫
RN

|vj,n|q dx+ o(1) (as n→ ∞).

This statement follows immediately from the Brezis-Lieb Lemma (see e.g.
[7]).

Claim 2.∫
RN

(|∇uj,n|2 − |∇uj|2 − |∇vj,n|2) dx = o(1) (as n→ ∞).

Indeed, note that∫
RN

(|∇uj,n|2 − |∇uj|2 − |∇vj,n|2) dx = 2Re

∫
RN

∇uj · ∇vj,n dx,

where ∇u · ∇v :=
∑N

k=1
∂u
∂xk

∂v
∂xk

. Since vj,n ⇀ 0 weakly in H1(RN), it follows∫
RN

∇uj · ∇vj,n dx = o(1) (as n→ ∞).
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Hence we get Claim 2.

Claim 3.∫
RN

u1,nu2,nu3,n dx =

∫
RN

u1u2u3 dx+

∫
RN

v1,nv2,nv3,n dx+ o(1) (as n→ ∞).

Actually, since∫
RN

u1,nu2,nu3,n dx =

∫
RN

(u1 + v1,n)(u2 + v2,n)(u3 + v3,n) dx

=

∫
RN

u1u2u3 dx+

∫
RN

u1u2v3,n dx+

∫
RN

u1v2,nu3 dx+

∫
RN

u1v2,nv3,n dx

+

∫
RN

v1,nu2u3 dx+

∫
RN

v1,nu2v3,n dx+

∫
RN

v1,nv2,nu3 dx+

∫
RN

v1,nv2,nv3,n dx,

it suffices to prove that

lim
n→∞

∫
RN

v1,nu2u3 dx = lim
n→∞

∫
RN

u1v2,nu3 dx = lim
n→∞

∫
RN

u1u2v3,n dx = 0,

(1.62)

lim
n→∞

∫
RN

u1v2,nv3,n dx = lim
n→∞

∫
RN

v1,nu2v3,n dx = lim
n→∞

∫
RN

v1,nv2,nu3 dx = 0.

(1.63)

Since we can prove these easily by using vj,n → 0 (j = 1, 2, 3) in L3
loc(RN),

we omit the details.

From Claim 1–Claim3, it follows that

E∞(un) = E∞(u) + E∞(vn) + o(1) (as n→ ∞). (1.64)

From Claim 1 we have also

∥uj,n∥22 = ∥uj∥22 + ∥vj,n∥22 + o(1) (as n→ ∞).

Letting n→ ∞ in (1.64), from Lemma 2.6 and Lemma 3.2 in [31], we have

ξ∞(a1, a2, a3) = E∞(u) + lim
n→∞

E∞(vn)

≥ ξ∞(b1, b2, b3) + lim
n→∞

ξ∞(∥v1,n∥22, ∥v2,n∥22, ∥v3,n∥22)
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= ξ∞(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3)

≥ ξ∞(a1, a2, a3).

Therefore,

E∞(u) = ξ∞(b1, b2, b3), (1.65)

lim
n→∞

E∞(vn) = ξ∞(a1 − b1, a2 − b2, a3 − b3), (1.66)

ξ∞(a1, a2, a3) = ξ∞(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3). (1.67)

That is, u is a minimizer for ξ∞(b1, b2, b3).

(Step 3) We prove b1 = a1. Suppose by contradiction that b1 < a1. By
the same argument as in (Step 1), then there exist a minimizing sequence
{vn}∞n=1 for ξ∞(a1 − b1, a2 − b2, a3 − b3) and a function v ∈ H with v1 ̸≡ 0
such that

vj,n ⇀ vj weakly in H1(RN) (j = 1, 2, 3).

Set c1 := ∥v1∥22(> 0), c2 := ∥v2∥22, c3 := ∥v3∥22. Using the same argument as
in (Step 2), we have

ξ∞(a1 − b1, a2 − b2, a3 − b3) = ξ∞(c1, c2, c3)+

+ ξ∞(a1 − b1 − c1, a2 − b2 − c2, a3 − b3 − c3), (1.68)

E∞(v) = ξ∞(c1, c2, c3).

Now, u and v are minimizers for ξ∞(b1, b2, b3) and ξ∞(c1, c2, c3) respectively.
Furthermore since b1 > 0 and c1 > 0, from Proposition 1.12, it follows that

ξ∞(b1 + c1, b2 + c2, b3 + c3) < ξ∞(b1, b2, b3) + ξ∞(c1, c2, c3). (1.69)

Therefore, combining (1.67),(1.68),(1.69) and using Lemma 3.2 in [31], we
arrive at

ξ∞(a1, a2, a3) = ξ∞(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3)

= ξ∞(b1, b2, b3) + ξ∞(c1, c2, c3) + ξ∞(a1 − b1 − c1, a2 − b2 − c2, a3 − b3 − c3)

> ξ∞(b1 + c1, b2 + c2, b3 + c3) + ξ∞(a1 − b1 − c1, a2 − b2 − c2, a3 − b3 − c3)

≥ ξ∞(a1, a2, a3).

This is a contradiction. Hence, it follows that b1 = a1.
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(Step 4) We prove b2 = a2 and b3 = a3. First, we show b2 > 0. We assume
that b2 = 0, then by b1 = a1 and the subadditivity for S∞ (see Lions [35, 36]
for more details), it follows that

ξ∞(a1, a2, a3) = ξ∞(a1, 0, b3) + ξ∞(0, a2, a3 − b3)

= S∞(a1) + S∞(b3) + S∞(a2) + S∞(a3 − b3)

≥ S∞(a1) + S∞(a2) + S∞(a3),

where

S∞(a) := inf{J∞(u) | u ∈ H1(RN), ∥u∥22 = a},

J∞(u) :=
1

2

∫
RN

|∇u|2 dx− 1

p+ 1

∫
RN

|u|p+1 dx.

This contradicts Lemma 4.1 in [31] (i). Thus, we have b2 > 0. We can show
b2 = a2 as in (Step 3). In a similar way, we can also prove b3 = a3.

(Step 5) We prove that limn→∞ ∥un(· + xn)− u∥H = 0 and u is minimizer
for ξ∞(a1, a2, a3). From (Step 1)–(Step 4), we have proved

uj,n(·+ xn)⇀ uj weakly in H1(RN) (j = 1, 2, 3),

∥u1∥22 = a1, ∥u2∥22 = a2, ∥u3∥22 = a3.

From (1.65) and b1 = a1, b2 = a2, b3 = a3, u is a minimizer for ξ∞(a1, a2, a3).
Moreover, noting that ∥u1,n∥22 → a1, ∥u2,n∥22 → a2 and ∥u3,n∥22 → a3 (n →
∞), we have

∥uj,n(·+ xn)− uj∥2 → 0 (n→ ∞), (1.70)

that is,

∥vj,n∥2 → 0 (n→ ∞). (1.71)

Since {vj,n}∞n=1 is bounded in H1(RN), by Gagliardo-Nirenberg’s inequality,
it holds that

lim
n→∞

∫
RN

|vj,n|p+1 dx = 0, (1.72)

lim
n→∞

∫
RN

v1,nv2,nv3,n dx = 0. (1.73)
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Indeed, by Gagliardo-Nirenberg’s inequality, for each q = p + 1 and q = 3,
there exists a constant C(q,N) > 0 respectively such that

∥vj,n∥qq ≤ C(q,N)∥∇vj,n∥N(q−2)/2
2 ∥vj,n∥q−N(q−2)/2

2 .

Note that {vj,n}∞n=1 is bounded in H1(RN) and (1.71), it follows that

∥vj,n∥p+1
p+1 → 0, ∥vj,n∥33 → 0. (1.74)

From this, we have (1.72) and (1.73). From b1 = a1, b2 = a2, b3 = a3,
(1.65),(1.66),(1.72),(1.73), we have

E∞(u) = ξ∞(a1, a2, a3),

lim
n→∞

1

2

3∑
j=1

∫
RN

|∇vj,n|2 dx = 0.

From this and (1.70), the conclusion follows. 2

Next, we prove the existence of a minimize for ξ(a) with potential.

We note that the relationship between ξ and ξ∞. This lemma guarantees
that minimizing sequence for ξ(a1, a2, a3) with potentials does not vanish.
This lemma is mentioned as Lemma 4.5 in [31].

Lemma 1.13. Let a1, a2, a3 > 0. Then it follows that ξ(a1, a2, a3) <
ξ∞(a1, a2, a3).

Proof. From Lemma 4.4 in [31], there exists a minimizer u = (u1, u2, u3) for
ξ∞(a1, a2, a3) such that uj > 0 almost everywhere in RN . Since V1 ̸≡ 0 or
V2 ̸≡ 0 or V3 ̸≡ 0, it follows that

3∑
j=1

∫
RN

Vj(x)u
2
j dx < 0.

Thus we have

ξ(a1, a2, a3) ≤ E(u) < E∞(u) = ξ∞(a1, a2, a3).

2
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Now we prove Theorem 1.10 for the case with potentials.

Proof of Theorem 1.10 for the case with potentials. Let {un}∞n=1 ⊂
H be a minimizing sequence for ξ(a1, a2, a3). Since {un}∞n=1 is bounded in
H, there exists u ∈ H such that

uj,n ⇀ uj weakly in H1(RN) (j = 1, 2, 3, n→ ∞).

(Step 1) Set b1 := ∥u1∥22, b2 := ∥u2∥22, b3 := ∥u3∥22. We prove that u is a
minimizer for ξ(b1, b2, b3) and taking a subsequence, the followings hold:

∥uj,n∥22 = ∥uj∥22 + ∥uj,n − uj∥22 + o(1) (j = 1, 2, 3, as n→ ∞),

E(un) = E(u) + E∞(un − u) + o(1) (as n→ ∞),

ξ(a1, a2, a3) = ξ(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3),

b1 > 0 or b2 > 0 or b3 > 0.

From the same argument as in the Step 2 of the proof of Theorem 1.10 for
the case without potentials, taking a subsequence, we have∫

RN

|uj,n|2 dx =

∫
RN

|uj|2 dx+
∫
RN

|uj,n − uj|2 dx+ o(1) (as n→ ∞),

(1.75)

E∞(un) = E∞(u) + E∞(un − u) + o(1) (as n→ ∞). (1.76)

Moreover, from Lemma 2.7 in [31], it follows that∫
RN

Vj(x)|uj,n|2 dx =

∫
RN

Vj(x)|uj|2 dx+ o(1) (as n→ ∞, j = 1, 2, 3).

(1.77)

From (1.76),(1.77), we have

E(un) = E(u) + E∞(un − u) + o(1) (as n→ ∞). (1.78)

By the same argument as in the proof of Theorem 1.10 for the case without
potentials, we can prove that

E(u) = ξ(b1, b2, b3),
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1.5 Appendix

ξ(a1, a2, a3) = ξ(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3). (1.79)

That is, u is a minimizer for ξ(b1, b2, b3). Suppose b1 = b2 = b3 = 0. From
ξ(0, 0, 0) = 0 and (1.79),

ξ(a1, a2, a3) = ξ∞(a1, a2, a3).

This contradicts Lemma 1.13. Therefore we have b1 > 0 or b2 > 0 or b3 > 0.

(Step 2) From (Step 1), b1 > 0 or b2 > 0 or b3 > 0. We consider only the case
b1 > 0. We prove b1 = a1. Suppose b1 < a1. From (Step 1), u is a minimizer
for ξ(b1, b2, b3) and from Lemma 4.3 in [31], ξ∞(a1 − b1, a2 − b2, a3 − b3) has
a minimizer. Since b1 > 0, a1 − b1 > 0, from Proposition 1.12, we have

ξ(a1, a2, a3) < ξ(b1, b2, b3) + ξ∞(a1 − b1, a2 − b2, a3 − b3).

This contradicts (1.79).

(Conclusion) We can prove b2 = a2 and b3 = a3 by the same argument as
in the Step 4 of the proof of Theorem 1.10 for the case without potentials.
Then we can prove that limn→∞ ∥un − u∥H1 = 0 and u is a minimizer for
ξ(a1, a2, a3) by the same argument as in the Step 5 of the proof of Theorem
1.10 for the case without potentials. 2
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Chapter 2

Energy asymptotic expansion
for a system of nonlinear
Schrödinger equations with
three wave interaction

2.1 Introduction

Recently, there are many studies on the existence of standing waves and their
stability for the nonlinear Schrödinger system with three wave interaction
(see Colin-Colin-Ohta [18, 19], Pomponio [43], Ardila [4], Kurata-Osada [31]
and the references therein) and related systems (see e.g. Gou-Jeanjean [24],
Bhattarai [6], Zhao-Zhao-Shi [60] and the references therein).

In particular, the L2-constrained variational problems associated with the
systems and the orbital stability of ground states have been studied by many
works (e.g. Bhattarai [6], Gou-Jeanjean [24], Ardila [4], Kurata-Osada [31]).
In this chapter, we focus on the following L2-constrained variational problem:

ξβα(a1, a2, a3) := inf{Eβ
α(u) | u ∈ H,

∥u1∥22 = a1, ∥u2∥22 = a2, ∥u3∥22 = a3},
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Eβ
α(u) :=

1

2

3∑
j=1

∫
RN

|∇uj|2 dx+
1

2

3∑
j=1

∫
RN

Vj(x)|uj|2 dx

− β

p+ 1

3∑
j=1

∫
RN

|uj|p+1 dx− αRe

∫
RN

u1u2u3 dx,

where u := (u1, u2, u3), u3 is the complex conjugate of u3, H := H1×H1×H1,
H1 := H1(RN ;C), α, β > 0, N = 1, 2, 3, 1 < p < 1 + 4/N , a1, a2, a3 > 0
and each potential Vj (j = 1, 2, 3) satisfies some suitable conditions. In this
chapter, we assume only one of the following conditions for the potentials
Vj (j = 1, 2, 3).

(V1) V ∈ L∞(RN ;R).

(V2) V ∈ C(RN ;R) and V (x) ≤ lim|y|→∞ V (y) = 0, for all x ∈ RN .

In the previous paper [31], for the case β = 1, we studied the energy
asymptotic expansion of ξ1α(a1, a2, a3) as α → ∞. In this chapter, we consider
the asymptotic expansion of the energy ξβα(a1, a2, a3) as β → ∞ with α = βκ

for a given κ ∈ R.

To state the main result in this chapter in details, we define the following
variational problems:

Σ0(a1, a2, a3) := inf{E0(u) | u ∈ H, ∥u1∥22 = a1, ∥u2∥22 = a2, ∥u3∥22 = a3},
Σ1(a1, a2, a3) := sup{E1(u) | u is a minimizer for Σ0(a1, a2, a3)},
ξ∞(a1, a2, a3) := inf{E∞(u) | u ∈ H, ∥u1∥22 = a1, ∥u2∥22 = a2, ∥u3∥22 = a3},

S∞(aj) := inf{J∞(u) | u ∈ H1(RN), ∥u∥22 = aj} (j = 1, 2, 3),

S1(a1, a2, a3) := sup{J1(u) | u1, u2, u3 are minimizers for

S∞(a1), S∞(a2), S∞(a3) respectively},

where

E0(u) :=
1

2

3∑
j=1

∫
RN

|∇uj|2 dx− Re

∫
RN

u1u2u3 dx,

E1(u) :=
1

p+ 1

3∑
j=1

∫
RN

|uj|p+1 dx,
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E∞(u) :=
1

2

3∑
j=1

∫
RN

|∇uj|2 dx−
1

p+ 1

3∑
j=1

∫
RN

|uj|p+1 dx− Re

∫
RN

u1u2u3 dx,

J∞(u) :=
1

2

∫
RN

|∇u|2 dx− 1

p+ 1

∫
RN

|u|p+1 dx,

J1(u) := Re

∫
RN

u1u2u3 dx.

Remark 2.1. Let N ≤ 3, 1 < p < 1 + 4/N , α, β > 0. Under the following
three assumptions on Vj (j = 1, 2, 3):

• V ∈ L∞(RN ;R),

• V (x) ≤ lim|y|→∞ V (y) = 0 (a.e. x ∈ RN),

• V (−x1, x′) = V (x1, x
′) (a.e. x1 ∈ R, x′ ∈ RN−1),

V (s, x′) ≤ V (t, x′) (a.e. s, t ∈ R with 0 ≤ s < t, a.e. x′ ∈ RN−1),

the existence of a minimizer for ξβα(a1, a2, a3) is known (see [31]).

See also [31] about the existence of minimizer for Σ0(a1, a2, a3) under the
additional condition N ≤ 2. Moreover, since it is easy to check that the set
of minimizers for Σ0(a1, a2, a3) is uniformly bounded in H, it follows that
Σ1(a1, a2, a3) <∞.

Remark 2.2. When N ∈ N, 1 < p < 1 + 4/N , for all aj > 0, it is
well-known that there exists a unique positive, radial symmetric and strictly
decreasing minimizer Ψaj ∈ H1(RN) for S∞(aj) such that for all minimizer
u for S∞(aj), there exist y ∈ RN and θ ∈ R such that

u(x) = eiθΨaj(x+ y)

(see [14, 21, 32]).

Unless otherwise noted, Ψaj means the one in Remark 2.2. Also, we set
Ψ := (Ψa1 ,Ψa2 ,Ψa3). Note that Ψ is a maximizer for S1(a1, a2, a3). See
Lemma 2.4 for the proof.

For a given κ ∈ R, as α = βκ we define for simplicity

Eβ(u) := Eβ
βκ(u),
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ξβ(a1, a2, a3) := ξββκ(a1, a2, a3).

We show that there exist two critical numbers

κ1 := (4−N)/(4−N(p− 1)), κ2 := −N/(4−N(p− 1))

such that the asymptotic expansion of ξβ(a1, a2, a3) as β → ∞ are different
in the following five cases:
(i) κ > κ1, (ii) κ = κ1, (iii) κ2 < κ < κ1, (iv) κ = κ2, (v) κ < κ2.
We say {un}∞n=1 is a minimizing sequence for ξβn(a1, a2, a3) with βn → ∞ if

∥u1,n∥22 = a1, ∥u2,n∥22 = a2, ∥u3,n∥22 = a3,

Eβn(un) = ξβn(a1, a2, a3) + o(1), as n→ ∞.

We also study the asymptotic behavior of minimizing sequences {un} by
using the rescaled functions of two types:

wn(x) := β−κN/(4−N)
n un(β

−2κ/(4−N)
n x) (2.1)

for the case (i) and

vn(x) := β−N/(4−N(p−1))
n un(β

−2/(4−N(p−1))
n x) (2.2)

for the cases (ii)–(v), respectively.

Now we state the main result in this chapter.

Theorem 2.1. Let N = 1, 2, 3, 1 < p < 1 + 4/N and let {un}∞n=1 be a
minimizing sequence for ξβn(a1, a2, a3) with βn → ∞. Then we have the
asymptotic expansion of ξβ(a1, a2, a3) = ξββκ(a1, a2, a3) as β → ∞ in the five
cases as follows:

(i) For the case κ > κ1, assume N ≤ 2 and the condition (V1) for each
potential Vj (j = 1, 2, 3). Then

ξβ(a1, a2, a3) = β4κ/(4−N)Σ0(a1, a2, a3)− βκN(p−1)/(4−N)+1Σ1(a1, a2, a3)

+ o(βκN(p−1)/(4−N)+1), as β → ∞.

Moreover, for the rescaled function wn defined by (2.1), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN and a maximizer w for Σ1(a1, a2, a3)
such that

∥wn(·+ yn)−w∥H1 → 0, as n→ ∞.
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(ii) For the case κ = κ1, assume the condition (V2) for each potential
Vj (j = 1, 2, 3) and (V1, V2, V3) ̸≡ (0, 0, 0). Then it holds that

ξβ(a1, a2, a3) = β4/(4−N(p−1))ξ∞(a1, a2, a3)

+
1

2
min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3}+ o(1), as β → ∞.

Moreover, for the rescaled function vn defined by (2.2), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN , a minimizer v for ξ∞(a1, a2, a3) and
z0 ∈ RN such that

∥vn(·+ yn)− v∥H1 → 0, yn/β
2/(4−N(p−1))
n → z0 in RN , as n→ ∞,

min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3} = V1(z0)a1 + V2(z0)a2 + V3(z0)a3.

(iii) For the case κ2 < κ < κ1, assume the condition (V1) for each potential
Vj (j = 1, 2, 3). Then

ξβ(a1, a2, a3) = β4/(4−N(p−1))(S∞(a1) + S∞(a2) + S∞(a3))

− βN/(4−N(p−1))+κS1(a1, a2, a3) + o(βN/(4−N(p−1))+κ), as β → ∞.

Moreover, for the rescaled function vn defined by (2.2), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN , and θ1, θ2, θ3 ∈ R such that

∥vj,n(·+ yn)− eiθjΨj∥H1 → 0, as n→ ∞,

θ1 + θ2 = θ3,

where Ψ1 = Ψa1 , Ψ2 = Ψa2 , Ψ3 = Ψa3 .

(iv) For the case κ = κ2, assume that the condition (V2) for each potential
Vj (j = 1, 2, 3), (V1, V2, V3) ̸≡ (0, 0, 0). We also assume that Vj has a
unique minimum point zj,0 and z1,0 = z2,0 = z3,0 =: z0. Then

ξβ(a1, a2, a3) = β4/(4−N(p−1))(S∞(a1) + S∞(a2) + S∞(a3))

− S1(a1, a2, a3) +
1

2
min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3}+ o(1),

as β → ∞.

41



2.1 Introduction

Moreover, for the rescaled function vn defined by (2.2), up to a subse-
quence, there exist {yn}∞n=1 ⊂ RN , and θ1, θ2, θ3 ∈ R such that

∥vj,n(·+ yn)− eiθjΨj∥H1 → 0, as n→ ∞,

θ1 + θ2 = θ3,

yn/β
2/(4−N(p−1))
n → z0 in RN , as n→ ∞,

where Ψ1 = Ψa1 , Ψ2 = Ψa2 , Ψ3 = Ψa3 .

(v) For the case κ < κ2, assume that the condition (V2) for each potential
Vj (j = 1, 2, 3) and (V1, V2, V3) ̸≡ (0, 0, 0). Then

ξβ(a1, a2, a3) = β4/(4−N(p−1))(S∞(a1) + S∞(a2) + S∞(a3))

+
1

2

(
min
x∈RN

V1(x)a1 + min
x∈RN

V2(x)a2 + min
x∈RN

V3(x)a3

)
+ o(1),

as β → ∞.

Moreover, for the rescaled function vn defined by (2.2), up to a subse-

quence, there exist {y(j)n }∞n=1 ⊂ RN (j = 1, 2, 3), and θj ∈ R (j = 1, 2, 3)
and zj,0 ∈ RN (j = 1, 2, 3) such that

∥vj,n(·+ y(j)n )− eiθjΨj∥H1 → 0, as n→ ∞,

y(j)n /β2/(4−N(p−1))
n → zj,0 in RN , as n→ ∞,

min
x∈RN

Vj(x) = Vj(zj,0),

where Ψ1 = Ψa1 , Ψ2 = Ψa2 , Ψ3 = Ψa3 .

Remark 2.3. By Theorem 2.1, we can say that the effect of the three
wave interaction appears in the first order term in the case κ ≥ κ1 and in
the second order term in the case κ2 ≤ κ < κ1, but disappears in the case
κ < κ2. We also emphasize that we use the different rescaled functions in
the case (ii)–(v) and in the case (i), respectively, to obtain the asymptotic
behavior of minimizing sequences precisely.

The rest of this chapter is organized as follows: In Section 2.2, we pre-
pare the characterization of S1(a1, a2, a3) to prove Theorem 2.1 in the cases
(iii) and (iv). In Section 2.3, we prove Theorem 2.1 concerning the asymp-
totic expansion of ξβ(a1, a2, a3) and the asymptotic behavior of a minimizing
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sequence for the cases (i)–(v). In Appendix, we note that the asymptotic
expansion of ξα

τ

α as α → ∞ for a given τ ≤ 0 and the asymptotic behavior

of a minimizing sequence for ξ
ατ
n

αn where αn → ∞.

2.2 Preliminaries

For simplicity, we prove Theorem 2.1 as a1 = a2 = a3 = 1. So for simplicity,
we write ξβ(a1, a2, a3), S∞(a1), S

1(a1, a2, a3), ξ∞(a1, a2, a3), Σ0(a1, a2, a3) and
Σ1(a1, a2, a3) as ξ

β, S∞, S1, ξ∞, Σ0 and Σ1. Moreover, when a1 = 1, Ψa1 in
Remark 2.2 is abbreviated as Ψ.

As stated in Remark 2.2, the following compactness of the minimizing
sequence for S∞ is known (see Lions [35, 36]).

Lemma 2.2. Let {un}∞n=1 be a minimizing sequence for S∞. Then up to a
subsequence, there exist {yn}∞n=1 ⊂ RN and θ ∈ R such that

∥un(·+ yn)− eiθΨ∥H1 → 0, as n→ ∞.

Here, we note that the fact on rearrangements (see [8]).

Lemma 2.3. We assume that N ∈ N and let f, g, h ∈ C(RN) be functions
such that positive, radial symmetric and strictly decreasing and

lim
|x|→∞

f(x) = lim
|x|→∞

g(x) = lim
|x|→∞

h(x) = 0,∫
RN

f(x)g(x)h(x) dx <∞.

For y0, y1 ∈ RN , if y0 ̸= 0 or y1 ̸= 0, then∫
RN

f(x)g(x− y0)h(x− y1) dx <

∫
RN

f(x)g(x)h(x) dx

holds.

Lemma 2.4. (characterization of maximizer for S1) Let u be a
maximizer for S1. Then there exist y ∈ RN and θ1, θ2, θ3 ∈ R with θ1+θ2 = θ3
such that

u = (eiθ1Ψ(·+ y), eiθ2Ψ(·+ y), eiθ3Ψ(·+ y)),
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S1 =

∫
RN

Ψ3 dx (> 0).

Proof. By the definition of S1,

S1 = sup
θ1,θ2,θ3∈R

Re(ei(θ1+θ2−θ3)) sup
z1,z2∈RN

∫
RN

Ψ(x)Ψ(x+ z1)Ψ(x+ z2) dx

= sup
z1,z2∈RN

∫
RN

Ψ(x)Ψ(x+ z1)Ψ(x+ z2) dx

with θ1 + θ2 = θ3. From Lemma 2.3, we have

sup
z1,z2∈RN

∫
RN

Ψ(x)Ψ(x+ z1)Ψ(x+ z2) dx =

∫
RN

Ψ(x)Ψ(x)Ψ(x) dx

and the supremum is attained only for the case z1 = z2 = 0. Thus

S1 =

∫
RN

Ψ(x)3 dx (> 0).

2

We note the following compactness of minimizing sequence for ξ∞.

Lemma 2.5. ([31]) Let N ≤ 3, 1 < p < 1 + 4/N . Let {un}∞n=1 be a
minimizing sequence for ξ∞. Then up to a subsequence, there exist {yn}∞n=1 ⊂
RN and a minimizer u for ξ∞ such that

∥uj,n(·+ yn)− uj∥H1 → 0, as n→ ∞.

2.3 Proof of Theorem 2.1

Throughout this section, we assume that N ≤ 3, 1 < p < 1 + 4/N , β > 0,
α = βκ with κ ∈ R and a1 = a2 = a3 = 1. First, we give the proof of the
cases (ii)–(v) of Theorem 2.1. Finally, we give the proof of the case (i) of
Theorem 2.1.
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To show the results in the cases (ii)–(v), we rescale the function u as (2.2),
the functional Eβ and its energy ξβ as follows:

Let u be a function such that

∥u1∥22 = ∥u2∥22 = ∥u3∥22 = 1.

We rescale the function u as follows:

v(x) := β−N/(4−N(p−1))u(β−2/(4−N(p−1))x).

Then it follows that

∥v1∥22 = ∥v2∥22 = ∥v3∥22 = 1

and

Eβ(u) = β4/(4−N(p−1))Ẽβ(v), ξβ = β4/(4−N(p−1))ξ̃β,

where

Ẽβ(v) :=
1

2

3∑
j=1

∫
RN

|∇vj|2 dx−
1

p+ 1

3∑
j=1

∫
RN

|vj|p+1 dx

− β(N−4)/(4−N(p−1))+κRe

∫
RN

v1v2v3 dx

+
1

β4/(4−N(p−1))

1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj|2 dx,

ξ̃β := inf{Ẽβ(v) | v ∈ H, ∥vj∥22 = 1 (j = 1, 2, 3)}.

So it is sufficient to prove the energy expansion of ξ̃β and the asymptotic
behavior of vn to prove the cases (ii)–(v) in Theorem 2.1.

2.3.1 Proof of Theorem 2.1 (ii)

For the case κ = κ1, we have

Ẽβ(v) = E∞(v) + β−4/(4−N(p−1))1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj|2 dx.
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Upper bound

Lemma 2.6. (upper bound for ξ̃β) Under the assumptions in the case
(ii), it follows that

ξ̃β ≤ ξ∞ + β−4/(4−N(p−1))1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞.

Proof. From Lemma 2.5, there exists a minimizer v for ξ∞. Let x0 ∈ RN

be a point which attains

min
x∈RN

{V1(x) + V2(x) + V3(x)}.

For β > 0, we set

φβ(x) := v(x− β2/(4−N(p−1))x0).

Then it holds that∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|φj,β(x)|2 dx

=

∫
RN

Vj

(
x

β2/(4−N(p−1))
+ x0

)
|vj(x)|2 dx.

From (V2), it follows that∫
RN

Vj

(
x

β2/(4−N(p−1))
+ x0

)
|vj(x)|2 dx

→
∫
RN

Vj(x0)|vj(x)|2 dx, as β → ∞.

Then we have

ξ̃β ≤ Ẽβ(φβ)

= ξ∞ + β−4/(4−N(p−1))1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|φj,β(x)|2 dx

= ξ∞ + β−4/(4−N(p−1))1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞.

2
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Lower bound and the completion of the proof of Theorem 2.1 (ii)

Theorem 2.1 (ii) with a1 = a2 = a3 = 1 is reduced to the following lemma.

Lemma 2.7. Under the assumptions in the case (ii), it follows that

ξ̃β = ξ∞ + β−4/(4−N(p−1))1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞.

Moreover, for the rescaled function vn defined by (2.2), up to a subsequence,
there exist {yn}∞n=1 ⊂ RN , a minimizer v for ξ∞ and z0 ∈ RN such that

∥vn(·+ yn)− v∥H1 → 0, yn/β
2/(4−N(p−1))
n → z0 in RN , as n→ ∞,

min
x∈RN

{V1(x) + V2(x) + V3(x)} = V1(z0) + V2(z0) + V3(z0).

Proof. Note that vn satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,

Ẽβn(vn) = ξ̃βn + o(β−4/(4−N(p−1))
n ),

where βn → ∞. From Lemma 2.6, it follows that

ξ∞ + o(1)

≥ ξ̃βn + o(β−4/(4−N(p−1))
n ) = Ẽβn(vn)

= E∞(vn) + β−4/(4−N(p−1))
n

1

2

3∑
j=1

∫
RN

Vj

(
x

β
2/(4−N(p−1))
n

)
|vj,n|2 dx

≥ ξ∞ + o(1).

(2.3)

Therefore {vn}∞n=1 is a minimizing sequence for ξ∞. From Lemma 2.5, up to
a subsequence, there exist {yn}∞n=1 ⊂ RN and v ∈ H such that

∥vn(·+ yn)− v∥H1 → 0, as n→ ∞
v is a minimizer for ξ∞.

Since ∥vj,n(·+ yn)− vj∥2 → 0 (as n→ ∞), up to a subsequence, there exists
gj ∈ L2(RN) such that

vj,n(x+ yn) → vj(x), as n→ ∞, a.e. x ∈ RN ,
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|vj,n(x+ yn)| ≤ gj(x), for all n ∈ N, a.e. x ∈ RN .

Claim. {yn/β2/(4−N(p−1))
n }∞n=1 is bounded.

If not, up to a subsequence, |yn|/β2/(4−N(p−1))
n → ∞ (as n → ∞). From

(V2), it holds that∫
RN

Vj

(
x+ yn

β
2/(4−N(p−1))
n

)
|vj,n(x+ yn)|2 dx→ 0, as n→ ∞.

From Lemma 2.6, we have

ξ∞ + β−4/(4−N(p−1))
n

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}+ o(β−4/(4−N(p−1))
n )

≥ ξ̃βn = Ẽβn(vn) + o(β−4/(4−N(p−1))
n )

≥ ξ∞ + o(β−4/(4−N(p−1))
n ), as n→ ∞.

Then we have

min
x∈RN

{V1(x) + V2(x) + V3(x)} ≥ 0.

On the other hand, since Vj(x) ≤ 0 (for all x ∈ RN) and V1 ̸≡ 0 or V2 ̸≡ 0 or
V3 ̸≡ 0, it follows that

min
x∈RN

{V1(x) + V2(x) + V3(x)} < 0.

This is a contradiction. Thus the claim holds. Therefore, up to a subse-
quence, there exists z0 ∈ RN such that

yn/β
2/(4−N(p−1))
n → z0, as n→ ∞.

From (V2), we have∫
RN

Vj

(
x+ yn

β
2/(4−N(p−1))
n

)
|vj,n(x+ yn)|2 dx

→
∫
RN

Vj(z0)|vj(x)|2 dx, as n→ ∞.

(2.4)
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From (2.3)–(2.4), we have

ξ∞ + β−4/(4−N(p−1))
n

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}+ o(β−4/(4−N(p−1))
n )

≥ ξ̃βn = Ẽβn(vn) + o(β−4/(4−N(p−1))
n )

≥ ξ∞ + β−4/(4−N(p−1))
n

1

2
(V1(z0) + V2(z0) + V3(z0)) + o(β−4/(4−N(p−1))

n )

≥ ξ∞ + β−4/(4−N(p−1))
n

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}+ o(β−4/(4−N(p−1))
n ),

as n→ ∞.

Therefore, we have

min
x∈RN

{V1(x) + V2(x) + V3(x)} = V1(z0) + V2(z0) + V3(z0),

lim
n→∞

β4/(4−N(p−1))
n (ξ̃βn − ξ∞) =

1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}.

Since {βn}∞n=1 is arbitrary sequence satisfying βn → ∞ (as n→ ∞), we have

ξ̃β = ξ∞ + β−4/(4−N(p−1))1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}

+ o(β−4/(4−N(p−1))), as β → ∞.

2

Remark 2.4. The result of Theorem 2.1 (ii) indicates that un concentrates
at z0. Indeed, un behaves like

un(x) = βN/(4−N(p−1))
n vn(β

2/(4−N(p−1))
n x)

∼ βN/(4−N(p−1))
n v(β2/(4−N(p−1))

n x− yn)

∼ βN/(4−N(p−1))
n v(β2/(4−N(p−1))

n (x− z0)), as βn → ∞.

2.3.2 Proof of Theorem 2.1 (iii)

Note that for the case (iii)

−4/(4−N(p− 1)) < (N − 4)/(4−N(p− 1)) + κ < 0
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and

Ẽβ(v) =
3∑

j=1

J∞(vj)− β(N−4)/(4−N(p−1))+κJ1(v)

+ β−4/(4−N(p−1))1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj|2 dx.

First, we prove the upper bound for ξ̃β. Taking Ψ = (Ψ,Ψ,Ψ), where Ψ is
the function Ψaj defined in Remark 2.2 with aj = 1, under the assumption
in the case (iii), from Lemma 2.4, it is easy to obtain

ξ̃β ≤ Ẽβ(Ψ) ≤ 3S∞ − β(N−4)/(4−N(p−1))+κS1, as β → ∞.

Theorem 2.1 (iii) with a1 = a2 = a3 = 1 is reduced to the following lemma.

Lemma 2.8. Under the assumption in the case (iii), it holds that

ξ̃β = 3S∞ − β(N−4)/(4−N(p−1))+κS1 + o(β(N−4)/(4−N(p−1))+κ), as β → ∞.

Moreover, for the rescaled function vn defined by (2.2), up to a subsequence,
there exist {yn}∞n=1 ⊂ RN , and θ1, θ2, θ3 ∈ R such that

∥vj,n(·+ yn)− eiθjΨ∥H1 → 0, as n→ ∞, j = 1, 2, 3,

θ1 + θ2 = θ3.

Proof. (Step 1) Note that vn satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1, (2.5)

Ẽβn(vn) = ξ̃βn + o(β−4/(4−N(p−1))
n ). (2.6)
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From the upper bound for ξ̃β, it holds that

3S∞ + o(β−4/(4−N(p−1))
n )

≥ ξ̃βn + o(β−4/(4−N(p−1))
n ) = Ẽβn(vn)

≥ J∞(v1,n) + J∞(v2,n) + J∞(v3,n)

+O(1/β4/(4−N(p−1))
n )− β(N−4)/(4−N(p−1))+κ

n Re

∫
RN

v1,nv2,nv3,n dx

≥ 1

2

3∑
j=1

∫
RN

|∇vj,n|2 dx−
1

p+ 1

3∑
j=1

∫
RN

|vj,n|p+1 dx

+O(1/β4/(4−N(p−1))
n )− β

(N−4)/(4−N(p−1))+κ
n

3

3∑
j=1

∫
RN

|vj,n|3 dx.

(2.7)

Here we note that N ≤ 3, 1 < p < 1+4/N and (N−4)/(4−N(p−1))+κ < 0.

Then for n sufficiently large, it follows that β
(N−4)/(4−N(p−1))+κ
n ≤ 1. From

Gagliardo-Nirenberg’s inequality (see Adams [1]) and (2.5), for q = p+1 and
q = 3, we have

∥vj,n∥qq ≤ C(N, q)∥∇vj,n∥N(q−2)/2
2 ∥vj,n∥q−N(q−2)/2

2

≤ ε∥∇vj,n∥22 + C(ε,N, q), for all ε > 0.
(2.8)

Here C(N, q), C(ε,N, q) > 0 is a constant. From (2.7),(2.8), we have

3S∞ +O(1) ≥
(
1

2
− 1

p+ 1
ε− 1

3
ε

) 3∑
j=1

∥∇vj,n∥22.

Fix ε > 0 such that 1/2 − ε/(p + 1) − ε/3 > 0. Combining with (2.5), we
find that there exists a positive constant C > 0 such that for all n ∈ N,

3∑
j=1

∥vj,n∥2H1 ≤ C. (2.9)

(Step 2) From the upper bound for ξ̃β, we have

3S∞ ≥ ξ̃βn = Ẽβn(vn) + o(β−4/(4−N(p−1))
n )

≥ J∞(v1,n) + J∞(v2,n) + J∞(v3,n)

+O(1/β4/(4−N(p−1))
n )

− β(N−4)/(4−N(p−1))+κ
n Re

∫
RN

v1,nv2,nv3,n dx.

(2.10)
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From (2.9) and N ≤ 3, 1 < p < 1+4/N and (N −4)/(4−N(p−1))+κ < 0,
we deduce that

β(N−4)/(4−N(p−1))+κ
n Re

∫
RN

v1,nv2,nv3,n dx = o(1), as n→ ∞.

From (2.5),(2.10) and the definition of S∞, we have

3S∞ ≥ ξ̃βn ≥ J∞(v1,n) + J∞(v2,n) + J∞(v3,n) + o(1)

≥ 3S∞ + o(1), as n→ ∞.

Thus we have

lim
n→∞

J∞(vj,n) = S∞, j = 1, 2, 3.

Thus {v1,n}∞n=1,{v2,n}∞n=1,{v3,n}∞n=1 are minimizing sequences for S∞. From

Lemma 2.2, up to a subsequence, there exist {y(j)n }∞n=1 ⊂ RN and θj ∈ R such
that

∥vj,n(·+ y(j)n )− eiθjΨ∥H1 → 0, as n→ ∞, j = 1, 2, 3. (2.11)

(Step 3) Set

Ψj,n := eiθjΨ(· − y(j)n ), j = 1, 2, 3

Ψn := (Ψ1,n,Ψ2,n,Ψ3,n).

From (2.11) and {vn}∞n=1 and {Ψn}∞n=1 are bounded in H, we have

|J1(vn)− J1(Ψn)|

≤
∫
RN

|v1,n||v2,n||v3,n −Ψ3,n| dx+
∫
RN

|v1,n||v2,n −Ψ2,n||Ψ3,n| dx

+

∫
RN

|v1,n −Ψ1,n||Ψ2,n||Ψ3,n| dx→ 0, as n→ ∞.

(2.12)

Moreover, since Ψj,n is a minimizer for S∞, it follows that

J1(Ψn) ≤ S1.

From the upper bound for ξ̃β, it follows that

3S∞ − β(N−4)/(4−N(p−1))+κ
n S1
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≥ ξ̃βn = Ẽβn(vn) + o(β−4/(4−N(p−1))
n )

= J∞(v1,n) + J∞(v2,n) + J∞(v3,n)− β(N−4)/(4−N(p−1))+κ
n J1(vn)

+ o(β(N−4)/(4−N(p−1))+κ
n )

≥ 3S∞ − β(N−4)/(4−N(p−1))+κ
n J1(Ψn) + o(β(N−4)/(4−N(p−1))+κ

n )

≥ 3S∞ − β(N−4)/(4−N(p−1))+κ
n S1 + o(β(N−4)/(4−N(p−1))+κ

n ), as n→ ∞.

Thus we have

lim
n→∞

ξ̃βn − 3S∞

β
(N−4)/(4−N(p−1))+κ
n

= −S1, lim
n→∞

J1(Ψn) = S1. (2.13)

Since {βn}∞n=1 is arbitrary sequence satisfying βn → ∞, we have

ξ̃β = 3S∞ − β(N−4)/(4−N(p−1))+κS1 + o(β(N−4)/(4−N(p−1))+κ), as β → ∞.

(Step 4) From (2.13), it follows that

Re(ei(θ1+θ2−θ3)) lim
n→∞

∫
RN

Ψ(x)Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx = S1.

(2.14)

We prove {y(1)n − y
(2)
n }∞n=1 and {y(1)n − y

(3)
n }∞n=1 are bounded in RN . If not,

for example, if {y(1)n − y
(2)
n }∞n=1 is not bounded, up to a subsequence, then it

holds that

|y(1)n − y(2)n | → ∞, as n→ ∞.

From Remark 2.2, Ψ ∈ L2(RN) is radial symmetric and decreasing, it holds
that

lim
|x|→∞

Ψ(x) = 0.

Thus for all ε > 0, there exists R > 0 such that

|x| ≥ R =⇒Ψ(x) < ε.

In addition, since |y(1)n − y
(2)
n | → ∞ (as n → ∞), for n sufficiently large, we

have

Ψ(x+ y(1)n − y(2)n ) < ε, for all |x| < R.
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Thus for n sufficiently large, it follows that

|J1(Ψn)| = |J1(Ψ(· − y(1)n ),Ψ(· − y(2)n ),Ψ(· − y(3)n ))|

≤
∫
RN

Ψ(x)Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx

≤ ε

∫
|x|<R

Ψ(x)Ψ(x+ y(1)n − y(3)n ) dx

+ ε

∫
|x|≥R

Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx

≤ ε∥Ψ∥22 + ε∥Ψ∥22 = 2ε.

Thus we have

lim
n→∞

J1(Ψn) = 0.

Although

lim
n→∞

J1(Ψn) = S1,

this is a contradiction to S1 > 0 from Lemma 2.4. Therefore {y(1)n − y
(2)
n }∞n=1

is bounded. We can prove that {y(1)n − y
(3)
n }∞n=1 is bounded in the same way.

Hence up to a subsequence, there exist y(2), y(3) ∈ RN such that

y(1)n − y(2)n → y(2), as n→ ∞,

y(1)n − y(3)n → y(3), as n→ ∞.

Therefore we have∫
RN

Ψ(x)Ψ(x+ y(1)n − y(2)n )Ψ(x+ y(1)n − y(3)n ) dx

→
∫
RN

Ψ(x)Ψ(x+ y(2))Ψ(x+ y(3)) dx, as n→ ∞.

From (2.14), it holds that

Re(ei(θ1+θ2−θ3))

∫
RN

Ψ(x)Ψ(x+ y(2))Ψ(x+ y(3)) dx = S1.

Therefore (eiθ1Ψ, eiθ2Ψ(·+ y(2)), eiθ3Ψ(·+ y(3))) is a maximizer for S1. From
Lemma 2.4, y(2) = y(3) = 0 and we may assume that θ1 + θ2 = θ3.
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Moreover we have

∥vj,n(·+ y(1)n )− eiθjΨ∥H1 → 0, as n→ ∞, j = 2, 3.

Indeed, setting z
(j)
n := y

(1)
n − y

(j)
n (j = 2, 3), we have

∥vj,n(·+ y(1)n )− eiθjΨ∥H1 = ∥vj,n(·+ y(j)n )− eiθjΨ(· − z(j)n )∥H1

≤ ∥vj,n(·+ y(j)n )− eiθjΨ∥H1 + ∥eiθjΨ− eiθjΨ(· − z(j)n )∥H1

→ 0, as n→ ∞.

2

2.3.3 Proof of Theorem 2.1 (iv)

For the case κ = κ2, we have

Ẽβ(v) =
3∑

j=1

J∞(vj)− β−4/(4−N(p−1))×

×
(
J1(v)− 1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj|2 dx

)
.

For the proof of the upper bound, we use the following test function:

φβ(x) := Ψ(x− β2/(4−N(p−1))z0),

where z0 is unique minimum point of Vj. By using the arguments used in
Theorem 2.1 (ii), we can prove the upper bound:

ξ̃β ≤ Ẽβ(φβ) = 3S∞ − β−4/(4−N(p−1))×

×
(
S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}
)

+ o(β−4/(4−N(p−1))), as β → ∞.

For the proof of the lower bound, note that the rescaled function vn defined
by (2.2) satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,
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Ẽβn(vn) = ξ̃βn + o(β−4/(4−N(p−1))
n ),

where βn → ∞. By the similar argument as in the proof of Theorem 2.1 (iii),
it holds that {vn}∞n=1 is bounded in H and each {vj,n}∞n=1 is a minimizing

sequence for S∞. Therefore up to a subsequence, there exist {y(j)n }∞n=1 ⊂ RN

and θj ∈ R such that

∥vj,n(·+ y(j)n )− eiθjΨ∥H1 → 0.

From the upper bound for ξ̃βn , we have

3S∞ − β−4/(4−N(p−1))
n ×

× (S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)}) + o(β−4/(4−N(p−1))
n )

≥ ξ̃βn

≥ 3S∞ − β−4/(4−N(p−1))
n ×

×
(
J1(vn)−

1

2

3∑
j=1

∫
RN

Vj

(
x

β
2/(4−N(p−1))
n

)
|vj,n|2 dx

)
+ o(β−4/(4−N(p−1))

n ).

Since

J1(vn) = J1(eiθ1Ψ(· − y(1)n ), eiθ2Ψ(· − y(2)n ), eiθ3Ψ(· − y(3)n )) + o(1)

≤ S1 + o(1),

by the same argument as in Theorem 2.1 (ii) and (iii), we have

y(j)n /β2/(4−N(p−1))
n → zj,0 = z0,∫

RN

Vj

(
x

β
2/(4−N(p−1))
n

)
|vj,n|2 dx→ Vj(zj,0) = Vj(z0).

Thus we have

3S∞ − β−4/(4−N(p−1))
n (S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)})

+ o(β−4/(4−N(p−1))
n )

≥ ξ̃βn
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≥ 3S∞ − β−4/(4−N(p−1))
n ×

×
(
J1(eiθ1Ψ(· − y(1)n ), eiθ2Ψ(· − y(2)n ), eiθ3Ψ(· − y(3)n ))

− 1

2
{V1(z0) + V2(z0) + V3(z0)}

)
+ o(β−4/(4−N(p−1))

n )

≥ 3S∞ − β−4/(4−N(p−1))
n (S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)})

+ o(β−4/(4−N(p−1))
n ).

By the same argument as in Theorem 2.1 (iii), we have

ξ̃β = 3S∞ − β−4/(4−N(p−1))(S1 − 1

2
min
x∈RN

{V1(x) + V2(x) + V3(x)})

+ o(β−4/(4−N(p−1))), as β → ∞,

θ1 + θ2 = θ3 + 2kπ, k ∈ Z,
y(1)n − y(2)n → 0, y(1)n − y(3)n → 0,

∥vj,n(·+ yn)− eiθjΨ∥H1 → 0,

yn/β
2/(4−N(p−1))
n → z0,

where yn = y
(1)
n .

2.3.4 Proof of Theorem 2.1 (v)

For the case (v) κ < κ2, note that

(N − 4)/(4−N(p− 1)) + κ < −4/(4−N(p− 1))

and

Ẽβ(v) =
3∑

j=1

J∞(vj) + β−4/(4−N(p−1))1

2

3∑
j=1

∫
RN

Vj

(
x

β2/(4−N(p−1))

)
|vj|2 dx

− β(N−4)/(4−N(p−1))+κJ1(v).

First we prove the upper bound for ξ̃β. Let xj,0 ∈ RN such that
minx∈RN Vj(x) = Vj(xj,0) for all j = 1, 2, 3.
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Set vj(x) = Ψ(x− β2/(4−N(p−1))xj,0), v = (v1, v2, v3). Then we have

ξ̃β ≤ Ẽβ(v)

= 3S∞ + β−4/(4−N(p−1))1

2

3∑
j=1

∫
RN

Vj(β
−2/(4−N(p−1))x+ xj,0)|Ψ|2 dx

+ o(β−4/(4−N(p−1)))

= 3S∞ + β−4/(4−N(p−1))1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+ o(β−4/(4−N(p−1))), as β → ∞.

Next, we prove the lower bound for ξ̃β. Recall that the rescaled function
vn defined by (2.2) satisfies

∥v1,n∥22 = ∥v2,n∥22 = ∥v3,n∥22 = 1,

Ẽβn(vn) = ξ̃βn + o(β−4/(4−N(p−1))
n ),

where βn → ∞. Since {vj,n}∞n=1 is bounded in H1(RN), by the same argu-
ment as in the proof of Theorem 2.1 (iii) and (iv), {vj,n}∞n=1 is a minimizing

sequence for S∞. Thus up to a subsequence, there exist {y(j)n }∞n=1 ⊂ RN and
θj ∈ R such that

∥vj,n(·+ y(j)n )− eiθjΨ∥H1 → 0.

By the same argument as in the proof of Theorem 2.1 (ii), since

{y(j)n /β
2/(4−N(p−1))
n }∞n=1 is bounded, up to a subsequence, there exists zj,0 ∈

RN such that

y(j)n /β2/(4−N(p−1))
n → zj,0.

Moreover we have∫
RN

Vj(β
−2/(4−N(p−1))
n x)|vj,n|2 dx→ Vj(zj,0).

From the upper bound for ξ̃β, it follows that

3S∞ + β−4/(4−N(p−1))
n

1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}
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+ o(β−4/(4−N(p−1))
n )

≥ ξ̃βn

≥ 3S∞ + β−4/(4−N(p−1))
n

1

2
{V1(z1,0) + V2(z2,0) + V3(z3,0)}+ o(β−4/(4−N(p−1))

n )

≥ 3S∞ + β−4/(4−N(p−1))
n

1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+ o(β−4/(4−N(p−1))
n ).

This implies that

ξ̃β = 3S∞ + β−4/(4−N(p−1))1

2
{min
x∈RN

V1(x) + min
x∈RN

V2(x) + min
x∈RN

V3(x)}

+o(β−4/(4−N(p−1))), as β → ∞,

min
x∈RN

Vj(x) = Vj(zj,0).

2.3.5 Proof of Theorem 2.1 (i)

Let u be a function such that

∥u1∥22 = ∥u2∥22 = ∥u3∥22 = 1.

We consider the rescaled function w as (2.1) such that

w(x) := β−κN/(4−N)u(β−2κ/(4−N)x).

Then it follows that

∥w1∥22 = ∥w2∥22 = ∥w3∥22 = 1

and

Eβ(u) = β4κ/(4−N)F̃ β(w), ξβ = β4κ/(4−N)K̃β

where

F̃ β(w) := E0(w)− βκ(N(p−1)−4)/(4−N)+1E1(w)

+ β−4κ/(4−N)1

2

3∑
j=1

∫
RN

Vj(β
−2κ/(4−N)x)|wj|2 dx,
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2.3 Proof of Theorem 2.1

K̃β := inf{F̃ β(w) | w ∈ H, ∥wj∥22 = 1 (j = 1, 2, 3)}.

For the case (i) κ > κ1, note that

−4κ/(4−N) < κ(N(p− 1)− 4)/(4−N) + 1 < 0.

We first prove the upper bound for K̃β. Let Wn be a maximizing sequence
for Σ1, that is, Wn satisfies

Wn is a minimizer for Σ0,

E1(Wn) → Σ1, as n→ ∞.

Then we have

K̃β ≤ F̃ β(Wn) = E0(Wn)− βκ(N(p−1)−4)/(4−N)+1E1(Wn)

+ β−4κ/(4−N)1

2

3∑
j=1

∫
RN

Vj(β
−2κ/(4−N)x)|Wj,n|2 dx

≤ Σ0 − βκ(N(p−1)−4)/(4−N)+1E1(Wn).

Then letting n→ ∞, we have

K̃β ≤ Σ0 − βκ(N(p−1)−4)/(4−N)+1Σ1.

Next we prove the lower bound for K̃β. Note that the rescaled function
wn defined by (2.1) satisfies

∥w1,n∥22 = ∥w2,n∥22 = ∥w3,n∥22 = 1,

F̃ βn(wn) = K̃βn + o(β−4κ/(4−N)
n ),

where βn → ∞ as n → ∞. Since {wj,n}∞n=1 is bounded in H1(RN), by the
same argument as in Theorem 2.1 (iii), {wn}∞n=1 is a minimizing sequence for
Σ0. From the compactness of minimizing sequence for Σ0 (see Kurata-Osada
[31]), up to a subsequence, there exist {yn}∞n=1 ⊂ RN and a minimizer w for
Σ0 such that

∥wn(·+ yn)−w∥H1 → 0, as n→ ∞.
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From the upper bound for K̃β, we have

Σ0 − βκ(N(p−1)−4)/(4−N)+1
n Σ1

≥ K̃βn = F̃ βn(wn) + o(β−4κ/(4−N)
n )

≥ Σ0 − βκ(N(p−1)−4)/(4−N)+1
n E1(wn)

+ β−4κ/(4−N)
n

1

2

3∑
j=1

∫
RN

Vj(β
−2κ/(4−N)
n x)|wj,n|2 dx

= Σ0 − βκ(N(p−1)−4)/(4−N)+1
n E1(w) + o(βκ(N(p−1)−4)/(4−N)+1

n )

≥ Σ0 − βκ(N(p−1)−4)/(4−N)+1
n Σ1 + o(βκ(N(p−1)−4)/(4−N)+1

n ).

Thus we have

K̃β = Σ0 − βκ(N(p−1)−4)/(4−N)+1Σ1 + o(βκ(N(p−1)−4)/(4−N)+1), as β → ∞

and w is a maximizer for Σ1.

2.4 Appendix

We remark the another asymptotic expansion of the energy ξβα(a1, a2, a3) as
α → ∞ with β = ατ for a given τ ∈ R. For τ > 0, the result of asymptotic
expansion of ξβα(a1, a2, a3) as α → ∞ with β = ατ is included in Theorem
2.1. So we consider the case τ ≤ 0. For a given τ ≤ 0, as β = ατ define

Eα(u) := Eατ

α (u),

ξα(a1, a2, a3) := ξα
τ

α (a1, a2, a3).

Let {αn}∞n=1 be a positive number sequence such that αn → ∞ as n → ∞.
We say that {un}∞n=1 is a minimizing sequence for ξαn(a1, a2, a3) if

∥u1,n∥22 = a1, ∥u2,n∥22 = a2, ∥u3,n∥22 = a3,

Eαn(un) = ξαn(a1, a2, a3) + o(1), as n→ ∞.

We use the rescaled function wn defined by (2.1) to analyze the asymptotic
expansion for ξα(a1, a2, a3) as α → ∞. The asymptotic expansion up to the
first term for ξα(a1, a2, a3) for the case τ = 0 is treated in Kurata-Osada [31].
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Proposition 1. (I) −N(p− 1)/(4−N) < τ ≤ 0
Assume that N ≤ 2. Then it holds that

ξα(a1, a2, a3) = α4/(4−N)Σ0(a1, a2, a3)− αN(p−1)/(4−N)+τΣ1(a1, a2, a3)

+ o(αN(p−1)/(4−N)+τ ), as α → ∞.

Moreover, let un be a minimizing sequence for ξαn(a1, a2, a3) where
αn → ∞. For the rescaled function wn defined by (2.1), up to a subse-
quence, there exist a maximizer w for Σ1(a1, a2, a3) and {yn}∞n=1 ⊂ RN

such that

∥wn(·+ yn)−w∥H1 → 0, as n→ ∞.

(II) τ = −N(p− 1)/(4−N)
Assume that N ≤ 2, (V2) and (V1, V2, V3) ̸≡ (0, 0, 0). Then it holds
that

ξα(a1, a2, a3) = α4/(4−N)Σ0(a1, a2, a3)− Σ1(a1, a2, a3)

+
1

2
min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3}+ o(1), as α → ∞.

Moreover let un be a minimizing sequence for ξαn(a1, a2, a3) where αn →
∞. For the rescaled function wn defined by (2.1), up to a subsequence,
there exist a maximizer w for Σ1(a1, a2, a3), {yn}∞n=1 ⊂ RN and z0 ∈
RN such that

∥wj,n(·+ yn)− wj∥H1 → 0, as n→ ∞,

yn/α
2/(4−N)
n → z0, as n→ ∞,

min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3} = V1(z0)a1 + V2(z0)a2 + V3(z0)a3.

(III) τ < −N(p− 1)/(4−N)
Assume that (V2) and (V1, V2, V3) ̸≡ (0, 0, 0). Then it holds that

ξα(a1, a2, a3)

= α4/(4−N)Σ0(a1, a2, a3) +
1

2
min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3}

+ o(1), as α → ∞.

62



Chapter 2 Energy asymptotic expansion for a system of nonlinear
Schrödinger equations with three wave interaction

Moreover let un be a minimizing sequence for ξαn(a1, a2, a3) where αn →
∞. For the rescaled function wn defined by (2.1), up to a subsequence,
there exist a minimizer w for Σ0(a1, a2, a3), {yn}∞n=1 ⊂ RN and z0 ∈ RN

such that

∥wj,n(·+ yn)− wj∥H1 → 0, as n→ ∞,

yn/α
2/(4−N)
n → z0, as n→ ∞,

min
x∈RN

{V1(x)a1 + V2(x)a2 + V3(x)a3} = V1(z0)a1 + V2(z0)a2 + V3(z0)a3.

Since we can prove Proposition 1 in a similar way as in the proof of Theo-
rem 2.1, we omit the details. We note that we assume an additional condition
for the bottom of the potentials in the case (iv) in Theorem 2.1. But we do
not need the additional condition in Proposition 1 since the compactness
of the minimizing sequence of a minimization problem for appearing in the
first term of the asymptotic expansion of ξα aligns the translations for each
component.

63



Part II

Fixed frequency problem
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Chapter 3

Asymptotic expansion of the
ground state energy for
nonlinear Schrödinger system
with three wave interaction

3.1 Introduction

In [43], Pomponio studied the existence of a vector ground state of the non-
linear Schrödinger system with three wave interaction:

−∆u1 + V1(x)u1 − |u1|p−1u1 = αu2u3 in RN ,

−∆u2 + V2(x)u2 − |u2|p−1u2 = αu1u3 in RN ,

−∆u3 + V3(x)u3 − |u3|p−1u3 = αu1u2 in RN ,

(PV)

where u := (u1, u2, u3), u1, u2, u3 are real-valued functions, α ∈ R, N ∈
N, N ≤ 5 and 2 ≤ p < 2∗ − 1, where 2∗ is defined as follows:

2∗ :=

{
∞ (N = 1, 2),

2N/(N − 2) (N ≥ 3).

Here the potential V = (V1, V2, V3) satisfy the following conditions:
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(V1) for all i = 1, 2, 3, Vi ∈ L∞(RN ;R).

(V2) for all i = 1, 2, 3, Vi(x) ≤ lim|y|→∞ Vi(y) =: Vi,∞ ∈ R, for almost every
x ∈ RN .

(V3) for all i = 1, 2, 3, 0 < Ci ≤ Vi(x), for almost every x ∈ RN .

We note that the results in [43] holds even if p = 2, although the condition
p > 2 was assumed in [43]. In particular, in [43], the existence of a vector
ground state for α sufficiently large was shown. Also, in [43], the ground state
converges to the scalar ground state as α → 0 was shown. However, in [43],
it was not clear whether the ground state is scalar or not for small α. In this
chapter, we give a positive answer to this question and moreover establish a
precise asymptotic expansion of the ground state energy for α → ∞.

We set H = H1(RN)×H1(RN)×H1(RN). The solution of (PV) is char-
acterized as a critical point of the functional IV : H → R defined as follows:

IV(u) :=
3∑

i=1

IVi
(ui)− α

∫
RN

u1u2u3,

IVi
(ui) :=

1

2

∫
RN

|∇ui|2 + Vi(x)u
2
i −

1

p+ 1

∫
RN

|ui|p+1.

Now we set

cV := inf
u∈NV

IV(u),

where

NV := {u ∈ H \ {(0, 0, 0)} | GV(u) = 0},

GV(u) :=
3∑

i=1

∫
RN

|∇ui|2 + Vi(x)u
2
i − |ui|p+1 − 3α

∫
RN

u1u2u3.

Definition 3.1. A solution u = (u1, u2, u3) ̸≡ (0, 0, 0) of (PV) is called a
scalar solution if there exist i, j ∈ {1, 2, 3} with i ̸= j such that ui ≡ uj ≡ 0;
while a solution u of (PV) is called a vector solution if u1 ̸= 0, u2 ̸= 0 and
u3 ̸= 0.
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Definition 3.2. We will say that u is a ground state of (PV) if u is a non-
trivial solution of (PV) and IV(u) ≤ IV(w) holds for all non-trivial solution
w of (PV).

To state the asymptotic expansion precisely, we consider the following limit
problem: 

−∆u1 + V1(x)u1 = u2u3 in RN ,

−∆u2 + V2(x)u2 = u1u3 in RN ,

−∆u3 + V3(x)u3 = u1u2 in RN .

(P̃∞)

The solution of (P̃∞) is characterized as a critical point of the functional
ĨV,∞ : H → R defined as follows:

ĨV,∞(u) :=
3∑

i=1

ĨVi,∞(ui)−
∫
RN

u1u2u3,

ĨVi,∞(ui) :=
1

2

∫
RN

|∇ui|2 + Vi(x)u
2
i .

Moreover we set

c̃V,∞ := inf
u∈ÑV,∞

ĨV,∞(u),

where

ÑV,∞ := {u ∈ H \ {(0, 0, 0)} | G̃V,∞(u) = 0},

G̃V,∞(u) :=
3∑

i=1

∫
RN

|∇ui|2 + Vi(x)u
2
i − 3

∫
RN

u1u2u3.

We define also a vector solution and a ground state for the problem (P̃∞)
similarly.

First, we note the compactness of the minimizing sequence for c̃V,∞.

Proposition 3.3. Let {un}∞n=1 ⊂ ÑV,∞ be a minimizing sequence for c̃V,∞.
Then up to a subsequence, there exist {ξn}∞n=1 ⊂ RN and u ∈ H such that

∥ui,n(·+ ξn)− ui∥H1 → 0, as n→ ∞.

We can take ξn = 0 for all n ∈ N if (V1, V2, V3) ̸≡ (V1,∞, V2,∞, V3,∞). Moreover
u is a minimizer for c̃V,∞, that is, u is a ground state of (P̃∞).
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Note that any ground state u to (P̃∞) should be a vector solution of (P̃∞),
that is u satisfies (P̃∞) and ui ̸≡ 0 for all i = 1, 2, 3.

Now we write cV and c̃V,∞ as cα and c̃∞ for simplicity. Using Proposition
3.3, we established the following asymptotic expansion to cα as α → ∞.

Theorem 3.4. Let α > 0. Then

cα = c̃∞/α
2 + o(1/α2), as α → ∞.

Moreover, let {αn}∞n=1 ⊂ (0,∞) be a sequence such that αn → ∞ as n→ ∞
and un a minimizer for cαn . Then up to a subsequence, there exist a minimizer
u for c̃∞ and a sequence {ξn}∞n=1 ⊂ RN such that

∥αnui,n(·+ ξn)− ui∥H1 → 0, as n→ ∞.

We can take ξn = 0 for all n ∈ N if (V1, V2, V3) ̸≡ (V1,∞, V2,∞, V3,∞).

From Remark 1.1 in [43], it follows that cα is an even function on R. So
we consider only for the case α ∈ [0,∞).

We show the existence of the positive threshold α∗ as follows.

Theorem 3.5. cα is non-increasing and continuous on [0,∞). In addition,
there exists α∗ > 0 such that cα = c0 if 0 ≤ α ≤ α∗ and cα < c0 if α > α∗.
Moreover, for α > α∗, all minimizer for cα is a vector solution of (PV) and
cα is strictly decreasing on (α∗,∞). For α ∈ [0, α∗), all minimizer for cα is a
scalar solution of (PV).

Remark 3.1. For the case V1 ≡ V2 ≡ V3 ≡ V , we give an upper bound of
the threshold α∗.

(i) For the case p = 2.
It holds that α∗ ≤

√
3− 1.

(ii) For the case p ̸= 2.
Let α0 be a unique positive solution of

A(u)2

α2C(u)2

{
1

2
+
p− 2

p+ 1

A(u)p−1

αp−1C(u)p−1

}
2(p+ 1)

p− 1
= 1,
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where u is a positive ground state of

−∆u+ V (x)u− |u|p−1u = 0

and

A(u) :=

∫
RN

|∇u|2 + V (x)u2, C(u) :=

∫
RN

|u|3.

Then we have α∗ ≤ α0.

See the Appendix in [30] for the proof of Remark 3.1.

For the physical background of the nonlinear Schrödinger system with three
wave interaction, see Colin-Colin [15, 16] and Colin-Colin-Ohta [18, 19]. In
particular, in [18, 19], they studied the orbital stability of a standing wave for
a nonlinear Schrödinger system with three wave interaction. More precisely,
they revealed that the stability and instability of the standing wave solution
depended on the size of the coupling parameter α (see also Colin-Ohta [17]).

Recently, there are several works on the nonlinear Schrödinger system with
three wave interaction and related models. For the L2-constrained variational
problem associated with this system, see Ardila [4], Kurata-Osada [31], Os-
ada [41] and for other related models, see e.g. Tian-Wang-Zhao [50], Wang
[52], Zhao-Zhao-Shi [60] and the references therein.

The rest of this chapter is organized as follows. In Section 3.2, we show
the compactness of the minimizing sequence for c̃V,∞. In Section 3.3, we
prove the asymptotic behavior of a ground state of (PV) and its energy cα
as α → ∞. In Section 3.4, we prove the existence of the positive threshold
α∗ of α such that the ground state of (PV) is a scalar solution if 0 ≤ α < α∗,
whereas the ground state is a vector solution if α > α∗. In Appendix, we
give the proof of the continuity of cα on the parameter α ∈ [0,∞).

Notation

• For r > 0 and x0 ∈ RN , we define Br(x0) := {x ∈ RN | |x− x0| < r}.
• We denote by H1(RN) the set of real valued H1 function.
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• We denote by ∥ · ∥H1 the norm of H1(RN).
• We set H := H1(RN)3, and set ∥u∥2H :=

∑3
i=1 ∥ui∥2H1 for u ∈ H.

3.2 Proof of Proposition 3.3

To show Proposition 3.3, we need the following lemma which can be proved
as in [43].

Lemma 3.6. Let {un}∞n=1 ⊂ ÑV,∞ be a minimizing sequence for c̃V,∞.
Then {un}∞n=1 is bounded in H and it does not vanish, that is, there exists
r > 0 such that

lim
n→∞

sup
ξ∈RN

∫
Br(ξ)

u21,n + u22,n + u23,n ̸= 0.

We also note that, since

ĨV,∞(u) =
1

6

3∑
i=1

∫
RN

|∇ui|2 + Vi(x)u
2
i

≥ C∥u∥2H, for all u ∈ ÑV,∞, (3.1)

and there exists C > 0 such that ∥u∥H ≥ C for all u ∈ ÑV,∞ (see [43, Lemma
2.1]), c̃V,∞ is a positive constant.

We define the functional J̃V,∞ : H → R as follows:

J̃V,∞(u) :=
1

6

3∑
i=1

∫
RN

|∇ui|2 + Vi(x)u
2
i .

We need also the following lemma.

Lemma 3.7. (cf. [29, Lemma 1]) If G̃V,∞(u) < 0, then it follows that
J̃V,∞(u) > c̃V,∞.
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Proof. Since G̃V,∞(u) < 0, it follows that u ̸= (0, 0, 0). Therefore, it holds
that

∫
RN u1u2u3 > 0. Thus there exists unique t > 0 such that G̃V,∞(tu) = 0

by the same argument as in Lemma 2.3 in [43]. We set

G̃V,∞(tu) =: At2 − Ct3,

A :=
3∑

i=1

∫
RN

|∇ui|2 + Vi(x)u
2
i > 0,

C := 3α

∫
RN

u1u2u3 > 0.

Then G̃V,∞(tu) > 0 if 0 < t < t and G̃V,∞(tu) < 0 if t > t. Since G̃V,∞(u) <
0, it follows that t < 1. Hence we obtain

c̃V,∞ ≤ J̃V,∞(tu) = t
2
J̃V,∞(u) < J̃V,∞(u).

2

Now we prove the compactness of the minimizing sequence for c̃V,∞ (cf.
[29, Lemma 3]).

Proof of Proposition 3.3. (Step 1) First we show for the constant po-
tential case: V = V∞.

Let {un}∞n=1 ⊂ ÑV∞,∞ be a minimizing sequence for c̃V∞,∞. From (3.1)
and Lemma 3.6, {un}∞n=1 is bounded in H and it does not vanish, that is, up
to a subsequence, there exist C > 0, r > 0 and {ξn}∞n=1 ⊂ RN such that∫

Br(ξn)

u21,n + u22,n + u23,n ≥ C, for all n ∈ N. (3.2)

Since {un(· + ξn)}∞n=1 is bounded in H, up to a subsequence, there exists
u ∈ H such that for i = 1, 2, 3,

ui,n(·+ ξn)⇀ ui weakly in H1(RN),

ui,n(·+ ξn) → ui a.e. in RN ,

ui,n(·+ ξn) → ui in L
q
loc(R

N), 1 ≤ q < 2∗.
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By the lower semicontinuity, we get J̃V∞,∞(u) ≤ c̃V∞,∞. From (3.2), we have
u ̸= (0, 0, 0). By the Brezis-Lieb Lemma, it follows that

0 = G̃V∞,∞(un) = G̃V∞,∞(u) + G̃V∞,∞(un(·+ ξn)− u) + on(1), (3.3)

J̃V∞,∞(un) = J̃V∞,∞(u) + J̃V∞,∞(un(·+ ξn)− u) + on(1). (3.4)

We prove G̃V∞,∞(u) = 0 by contradiction.

Case 1. The case of G̃V∞,∞(u) > 0. From (3.3), for n sufficiently large, it
follows that G̃V∞,∞(un(·+ ξn)− u) < 0. From Lemma 3.7, for n sufficiently
large, we have J̃V∞,∞(un(· + ξn) − u) > c̃V∞,∞. From (3.4), it holds that
J̃V∞,∞(u) = 0. Thus we have u = (0, 0, 0). This contradicts u ̸= (0, 0, 0).

Case 2. The case of G̃V∞,∞(u) < 0. From Lemma 3.7, we have J̃V∞,∞(u) >
c̃V∞,∞. This contradicts J̃V∞,∞(u) ≤ c̃V∞,∞.

From the above, we have G̃V∞,∞(u) = 0. Since u ̸= (0, 0, 0), it follows
that u ∈ ÑV∞,∞. Thus we have

c̃V∞,∞ ≤ ĨV∞,∞(u) ≤ lim inf
n→∞

ĨV∞,∞(un) = c̃V∞,∞.

Since

ui,n(·+ ξn)⇀ ui weakly in H1(RN),

lim
n→∞

∫
RN

|∇ui,n|2 + Vi,∞u
2
i,n =

∫
RN

|∇ui|2 + Vi,∞u
2
i ,

we have ∥ui,n(·+ξn)−ui∥H1 → 0 (as n→ ∞). Therefore, we have u ∈ ÑV∞,∞
and ĨV∞,∞(u) = c̃V∞,∞. The remaining part of the statement can be proved
in the standard argument (see e.g. [43]).

Suppose that v = (v1, v2, v3) is a ground state of (P̃∞). Since
∫
RN v1v2v3 >

0, it holds that vi ̸= 0 for all i = 1, 2, 3.

(Step 2) Next, we show for the case V ̸≡ V∞. We note that it follows
that c̃V,∞ < c̃V∞,∞ ifV ̸≡ V∞. Indeed, from Proposition 3.3 for the constant
potential case, there exists a vector ground state u to (P̃∞) for V = V∞.
Let t > 0 be a positive constant such that tu ∈ ÑV,∞. Then we have

c̃V,∞ ≤ ĨV,∞(tu) < ĨV∞,∞(tu) ≤ ĨV∞,∞(u) = c̃V∞,∞.
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Let {un}∞n=1 ⊂ ÑV,∞ be a minimizing sequence for c̃V,∞. We can show that
{un}∞n=1 is bounded in H as in Step 1. Up to a subsequence, we have

ui,n ⇀ ui weakly in H1(RN),

ui,n → ui a.e. in RN ,

ui,n → ui in L
q
loc(R

N), 1 ≤ q < 2∗.

Let {tn}∞n=1 ⊂ (0,∞) be a sequence such that tnun ∈ ÑV∞,∞. Thus

c̃V,∞ + on(1) = ĨV,∞(un) ≥ ĨV,∞(tnun)

= ĨV∞,∞(tnun) +
t2n
2

3∑
i=1

∫
RN

(Vi(x)− Vi,∞)u2i,n

≥ c̃V∞,∞ +
t2n
2

3∑
i=1

∫
RN

(Vi(x)− Vi,∞)u2i,n.

Suppose that u ≡ (0, 0, 0). Since {tn}∞n=1 is bounded (the proof is the same
as in Lemma 3.6 in [43]) and ui,n → 0 in L2

loc(RN) and (V2),

lim
n→∞

t2n
2

3∑
i=1

∫
RN

(Vi(x)− Vi,∞)u2i,n = 0.

Hence we have c̃V,∞≥ c̃V∞,∞. This is a contradiction to c̃V,∞<c̃V∞,∞. Thus
u ̸≡ (0, 0, 0). The rest of this proof is proved by the same argument as in
Step 1. 2

3.3 Proof of Theorem 3.4

Hereafter, we write IV, NV, GV, cV, ĨV,∞, ÑV,∞ and c̃V,∞ as Iα, Nα, Gα,
cα, Ĩ∞, Ñ∞ and c̃∞. Here we rescale the energy functional Iα and Gα and
the infimum cα as follows: Let u ∈ H. Set w = αu. Then it follows that

Iα(u) =
1

α2
Ĩα(w),

Gα(u) =
1

α2
G̃α(w),
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cα =
1

α2
c̃α,

where

Ĩα(w) :=
1

2

3∑
i=1

∫
RN

|∇wi|2 + Vi(x)w
2
i

− 1

p+ 1

1

αp−1

3∑
i=1

∫
RN

|wi|p+1 −
∫
RN

w1w2w3,

c̃α := inf
w∈Ñα

Ĩα(w),

Ñα := {w ∈ H \ {(0, 0, 0)} | G̃α(w) = 0},

G̃α(w) :=
3∑

i=1

∫
RN

|∇wi|2 + Vi(x)w
2
i −

1

αp−1
|wi|p+1 − 3

∫
RN

w1w2w3.

Therefore, the proof of Theorem 3.4 is reduced to the proof of the following
proposition.

Proposition 3.8. It follows that c̃α → c̃∞ as α → ∞. Moreover let
{αn}∞n=1 ⊂ (0,∞) be a sequence such that αn → ∞ as n → ∞ and wn

a minimizer for c̃αn . Then up to a subsequence, there exist a minimizer w
for c̃∞ and {ξn}∞n=1 ⊂ RN such that

∥wi,n(·+ ξn)− wi∥H1 → 0, as n→ ∞.

We can take ξn = 0 for all n ∈ N if V ̸≡ V∞.

Proof. (Step 1) First we note the upper bound c̃α ≤ c̃∞ for all α > 0. Let
w be a minimizer for c̃∞ and sα a positive constant such that sαw ∈ Ñα.
Then we have

c̃∞ = Ĩ∞(w) ≥ Ĩ∞(sαw) ≥ Ĩα(sαw) ≥ c̃α.

(Step 2) Next, we show the lower bound c̃α ≥ c̃∞ + o(1) as α → ∞. To
show this, first we show that there exists C > 0 such that for all α ≥ 1 and
w ∈ Ñα, ∥w∥H ≥ C. Let α ≥ 1 and w ∈ Ñα. Then we have

C∥w∥2H ≤
3∑

i=1

∫
RN

|∇wi|2 + Vi(x)w
2
i =

1

αp−1

3∑
i=1

∫
RN

|wi|p+1 + 3

∫
RN

w1w2w3
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≤ C(∥w∥p+1
H + ∥w∥3H).

Thus, there exists C > 0 such that for all α ≥ 1, ∥w∥H ≥ C by the same
argument as in Lemma 2.1 in [43].

Let wα be a minimizer for c̃α. Next we show that there exist α0 ≥ 1 and
C > 0 such that for all α ≥ α0,∫

RN

w1,αw2,αw3,α ≥ C.

Indeed, from the upper bound for c̃α,

c̃∞ ≥ c̃α =
1

6

3∑
i=1

∫
RN

|∇wi,α|2 + Vi(x)w
2
i,α +

1

αp−1

p− 2

3(p+ 1)

∫
RN

|wi,α|p+1

≥ C∥wα∥2H, for all α > 0.

Thus {wα}α>0 is bounded in H. Since wα ∈ Ñα,

C ≤ C∥wα∥2H ≤
3∑

i=1

∫
RN

|∇wi,α|2 + Vi(x)w
2
i,α

=
1

αp−1

3∑
i=1

∫
RN

|wi,α|p+1 + 3

∫
RN

w1,αw2,αw3,α

≤ 1

αp−1
C + 3

∫
RN

w1,αw2,αw3,α.

Hence for α sufficiently large, we have∫
RN

w1,αw2,αw3,α ≥ C. (3.5)

For α sufficiently large, let tα > 0 be a positive constant tαwα ∈ Ñ∞ (this
fact is proved by the same argument as in Lemma 2.3 in [43]). It follows that

3∑
i=1

∫
RN

|∇wi,α|2 + Vi(x)w
2
i,α = 3tα

∫
RN

w1,αw2,αw3,α. (3.6)
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Since wα ∈ Ñα, we have

3∑
i=1

∫
RN

|∇wi,α|2+Vi(x)w2
i,α=

1

αp−1

3∑
i=1

∫
RN

|wi,α|p+1+3

∫
RN

w1,αw2,αw3,α.

(3.7)

From (3.5),(3.6),(3.7),

3(tα − 1)

∫
RN

w1,αw2,αw3,α =
1

αp−1

3∑
i=1

∫
RN

|wi,α|p+1,

0 ≤ tα − 1 ≤ C

αp−1
,

that is, tα → 1 as α → ∞. Thus we have

c̃α = Ĩα(wα) ≥ Ĩα(tαwα) = Ĩ∞(tαwα) + o(1) ≥ c̃∞ + o(1), as α → ∞.

Hence we have

c̃α → c̃∞, as α → ∞,

Ĩ∞(tαwα) → c̃∞, as α → ∞.

(Step 3) Let {αn}∞n=1 ⊂ (0,∞) be a sequence such that αn → ∞ as n→ ∞.
Let wn be a minimizer for c̃αn . By the same argument as in Step 2, for αn

sufficiently large, there exists tn > 0 such that

∥wn∥2H ≤ C, for all n ∈ N, (3.8)

tn → 1, as n→ ∞, (3.9)

tnwn ∈ Ñ∞, for all n ∈ N,
Ĩ∞(tnwn) → c̃∞, as n→ ∞.

Thus from Proposition 3.3, up to a subsequence, there exist a minimizer w
for c̃∞ and {ξn}∞n=1 ⊂ RN (if V ̸≡ V∞, then we can take ξn = 0 for all n ∈ N)
such that

∥tnwi,n(·+ ξn)− wi∥H1 → 0, as n→ ∞.

Moreover noting that (3.8) and (3.9),

∥tnwi,n(·+ ξn)− wi,n(·+ ξn)∥H1 → 0, as n→ ∞.

Thus we have

∥wi,n(·+ ξn)− wi∥H1 → 0, as n→ ∞.

2
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3.4 Proof of Theorem 3.5

Before going to give the proof of Theorem 3.5, we give several remarks in the
following lemmas.

Lemma 3.9. Let α ∈ R and u a minimizer for cα such that α
∫
RN u1u2u3 =

0 (if α = 0, it satisfies automatically). Then it follows that cα = mini=1,2,3 c(i)
and u = (u1, 0, 0) or (0, u2, 0) or (0, 0, u3). Here

N (i) := {u ∈ H1(RN) \ {0} | I ′Vi
(u)[u] = 0},

c(i) := inf
u∈N (i)

IVi
(u) > 0.

Proof. Since u is a ground state of (PV),
−∆u1 + V1(x)u1 − |u1|p−1u1 = αu2u3,

−∆u2 + V2(x)u2 − |u2|p−1u2 = αu1u3,

−∆u3 + V3(x)u3 − |u3|p−1u3 = αu1u2

holds. Since α
∫
RN u1u2u3 = 0, we have∫

RN

|∇ui|2 + Vi(x)u
2
i −

∫
RN

|ui|p+1 = 0.

Then it follows that

IVi
(ui) =

p− 1

2(p+ 1)

∫
RN

|∇ui|2 + Vi(x)u
2
i ≥ 0.

Since u ̸= (0, 0, 0), there exists i ∈ {1, 2, 3} such that IVi
(ui) ≥ c(i) (> 0).

Therefore we have

cα = Iα(u) =
3∑

i=1

IVi
(ui) ≥ min

i=1,2,3
c(i).

Let i0 ∈ {1, 2, 3} be an index such that c(i0) = mini=1,2,3 c(i). Let u ∈ N (i0)
be a function such that IVi0

(u) = infu∈N (i0) IVi0
(u)(= c(i0)). For simplicity,

we assume that i0 = 1. Since (u, 0, 0) ∈ Nα, we have

cα ≤ Iα(u, 0, 0) = IV1(u) = min
i=1,2,3

c(i).
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Hence it holds cα = mini=1,2,3 c(i).

If u1 ≠ 0, u2 ̸= 0 and u3 ̸= 0, cα = Iα(u) ≥
∑3

i=1 c(i) > mini=1,2,3 c(i).
This is a contradiction to cα = mini=1,2,3 c(i). We can also rule out the case
that two components are non-zero. Therefore it follows that u = (u1, 0, 0) or
(0, u2, 0) or (0, 0, u3). 2

Lemma 3.10. (PV) has a ground state.

Proof. For the case V ≡ V∞ or the case cV < cV∞ , the result of [43] implies
the existence of a ground state of (PV). We also note that the statement
holds even for the general cases for the sake of completeness. So let V ̸≡ V∞.
If cV∞ has a vector ground state, then cV < cV∞ holds and hence (PV) has
a ground state. Finally, assume that all ground state of (PV∞) is a scalar
solution. Then for Vi0,∞ = mini=1,2,3 Vi,∞ we have a scalar ground state u to
(PV∞) with ui0 ̸= 0. Moreover, we may assume Vi0 ≡ Vi0,∞ and cV = cV∞ .
So u itself is a ground state of (PV). 2

Although Pomponio [43] proved the following lemma only for the cases
V ≡ V∞ or Vi ̸≡ Vi,∞ for all i = 1, 2, 3, the same argument yields the
following statement even for the general cases.

Lemma 3.11. Let {αn}∞n=1 ⊂ (0,∞) with αn → 0 as n → ∞ and un

a ground state of (PV) for α = αn. Then there exist i ̸= j such that
ui,n, uj,n → 0 in H1(RN).

Proof of Theorem 3.5. Claim 1. cα is non-increasing on [0,∞). We can
prove this claim by the same argument as in the proof of Lemma 2.5 in [43].

Claim 2. cα is continuous on [0,∞). We omit the proof. See the proof of
the continuity of cα in Appendix in this chapter.

Claim 3. There exists α∗ ≥ 0 such that cα = c0 (0 ≤ α ≤ α∗) and
cα < c0 (α > α∗). {α ≥ 0 | cα = c0} is bounded closed interval. Indeed
since cα = c̃∞/α

2 + o(1/α2) as α → ∞, it is bounded set. Being closed set
follows from the continuity of cα. Being interval follows from monotonicity
of cα. Hence there exists a maximum of {α ≥ 0 | cα = c0}. We define
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α∗ := max{α ≥ 0 | cα = c0}. Then cα = c0 if 0 ≤ α ≤ α∗, and cα < c0 if
α > α∗.

Claim 4. α∗ > 0. If not, there exists αn > 0 with αn → 0 as n → ∞
such that (u1,n, u2,n, u3,n) is a ground state of (PV) with ui,n ̸= 0 for any
i = 1, 2, 3. By Lemma 3.11, we may assume u2,n, u3,n → 0 in H1(RN). We
also have {u1,n}∞n=1 is bounded in H1(RN). Now, we have∫

RN

|∇u2,n|2 + V2(x)u
2
2,n =

∫
RN

|u2,n|p+1 + αn

∫
RN

u1,nu2,nu3,n,∫
RN

|∇u3,n|2 + V3(x)u
2
3,n =

∫
RN

|u3,n|p+1 + αn

∫
RN

u1,nu2,nu3,n.

It follows

C1(∥u2,n∥2H1 + ∥u3,n∥2H1) ≤
∫
RN

|u2,n|p+1 + |u3,n|p+1 + 2αn

∫
RN

u1,nu2,nu3,n.

Here we note by the Sobolev embedding theorem

2

∫
RN

|u1,n||u2,n||u3,n| ≤
∫
RN

|u1,n|(|u2,n|2 + |u3,n|2)

≤ C2∥u1,n∥L3(∥u2,n∥2H1 + ∥u3,n∥2H1)

≤ C3(∥u2,n∥2H1 + ∥u3,n∥2H1).

Take α0 > 0 so that α0C3 ≤ C1/2. Then, for 0 < αn < α0, we have

C1

2
(∥u2,n∥2H1 + ∥u3,n∥2H1) ≤

∫
RN

|u2,n|p+1 + |u3,n|p+1

≤ C4

(
∥u2,n∥2H1 + ∥u3,n∥2H1

)(p+1)/2
.

Since u2,n ̸= 0 and u3,n ̸= 0, we obtain

1

2
≤ C

(
∥u2,n∥2H1 + ∥u3,n∥2H1

)(p−1)/2

which contradicts u2,n, u3,n → 0 in H1(RN).

Claim 5. For α > α∗, for any minimizer for cα is a vector solution and cα is
strictly decreasing. Moreover, for any minimizer for cα on (0, α∗) is a scalar
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solution.
Let α > α∗. It follows that cα < c0. Let u be a minimizer for cα. From
cα < c0, u is a vector solution. Let α1, α2 > α∗ with α1 < α2. Let u be a
minimizer for cα1 . Since cα1 < c0, u is a vector solution and it satisfies

max
t>0

Iα1(tu) = Iα1(u),∫
RN

u1u2u3 > 0.

Let t > 0 be a positive constant such that tu ∈ Nα2 . Then we have

cα1 = Iα1(u) ≥ Iα1(tu) > Iα2(tu) ≥ cα2 .

Now we show that for any minimizer for cα on (0, α∗) is scalar solution. If
not, there exists α1 ∈ (0, α∗) such that there exists a minimizer for cα1 such
that it is vector solution. Then as before, cα1 > cα2 for α1 < α2 < α∗. This
is a contradiction to cα = c0 for all α ∈ [0, α∗]. 2

3.5 Appendix

In this Appendix, we prove the continuity of cα on the parameter α ∈ [0,∞).
For a similar argument, see Zhao-Zhao-Shi [60, Lemma 4.1].

Proof of the continuity of cα on [0,∞). Let α0 ≥ 0. We now prove that
the continuity of cα at α = α0. Assume that α ≥ 0 and α is sufficiently close
to α0. From [43], there exists a non-negative ground state u to (PV) with
α = α0. In addition, let tα > 0 be a positive constant such that tαu ∈ Nα.
Then we have

3∑
i=1

∫
RN

|∇ui|2 + Vi(x)u
2
i − tp−1

α

3∑
i=1

∫
RN

|ui|p+1 − 3tαα

∫
RN

u1u2u3 = 0.

Therefore {tα}α is bounded. So we have

(α− α0)

∫
RN

tαu1tαu2tαu3 = o(1), as α → α0.
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Thus we have

cα ≤ Iα(tαu) = Iα0(tαu) + o(1) ≤ Iα0(u) + o(1) = cα0 + o(1), as α → α0.
(3.10)

On the other hand, let {αn}∞n=1 be any non-negative sequence such that
αn → α0 as n→ ∞ and uαn a non-negative minimizer for cαn . Then

1

6

3∑
i=1

∫
RN

|∇ui,αn|2 + Vi(x)u
2
i,αn

+
p− 2

3(p+ 1)

3∑
i=1

∫
RN

|ui,αn|p+1

= Iαn(uαn) = cαn ≤ cα0 + o(1), as n→ ∞.

Hence {uαn}∞n=1 is bounded in H. Let tαn > 0 be a positive constant such
that tαnuαn ∈ Nα0 . Then

3∑
i=1

∫
RN

|∇ui,αn|2 + Vi(x)u
2
i,αn

− tp−1
αn

3∑
i=1

∫
RN

|ui,αn|p+1

− 3tαnα0

∫
RN

u1,αnu2,αnu3,αn = 0. (3.11)

Since cα is non-increasing on [0,∞), there exists σ > 0 such that cα0+σ ≤ cαn

for all n ∈ N. Therefore up to a subsequence,

3∑
i=1

∫
RN

|ui,αn|p+1 ≥ C, for all n ∈ N. (3.12)

Indeed, if

lim
n→∞

3∑
i=1

∫
RN

|ui,αn|p+1 = 0,

by Hölder’s inequality, we have

lim
n→∞

∫
RN

u1,αnu2,αnu3,αn = 0.

Therefore

0 < cα0+σ ≤ cαn = Iαn(uαn)−
1

2
Gαn(uαn)
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=
p− 1

2(p+ 1)

3∑
i=1

∫
RN

|ui,αn|p+1 +
αn

2

∫
RN

u1,αnu2,αnu3,αn → 0, as n→ ∞.

This is a contradiction. Thus (3.12) holds. From (3.11), {tαn}∞n=1 is bounded.
Thus

cα0 ≤ Iα0(tαnuαn) = Iαn(tαnuαn) + o(1)

≤ Iαn(uαn) + o(1) = cαn + o(1), as n→ ∞. (3.13)

From (3.10) and (3.13), it implies that cα → cα0 as α → α0. 2
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Chapter 4

A singular perturbation
problem for a nonlinear
Schrödinger system with three
wave interaction

4.1 Introduction and main results

In this chapter, we consider the following nonlinear Schrödinger system with
three wave interaction:

−ε2∆u1 + V1(x)u1 = |u1|p−1u1 + αu2u3 in RN ,

−ε2∆u2 + V2(x)u2 = |u2|p−1u2 + αu1u3 in RN ,

−ε2∆u3 + V3(x)u3 = |u3|p−1u3 + αu1u2 in RN ,

(Pε)

where N ≤ 5, 2 ≤ p < 2∗ − 1, 2∗ = ∞ (N ≤ 2), 2∗ = 2N/(N − 2) (N ≥ 3),
ε > 0, α ≥ 0. We also assume the following basic conditions for the potentials
Vj (j = 1, 2, 3):

(V1) for all j = 1, 2, 3, Vj ∈ L∞(RN) ∩ C1(RN),

(V2) for all j = 1, 2, 3, 0 < Vj,0 := infx∈RN Vj(x) < lim|x|→∞ Vj(x) =: Vj,∞.
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We define the following functional and least energy for (Pε):

u := (u1, u2, u3), H := H1(RN)3,

Iε(u) :=
1

2

3∑
j=1

∫
RN

ε2|∇uj|2 + Vj(x)u
2
j

− 1

p+ 1

3∑
j=1

∫
RN

|uj|p+1 − α

∫
RN

u1u2u3,

cε := inf
u∈Nε

Iε(u),

Nε := {u ∈ H \ {(0, 0, 0)} | Gε(u) = 0},

Gε(u) :=
3∑

j=1

∫
RN

ε2|∇uj|2 + Vj(x)u
2
j − |uj|p+1 − 3α

∫
RN

u1u2u3.

(Pε) is related to standing wave solutions of the following time dependent
nonlinear Schrödinger system with three wave interaction:

iε∂tv1 + ε2∆v1 − Ṽ1(x)v1 + |v1|p−1v1 = −αv̄2v3 in R× RN ,

iε∂tv2 + ε2∆v2 − Ṽ2(x)v2 + |v2|p−1v2 = −αv̄1v3 in R× RN ,

iε∂tv3 + ε2∆v3 − Ṽ3(x)v3 + |v3|p−1v3 = −αv1v2 in R× RN .

(4.1)

Indeed, if (v1(t, x), v2(t, x), v3(t, x)) = (eiω1t/εu1(x), e
iω2t/εu2(x), e

iω3t/εu3(x))
with ω3 = ω1 + ω2 is a solution of (4.1), then (u1, u2, u3) satisfies (Pε) with
Vj(x) = ωj + Ṽj(x), where u1, u2, u3 are real-valued functions. The system
(4.1) was introduced by Colin-Colin-Ohta [19] with Vj(x) ≡ 0 and ε = 1
(see also [15, 16]). Colin-Colin-Ohta [18, 19] showed that the standing wave
solutions (eiωtφ, 0, 0) and (0, eiωtφ, 0) are orbitally stable for all α > 0, where
ω > 0 and φ is the unique positive radial solution of

−∆v + ωv − |v|p−1v = 0 in RN .

On the other hand, (0, 0, eiωtφ) is orbitally stable if 0 < α < α∗ and is
orbitally unstable if α > α∗ where α∗ is a suitable positive constant (see
[18, 19] for more detail). For other studies on nonlinear Schrödinger system
with three wave interaction, see [4, 30, 31, 37, 41, 42, 43, 51] and the references
therein.
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Rabinowitz [44] showed that there exists a ground state solution of

−ε2∆u+ V (x)u = f(x, u) in RN (4.2)

for ε sufficiently small if 0 < infx∈RN V (x) < lim inf |x|→∞ V (x), where f
satisfies suitable conditions (see [44] for more detail). Here we say that u is
a ground state of (4.2) if u is a nontrivial solution with least energy

1

2

∫
RN

ε2|∇u|2 + V (x)u2 −
∫
RN

F (x, u)

among all nontrivial H1(RN) solutions of (4.2), where

F (x, u) :=

∫ u

0

f(x, t) dt.

Wang [54] studied the concentration behavior of positive ground state solu-
tions of (4.2) for the case f(x, u) = |u|p−1u. That solutions concentrate at a
global minimum point of V as ε→ +0, have a unique local maximum (hence
global maximum) point and exponential decay rapidly around the minimum
point.

Lin-Wei [33] considered the following nonlinear Schrödinger system
−ε2∆u1 + λ1u1 = µ1u

3
1 + βu1u

2
2 in Ω,

−ε2∆u2 + λ2u2 = µ2u
3
2 + βu21u2 in Ω,

u1, u2 > 0 in Ω,

u1 = u2 = 0 on ∂Ω,

(4.3)

where Ω ⊂ RN is a smooth and bounded domain. They showed that as
ε → +0, there are two spikes for both u1,ε and u2,ε, where (u1,ε, u2,ε) is a
ground state of (4.3). If β < 0, the locations of two spikes reach a sphere-
packing position (the positions that maximize the minimum distance from
the boundary and the distance from each other) in the domain Ω. On the
other hand, if β > 0, the locations of two spikes reach the innermost part
(the farthest part from the boundary) of the domain.

Lin-Wei [34] considered the following system with potentials:
−ε2∆u1 + V1(x)u1 = µ1u

3
1 + βu1u

2
2 in RN ,

−ε2∆u2 + V2(x)u2 = µ2u
3
2 + βu21u2 in RN ,

u1, u2 > 0 in RN .

(4.4)
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For this system, they showed the spikes are trapped at the minimum points
of Vj(x) if β < 0. On the other hand, if β > 0, they introduced a certain
function ρ(V1(x), V2(x); β) and the spikes are trapped at the minimum points
of ρ(V1(x), V2(x); β) or trapped at the minimum points of Vj(x).

0

V1(x)

V2(x)

ρ(V1(x), V2(x); β)

u2,ε

u1,ε

Figure 4.1: infx∈RN ρ(V1(x), V2(x); β) < d
V1,0

1 + d
V2,0

1

0

V1(x)

V2(x)

u2,ε
u1,ε

Figure 4.2: infx∈RN ρ(V1(x), V2(x); β) > d
V1,0

1 + d
V2,0

1

Here, ρ(V1(x0), V2(x0); β) and d
Vj,0

1 are the least energies of the following
equations respectively:

−∆u1 + V1(x0)u1 = u31 + βu1u
2
2 in RN ,

−∆u2 + V2(x0)u2 = u32 + βu21u2 in RN ,

u1 > 0, u2 > 0 in RN

and {
−∆u+ Vj,0u = u3 in RN ,

u > 0 in RN .

The least energy means the energy which ground state has.
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Montefusco-Pellacci-Squassina [39] considered (4.4) for the case N = 3.
They showed that the least energy solution of (4.4) converges (up to scalings)
to a least energy solution of corresponding limit problem as ε → +0. They
adopt a definition of Nehari manifolds similar to Pomponio [43] and ours.
They also proved that if β is sufficiently large, then the limit state is vector,
on the other hand, if β is sufficiently small, then the limit state is scalar.

For other studies on concentration behavior and related studies, see [2, 11,
12, 13, 48, 49, 53, 55, 56, 58, 59] and the references therein.

To state main results in this chapter, we also consider the following system
and define the following functional:

−∆v1 + λ1v1 = |v1|p−1v1 + αv2v3,

−∆v2 + λ2v2 = |v2|p−1v2 + αv1v3,

−∆v3 + λ3v3 = |v3|p−1v3 + αv1v2,

(P̃λ,α)

Ĩλ,α(v) :=
1

2

3∑
j=1

∫
RN

|∇vj|2 + λjv
2
j (4.5)

− 1

p+ 1

3∑
j=1

∫
RN

|vj|p+1 − α

∫
RN

v1v2v3,

(4.6)

where λ := (λ1, λ2, λ3) with λj > 0 (j = 1, 2, 3). Define the least energy as
follows:

ρ(λ1, λ2, λ3;α) := inf
v∈Ñλ,α

Ĩλ,α(v),

Ñ λ,α := {v ∈ H \ {(0, 0, 0)} | G̃λ,α(v) = 0},

G̃λ,α(v) :=
3∑

j=1

∫
RN

|∇vj|2 + λjv
2
j − |vj|p+1 − 3α

∫
RN

v1v2v3.

Definition 4.1. A solution u = (u1, u2, u3) of (Pε) is called a scalar solution
if there exists j0 ∈ {1, 2, 3} such that uj0 ̸= 0 and uj = 0 for all j ̸= j0; while
a solution u of (Pε) is called a vector solution if uj ̸= 0 for all j = 1, 2, 3.

Definition 4.2. We say that u is a nontrivial solution of (Pε) if u satisfies
(Pε) and u ̸= (0, 0, 0). We say that u is a ground state of (Pε) if u is
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4.1 Introduction and main results

a nontrivial solution of (Pε) with least energy Iε(u) among all nontrivial
H solutions of (Pε). We say that u is a minimizer for cε if u ∈ Nε and
Iε(u) = cε. We say that u is a non-negative ground state of (Pε) if u is a
ground state of (Pε) and uj ≥ 0 in RN for all j = 1, 2, 3. Similarly, we say
that u is a non-negative minimizer for cε if u is a minimizer for cε and uj ≥ 0
in RN for all j = 1, 2, 3.

Remark 4.1. u is a minimizer for cε if and only if u is a ground state
of (Pε) (see for example, [3, 57]). Similar results hold for the minimization
problem c̃ε and ρ(λ1, λ2, λ3;α).

Remark 4.2. Suppose λj > 0 and λ = (λ1, λ2, λ3). From [43], (P̃λ,α) has
a non-negative ground state.

We assume the following additional condition for the potentials:

(C1)α infx∈RN ρ(V1(x), V2(x), V3(x);α) < ρ(V1,∞, V2,∞, V3,∞;α).

We now state main results in this chapter. First, we state the existence of
a ground state of (Pε) for ε sufficiently small.

Theorem 4.3. We assume that (V1),(V2) and fix α so that (C1)α holds.
Then it follows that

cε ≤ εN
(

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1)

)
, as ε→ +0.

Moreover, there exists a non-negative ground state u of (Pε) for ε sufficiently
small.

Remark 4.3. (1) We can show the potentials Vj(x) (j = 1, 2, 3) satisfies
(C1)α for all α ≥ 0 if we assume the following condition (V3):

(V3) there exists y0 ∈ RN such that 0 < Vj(y0) < Vj,∞ for all j = 1, 2, 3.

Indeed, from (V3) and Lemma 4.9, which will be described later, it follows
that

ρ(V1,∞, V2,∞, V3,∞;α) > ρ(V1(y0), V2(y0), V3(y0);α).
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Hence, it holds that

ρ(V1,∞, V2,∞, V3,∞;α) > inf
x∈RN

ρ(V1(x), V2(x), V3(x);α).

(2) We consider the following condition:

(V4) there exists z0 ∈ RN such that

Vj(z0) = min
x∈RN

Vj(x) = Vj,0 for all j = 1, 2, 3.

It is easy to see that (V2) and (V4) imply (V3).

(3) We consider the following condition:

(V3)′ there exists y0 ∈ RN such that for all j ∈ {1, 2, 3}, 0 < Vj(y0) ≤ Vj,∞
and (V1(y0), V2(y0), V3(y0)) ̸= (V1,∞, V2,∞, V3,∞).

Then from Lemma 4.9, if α > α∗
V∞ and (V3)′, then (C1)α holds, where

α∗
V∞ := max{α ≥ 0 | ρ(V1,∞, V2,∞, V3,∞;α) = ρ(V1,∞, V2,∞, V3,∞; 0)}.

(4) To clear the dependence on α, we write cε as cε,α, if necessary.　We
note that cε,α is an even function with respect to α. So we only consider the
case of α ≥ 0.

Next, we state the asymptotic behavior of a ground state of (Pε) as ε →
+0.

Theorem 4.4. We assume that (V1),(V2) and fix α so that (C1)α holds.
Let {εn}∞n=1 ⊂ (0,∞) with εn → 0 as n → ∞ and let un be a non-
negative ground state of (Pεn). Let xj,n be a maximum point of uj,n. Then,
up to a subsequence, there exist l0 ∈ {1, 2, 3}, xl0,0 ∈ RN and U(l0) =

(U
(l0)
1 , U

(l0)
2 , U

(l0)
3 ) ∈ H such that

(0) uj,n(xl0,n+εny)⇀ U
(l0)
j (y) weakly inH1(RN) (j = 1, 2, 3) and U

(l0)
l0

̸= 0.
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(1) {xl0,n}∞n=1 is bounded.

(2) It follows that

cε = εN
(

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1)

)
, as ε→ +0.

(3) It follows that

xl0,n → xl0,0,

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α),

uj,n(xl0,n + εny) → U
(l0)
j (y) in H1(RN),

U(l0) is a ground state of (P̃V(xl0,0
),α).

Next, we state the precise asymptotic behavior of a ground state of (Pε)
as ε → +0. To obtain the asymptotic behavior precisely, we introduce the
following condition:

(C2)α infx∈RN ρ(V1(x), V2(x), V3(x);α) < minj=1,2,3 c
Vj,0

1 ,

where

λ > 0,

Iλ1 (u) :=
1

2

∫
RN

|∇u|2 + λu2 − 1

p+ 1

∫
RN

|u|p+1,

cλ1 := inf
u∈Nλ

1

Iλ1 (u),

N λ
1 := {u ∈ H1(RN) \ {0} | Gλ

1(u) = 0},

Gλ
1(u) :=

∫
RN

|∇u|2 + λu2 − |u|p+1.

We also consider the following equation associated the above minimization
problem:

−∆u+ λu = |u|p−1u in RN . (Pλ
1 )

Now, we state the precise asymptotic behavior for a non-negative ground
state of (Pε) as ε→ +0.
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Theorem 4.5. We assume that (V1),(V2) and fix α so that (C1)α and
(C2)α hold. Let {εn}∞n=1 ⊂ (0,∞) with εn → 0 as n → ∞ and let un be a
non-negative ground state of (Pεn). Let xj,n be a maximum point of uj,n.

(1) Then, it follows that {xj,n}∞n=1 is bounded for all j = 1, 2, 3.

(2) It holds that

cε = εN
(

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1)

)
, as ε→ +0.

(3) Furthermore, up to a subsequence, there exist W0 ∈ H and x0 ∈ RN

such that

xj,n → x0,

|xj,n − xk,n|
εn

→ 0, as n→ ∞, j ̸= k,

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(x0), V2(x0), V3(x0);α),

uj,n(xj,n + εny) → Wj,0(y) in H1(RN),

W0 is a ground state of (P̃V(x0),α)

Wj,0 is positive, radially symmetric and strictly decreasing

for all j = 1, 2, 3,

where V(x0) = (V1(x0), V2(x0), V3(x0)).

(4) Moreover, for any 0 < η < V0, there exists Cη > 0 such that

uj,n(x) ≤ Cηe
−√

η|x−xj,n|/εn for all x ∈ RN , n ∈ N, j = 1, 2, 3,

where V0 := min{V1,0, V2,0, V3,0}.
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0

V1(x)

V2(x)

V3(x)

ρ(V1(x), V2(x), V3(x);α)

x0

u1,n

u2,n

u3,n

x1,n x2,n x3,n

Figure 4.3: Illustration of the result of Theorem 4.5

Remark 4.4. We can define a value α∗ ≥ 0 as in Section 4.7. The definition
of α∗, (C2)α holds if α > α∗ and (C2)α does not hold if 0 ≤ α ≤ α∗. From
Remark 4.3, (V3) implies that (C1)α holds for all α > 0. So Theorem 4.5
holds if we assume that (V1),(V2),(V3) and α > α∗. See Theorem 4.6 for the
precise asymptotic behavior of a ground state, when (C2)α does not hold.

In the following, we consider the case where (C2)α does not hold. When
(C2)α does not hold, the following condition holds (see Lemma 4.15 and
Proposition 4.18):

(C3)α infx∈RN ρ(V1(x), V2(x), V3(x);α) = minj=1,2,3 c
Vj,0

1 .

Theorem 4.6. We assume that (V1),(V2) and fix α so that (C1)α and
(C3)α hold. In addition, we assume that there exists α′ > α such that (C3)α′

holds. Let {εn}∞n=1 ⊂ (0,∞) such that εn → +0 and let un be a non-negative
ground state for (Pεn). Let xj,n be a maximum point of uj,n. Then, up to a
subsequence, there exist l0 ∈ {1, 2, 3} and xl0,0 ∈ RN such that

xl0,n → xl0,0, Vl0(xl0,0) = Vl0,0 = V0,
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cε = εN
(

min
j=1,2,3

c
Vj,0

1 + o(1)

)
= εN

(
c
Vl0,0

1 + o(1)
)
, as ε→ +0,

ul0,n(xl0,n + εny) → W in H1(RN),

uj,n(xj,n + εny) → 0 in H1(RN) j ̸= l0,

where W is the unique solution of the following equation:
−∆W + V0W = W p in RN ,

W > 0 in RN ,

W (0) = maxx∈RN W (x),

W (x) → 0, as |x| → ∞.

0

V1(x)
V2(x) V3(x)

x3,0

u1,n

u2,n

u3,n

x3,n

Figure 4.4: Illustration of The result of Theorem 4.6

In the problem considered Lin-Wei [34], they consider the least energy
solution among all vector solutions (the solution which has all components
are non-zero) of{

−ε2∆u1 + V1(x)u1 = u31 + βu1u
2
2 in RN ,

−ε2∆u2 + V2(x)u2 = u32 + βu21u2 in RN .
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On the other hand, in our setting, we consider the least energy solution
among all nontrivial solutions (includes scalar solution (the solution which
only one component survives)) of

−ε2∆u1 + V1(x)u1 = |u1|p−1u1 + αu3u2 in RN ,

−ε2∆u2 + V2(x)u2 = |u2|p−1u2 + αu3u1 in RN ,

−ε2∆u3 + V3(x)u3 = |u3|p−1u3 + αu1u2 in RN .

(Pε)

Therefore, in the result of Theorem 4.6, the case which each component of
ground states survives and converges to a minimum point of corresponding
potential respectively as in the result in Lin-Wei [34] does not occur.

Remark 4.5. (1) The unique solution W can be represented using w in
(4.28) as follows:

W (x) = V
1/(p−1)
0 w(V

1/2
0 x).

(2) If (V1),(V2),(V3) hold, then α∗ > 0 holds (see Proposition 4.18).

(3) Theorem 4.6 holds if we assume that (V1),(V2),(V3) and 0 ≤ α < α∗.

In particular, we have the following corollary: To clear the dependence on
α, we write (Pε) as (Pε,α), if necessary.

Corollary 4.7. Suppose (V1),(V2),(V3). Then α∗ > 0 (see Proposition
4.18) and the following cases hold:

(i) If α > α∗, then Theorem 4.5 holds and the asymptotic limit of a ground
state of (Pε,α) is vector.

(ii) If 0 ≤ α < α∗, then Theorem 4.6 holds and the asymptotic limit of a
ground state of (Pε,α) is scalar.

Remark 4.6. We can show that all the ground states of (Pε,α) are scalar
for ε sufficiently small and for α sufficiently small. On the other hand, all the
ground states of (Pε,α) are vector for ε sufficiently small and for α sufficiently
large (see Proposition 4.19).
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The rest of this chapter is organized as follows. In Section 4.2, we prove
the existence of a non-negative ground state of (Pε) for ε sufficiently small.
In Section 4.3, we prove the asymptotic behavior of a non-negative ground
state of (Pε) as ε → +0 without (C2)α and (C3)α. In Section 4.4, we show
the asymptotic behavior of a non-negative ground state of (Pε) as ε → +0
under (C2)α. In Section 4.5, we prove the asymptotic behavior of a non-
negative ground state of (Pε) as ε → +0 under (C3)α. In Section 4.6, we
study the asymptotic behavior of infx∈RN ρ(V1(x), V2(x), V3(x);α) as α →
∞. In Section 4.7, we show the existence of the positive threshold α∗ for
infx∈RN ρ(V1(x), V2(x), V3(x);α), which divides the asymptotic behavior of a
ground state of (Pε,α) for α > α∗ and 0 ≤ α < α∗. In Section 4.8, we give
two thresholds for cε,α and consider when all the ground states of (Pε,α) are
scalar or vector. In Appendix, we give the outline of the proof of the radial
symmetry and monotonicity of classical solutions of elliptic systems in the
case N = 1.

Notation

H := H1(RN)3,

u := (u1, u2, u3),

∥u∥2H :=
3∑

j=1

∥uj∥2H1 ,

(u,v)H :=
3∑

j=1

(uj, vj)H1 ,

un := (u1,n, u2,n, u3,n).

• We say that un → u in H if

∥un − u∥H → 0.

• We say that un ⇀ u weakly in H if

(un,v)H → (u,v)H for all v ∈ H.

• We also set

V0 := (V1,0, V2,0, V3,0),
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V0 := min{V1,0, V2,0, V3,0}.

• Let xj,n be a maximum point of uj,n, that is,

uj,n(xj,n) = max
x∈RN

uj,n(x).

• We rescale un as follows:

U(l)
n (y) := un(xl,n + εny) (l = 1, 2, 3),

U
(l)
j,n(y) := uj,n(xl,n + εny) (j, l = 1, 2, 3).

• In particular, if j = l, we define

Wj,n := U
(j)
j,n ,

Wn := (W1,n,W2,n,W3,n).

4.2 Proof of Theorem 4.3

To prove Theorem 4.3, we prove the following three lemmas needed later.

Lemma 4.8. ρ : (0,∞)3 → R is continuous.

Proof. From Lemma 3.7 in Pomponio [43], ρ is continuous on (0,∞)3. 2

From (V1),(V2),(C1)α and continuity of ρ, there exists a point z0 ∈ RN

such that

ρ(V1(z0), V2(z0), V3(z0);α) = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α).

Lemma 4.9. Let α ≥ 0.
(1) If 0 < λj < λ′j for all j = 1, 2, 3, then

ρ(λ1, λ2, λ3;α) < ρ(λ′1, λ
′
2, λ

′
3;α).

(2) If 0 < λj ≤ λ′j for all j = 1, 2, 3, then

ρ(λ1, λ2, λ3;α) ≤ ρ(λ′1, λ
′
2, λ

′
3;α).

96



Chapter 4 A singular perturbation problem for a nonlinear Schrödinger
system with three wave interaction

(3) If α > α∗
λ′ and 0 < λj ≤ λ′j and λ ̸= λ′, then

ρ(λ1, λ2, λ3;α) < ρ(λ′1, λ
′
2, λ

′
3;α),

where

λ = (λ1, λ2, λ3), λ′ = (λ′1, λ
′
2, λ

′
3),

α∗
λ′ := max{α ≥ 0 | ρ(λ′1, λ′2, λ′3;α) = ρ(λ′1, λ

′
2, λ

′
3; 0)}.

Proof. (1) From Remark 4.1 and 4.2, there exists a non-negative minimizer
v0 for ρ(λ′1, λ

′
2, λ

′
3;α). Let t0 > 0 be a number such that t0v0 ∈ Ñ λ,α, where

λ := (λ1, λ2, λ3) (see Pomponio [43]). Since v0 ̸= (0, 0, 0), then we have

3∑
j=1

∫
RN

λjv
2
j,0 <

3∑
j=1

∫
RN

λ′jv
2
j,0.

Since Ĩλ
′,α(t0v0) ≤ Ĩλ

′,α(v0), it holds that

ρ(λ′1, λ
′
2, λ

′
3;α) = Ĩλ

′,α(v0) ≥ Ĩλ
′,α(t0v0) > Ĩλ,α(t0v0) ≥ ρ(λ1, λ2, λ3;α).

(2) We can show (2) by the same argument as in (1).
(3) Suppose α > α∗

λ′ . Let v0 be a non-negative minimizer for ρ(λ′1, λ
′
2, λ

′
3;α).

From Theorem 1.4 in [30], all the minimizers of ρ(λ′1, λ
′
2, λ

′
3;α) are vector if

α > α∗
λ′ . Hence vj,0 ̸= 0 for all j = 1, 2, 3. Then

3∑
j=1

∫
RN

λjv
2
j,0 <

3∑
j=1

∫
RN

λ′jv
2
j,0.

Hence we can prove (3) by the same argument as in (1). 2

For u = (u1, u2, u3), we set

v(y) = u(εy). (4.7)

We consider the following system and define the following functional and
least energy:

−∆v1 + V1(εy)v1 = |v1|p−1v1 + αv2v3,

−∆v2 + V2(εy)v2 = |v2|p−1v2 + αv1v3,

−∆v3 + V3(εy)v3 = |v3|p−1v3 + αv1v2,

(P̃ε)
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4.2 Proof of Theorem 4.3

v := (v1, v2, v3),

Ĩε(v) :=
1

2

3∑
j=1

∫
RN

|∇vj|2 + Vj(εy)v
2
j −

1

p+ 1

3∑
j=1

∫
RN

|vj|p+1 − α

∫
RN

v1v2v3,

c̃ε := inf
v∈Ñε

Ĩε(v),

Ñε := {v ∈ H \ {(0, 0, 0)} | G̃ε(v) = 0},

G̃ε(v) :=
3∑

j=1

∫
RN

|∇vj|2 + Vj(εy)v
2
j − |vj|p+1 − 3α

∫
RN

v1v2v3.

We note that under (4.7),

Iε(u) = εN Ĩε(v),

Gε(u) = εNG̃ε(v),

cε = εN c̃ε.

We now prove the upper bound for c̃ε.

Lemma 4.10. We assume that (V1),(V2) and (C1)α. Then the followings
hold:

(i)

c̃ε ≤ inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1), as ε→ +0.

(ii) For all ε > 0 and α ≥ 0, it follows that

c̃ε,α ≤ ρ(V1,max, V2,max, V3,max; 0),

where Vj,max = supx∈RN Vj(x).

(iii) Let uε,α = (u1,ε,α, u2,ε,α, u3,ε,α) be a non-negative ground state of (Pε,α)

and let xl,ε,α be a maximum point of ul,ε,α. Set U
(l)
ε,α(y) = uε,α(xl,ε,α +

εy). Then,

sup
ε>0, α≥0

∥U(l)
ε,α∥H <∞.
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(iv) Let {εn}∞n=1 ⊂ (0,∞) such that εn → +0 and let {αn}∞n=1 ⊂ [0,∞) be
a bounded sequence. Let un be a non-negative ground state of (Pεn,αn)

and let xl,n be a maximum point of ul,n. Set U
(l)
n (y) = un(xl,n + εny).

From (iii), up to a subsequence, there exists U(l) such that

U(l)
n ⇀ U(l) weakly in H.

Then, it follows that

sup
n∈N

∥U (l)
j,n∥L∞(RN ) <∞,

U
(l)
j,n ∈ C2(RN),

U
(l)
j,n → U

(l)
j in C2

loc(RN).

(v) In addition to the condition (iv), we suppose that ∥U (l)
j,n−U

(l)
j ∥H1 → 0.

Then it holds that

sup
n∈N

U
(l)
j,n(y0) → 0, as |y0| → ∞, for all j = 1, 2, 3.

Proof. (i) Let z0 ∈ RN be a point which attains the

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α),

and set λj,0 := Vj(z0) (> 0). Let w0 be a non-negative minimizer for
ρ(λ1,0, λ2,0, λ3,0;α). Set v0,ε(y) := w0(y − z0/ε). Let t0,ε > 0 be a num-
ber such that t0,εv0,ε ∈ Ñε. Then we have

t20,ε

3∑
j=1

∫
RN

|∇vj,0,ε|2 + Vj(εy)v
2
j,0,ε

= tp+1
0,ε

3∑
j=1

∫
RN

|vj,0,ε|p+1 + 3t30,εα

∫
RN

v1,0,εv2,0,εv3,0,ε,

that is,
3∑

j=1

∫
RN

|∇wj,0|2 + Vj(z0 + εy)w2
j,0

= tp−1
0,ε

3∑
j=1

|wj,0|p+1 + 3t0,εα

∫
RN

w1,0w2,0w3,0.

(4.8)
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From (4.8), {t0,ε}ε is bounded. Moreover, we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(z0), V2(z0), V3(z0);α)

= ρ(λ1,0, λ2,0, λ3,0;α) = Ĩλ0,α(w0) ≥ Ĩλ0,α(t0,εw0)

=
t20,ε
2

3∑
j=1

∫
RN

|∇wj,0|2 + λj,0w
2
j,0

−
tp+1
0,ε

p+ 1

3∑
j=1

∫
RN

|wj,0|p+1 − t30,εα

∫
RN

w1,0w2,0w3,0

and ∣∣∣∣t20,ε ∫
RN

Vj(z0 + εy)w2
j,0 − t20,ε

∫
RN

λj,0w
2
j,0

∣∣∣∣→ 0 (ε→ +0),

where λ0 := (λ1,0, λ2,0, λ3,0). Thus, we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) ≥ Ĩε(t0,εv0,ε) + o(1)

≥ c̃ε + o(1), as ε→ +0.

(ii) From Lemma 4.9, we have

c̃ε,α ≤ ρ(V1,max, V2,max, V3,max;α).

From Lemma 2.5 in [43], we have

ρ(V1,max, V2,max, V3,max;α) ≤ ρ(V1,max, V2,max, V3,max; 0).

Hence we obtain the conclusion.

(iii) Let vε,α(y) := uε,α(εy). Then vε,α is a ground state of (P̃ε,α) and

U(l)
ε,α(y) = vε,α(y + xl,ε,α/ε), (l = 1, 2, 3).

Thus, from (ii), we have

ρ(V1,max, V2,max, V3,max; 0)

≥ c̃ε,α = Ĩε,α(vε,α)
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=
1

2

3∑
j=1

∫
RN

|∇vj,ε,α|2 + Vj(εy)v
2
j,ε,α

− 1

p+ 1

3∑
j=1

∫
RN

vp+1
j,ε,α − α

∫
RN

v1,ε,αv2,ε,αv3,ε,α, as εn → +0.

Since vε,α is a ground state of (P̃ε,α),

3∑
j=1

∫
RN

|∇vj,ε,α |2 + Vj(εy)v
2
j,ε,α − vp+1

j,ε,α
= 3α

∫
RN

v1,ε,αv2,ε,αv3,ε,α

and (V2), we have

ρ(V1,max, V2,max, V3,max; 0)

≥ c̃ε,α = Ĩε,α(vε,α)

=
1

6

3∑
j=1

∫
RN

|∇vj,ε,α|2 + Vj(εy)v
2
j,ε,α +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,ε,α

=
1

6

3∑
j=1

∫
RN

|∇U (l)
j,ε,α|2 + Vj(xl,ε,α + εy)(U

(l)
j,ε,α)

2 +
p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j,ε,α)

p+1

≥ 1

6

3∑
j=1

∫
RN

|∇U (l)
j,ε,α|2 + Vj,0(U

(l)
j,ε,α)

2.

Hence it follows that

sup
ε>0,α≥0

∥U(l)
ε,α∥H <∞.

(iv) Since un is a non-negative ground state of (Pεn,αn) and U
(l)
n (y) =

u(xl,n + εny), we have
−∆U

(l)
1,n + V1(xl,n + εny)U

(l)
1,n = (U

(l)
1,n)

p + αnU
(l)
2,nU

(l)
3,n,

−∆U
(l)
2,n + V2(xl,n + εny)U

(l)
2,n = (U

(l)
2,n)

p + αnU
(l)
1,nU

(l)
3,n,

−∆U
(l)
3,n + V3(xl,n + εny)U

(l)
3,n = (U

(l)
3,n)

p + αnU
(l)
1,nU

(l)
2,n,

U
(l)
j,n ≥ 0, (l = 1, 2, 3).

(4.9)
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Set U
(l)
n := U

(l)
1,n + U

(l)
2,n, then we have

−∆U (l)
n ≤ −∆U

(l)
1,n −∆U

(l)
2,n + V1(xl,n + εny)U

(l)
1,n + V2(xl,n + εny)U

(l)
2,n

≤ 2(U (l)
n )p + αnU

(l)
3,nU

(l)
n ≤ (2(U (l)

n )p−1 + C1U
(l)
3,n)U

(l)
n ,

where C1 = supn∈N αn <∞. Note U
(l)
n is a subsolution of ∆u+c(x)u = 0 with

c(x) = 2(U
(l)
n )p−1+C1U

(l)
3,n. Note that U

(l)
n ∈ Lq

loc(RN) for some N/2 < q < 2∗

and U
(l)
3,n ∈ L3(RN) and 3 > N/2 since N ≤ 5. By the one-sided Harnack

inequality, we have

max
B1(y0)

U (l)
n ≤ C

(∫
B2(y0)

(U (l)
n )2

)1/2

,

where y0 is an arbitrary point in RN , C is a constant depending only on N, p
and M where M is a bound of ∥U (l)

n ∥H1 and ∥U (l)
3,n∥H1 and independent of n

(see [22, 45]). Then

max
B1(y0)

U (l)
n ≤ CM.

Hence {U (l)
j,n}∞n=1 (j = 1, 2) is bounded in L∞(RN). Similarly, it follows that

{U (l)
3,n}∞n=1 is bounded in L∞(RN).

From (4.9) and Vj ∈ C1(RN) and by the elliptic regularity, it follows that

U
(l)
j,n ∈ C2(RN), U

(l)
j,n → U

(l)
j in C2

loc(RN).

(v) Moreover, since U
(l)
j,n → U

(l)
j in H1(RN), up to a subsequence, there

exists gj ∈ L2(RN) such that

U
(l)
j,n ≤ gj a.e. x ∈ RN , for all n ∈ N.

Thus, we have

sup
n∈N

∫
B2(y0)

(U (l)
n )2 ≤

∫
B2(y0)

(g1 + g2)
2 → 0, as |y0| → ∞.

Hence, we obtain

sup
n∈N

max
B1(y0)

U
(l)
j,n → 0, as |y0| → ∞, j = 1, 2,
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that is,

sup
n∈N

U
(l)
j,n(y0) → 0, as |y0| → ∞, j = 1, 2.

Similarly, it follows that

sup
n∈N

U
(l)
3,n(y0) → 0, as |y0| → ∞.

2

Now, we prove the existence of a ground state of (Pε).

Proof of Theorem 4.3. From (C1)α and Lemma 4.10 (i), we have

c̃ε < ρ(V1,∞, V2,∞, V3,∞;α) (4.10)

for ε sufficiently small. From (4.10), there exists a ground state u of (P̃ε) (see
the argument as in Pomponio [43]). |u| = (|u1|, |u2|, |u3|) is also a ground
state of (Pε). Hence, there exists a non-negative ground state of (Pε). 2

4.3 Proof of Theorem 4.4

Let {εn}∞n=1 ⊂ (0, 1) such that εn → +0 and let un be a non-negative ground
state of (Pεn). Let xj,n be a point such that

uj,n(xj,n) = max
x∈RN

uj,n(x).

Lemma 4.11. We assume that (V1),(V2). Then it follows that

V0 ≤ 2(u1,n(x1,n) + u2,n(x2,n) + u3,n(x3,n))
p−1

+ α(u1,n(x1,n) + u2,n(x2,n) + u3,n(x3,n)).
(4.11)

Proof. Since un ̸= (0, 0, 0), we may assume that u1,n(x1,n) ̸= 0. From Vj ∈
C1(RN) and by the elliptic regularity, uj,n ∈ C2(RN). Since ∆uj,n(xj,n) ≤ 0,
we have

V1(x1,n)u1,n(x1,n) ≤ u1,n(x1,n)
p + αu2,n(x1,n)u3,n(x1,n)
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4.3 Proof of Theorem 4.4

≤ u1,n(x1,n)
p + αu2,n(x2,n)u3,n(x3,n),

V2(x2,n)u2,n(x2,n) ≤ u2,n(x2,n)
p + αu1,n(x2,n)u3,n(x2,n)

≤ u2,n(x2,n)
p + αu1,n(x1,n)u3,n(x3,n).

Then we have

V0(u1,n(x1,n) + u2,n(x2,n)) ≤ 2(u1,n(x1,n) + u2,n(x2,n))
p

+ α(u1,n(x1,n) + u2,n(x2,n))u3,n(x3,n).

Since u1,n(x1,n) + u2,n(x2,n) ̸= 0, we have

V0 ≤ 2(u1,n(x1,n) + u2,n(x2,n))
p−1 + αu3,n(x3,n).

Then it follows that

V0 ≤ 2(u1,n(x1,n) + u2,n(x2,n) + u3,n(x3,n))
p−1

+ α(u1,n(x1,n) + u2,n(x2,n) + u3,n(x3,n)).

2

Set

U(l)
n (y) := un(xl,n + εny), (l = 1, 2, 3).

Proof of Theorem 4.4. (0) From Lemma 4.10 (iii),(iv), {U(l)
n }n is bounded

in H and up to a subsequence, there exists U(l) ∈ H such that

U(l)
n ⇀ U(l) weakly in H,

U
(l)
j,n → U

(l)
j in Cloc(RN). (4.12)

From (4.11) and (4.12), we have

V0 ≤ 2(U
(1)
1 (0) + U

(2)
2 (0) + U

(3)
3 (0))p−1 + α(U

(1)
1 (0) + U

(2)
2 (0) + U

(3)
3 (0)).

Thus we have

(U
(1)
1 (0), U

(2)
2 (0), U

(3)
3 (0)) ̸= (0, 0, 0).

Therefore, there exists l0 ∈ {1, 2, 3} such that U(l0) ̸= (0, 0, 0).

104



Chapter 4 A singular perturbation problem for a nonlinear Schrödinger
system with three wave interaction

(1) Now we show that supn∈N|xl0,n| <∞. Suppose that supn∈N|xl0,n| = ∞.
Then up to a subsequence,

|xl0,n| → ∞.

Since lim|x|→∞ Vj(x) = Vj,∞ and U
(l0)
j,n → U

(l0)
j strongly in L2

loc(RN), it follows
that for all φ ∈ C∞

0 (RN),

lim
n→∞

∫
RN

Vj(xl0,n + εny)U
(l0)
j,n φ→

∫
RN

Vj,∞U
(l0)
j φ.

Since un is a ground state of (Pεn), we have
−ε2n∆u1,n + V1(x)u1,n = up1,n + αu2,nu3,n,

−ε2n∆u2,n + V2(x)u2,n = up2,n + αu1,nu3,n,

−ε2n∆u3,n + V3(x)u3,n = up3,n + αu1,nu2,n.

Hence, we have
−∆U

(l0)
1 + V1,∞U

(l0)
1 = (U

(l0)
1 )p + αU

(l0)
2 U

(l0)
3 ,

−∆U
(l0)
2 + V2,∞U

(l0)
2 = (U

(l0)
2 )p + αU

(l0)
1 U

(l0)
3 ,

−∆U
(l0)
3 + V3,∞U

(l0)
3 = (U

(l0)
3 )p + αU

(l0)
1 U

(l0)
2 ,

U
(l0)
j ≥ 0.

Since U
(l0)
j ∈ H1(RN), for all δ > 0, there exists R > 0 such that

1

6

3∑
j=1

∣∣∣∣∫
BR

|∇U (l0)
j |2 + Vj,∞(U

(l0)
j )2 −

∫
RN

|∇U (l0)
j |2 + Vj,∞(U

(l0)
j )2

∣∣∣∣
+

p− 2

3(p+ 1)

3∑
j=1

∣∣∣∣∫
BR

(U
(l0)
j )p+1 −

∫
RN

(U
(l0)
j )p+1

∣∣∣∣ < δ.

We have

cεn = Iεn(un)

≥ 1

6

3∑
j=1

∫
BεnR(xl0,n

)

ε2n|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
BεnR(xl0,n

)

up+1
j,n
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= εNn

{
1

6

3∑
j=1

∫
BR

|∇U (l0)
j,n |2 + Vj(xl0,n + εny)(U

(l0)
j,n )2

+
p− 2

3(p+ 1)

3∑
j=1

∫
BR

(U
(l0)
j,n )p+1

}

= εNn

{
1

6

3∑
j=1

∫
BR

|∇U (l0)
j,n |2 + Vj,∞(U

(l0)
j,n )2

+
p− 2

3(p+ 1)

3∑
j=1

∫
BR

(U
(l0)
j,n )p+1 + o(1)

}
, as n→ ∞.

Then we have

lim inf
n→∞

cεn
εNn

≥ lim inf
n→∞

{
1

6

3∑
j=1

∫
BR

|∇U (l0)
j,n |2 + Vj,∞(U

(l0)
j,n )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
BR

(U
(l0)
j,n )p+1

}

≥ 1

6

3∑
j=1

∫
BR

|∇U (l0)
j |2 + Vj,∞(U

(l0)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
BR

(U
(l0)
j )p+1

≥ 1

6

3∑
j=1

∫
RN

|∇U (l0)
j |2 + Vj,∞(U

(l0)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l0)
j )p+1 − δ

= ĨV∞,α(U(l0))− δ

≥ ρ(V1,∞, V2,∞, V3,∞;α)− δ,

where V∞ = (V1,∞, V2,∞, V3,∞). Letting δ → +0, then we have

lim inf
n→∞

cεn
εNn

≥ ρ(V1,∞, V2,∞, V3,∞;α).

From Lemma 4.10 (i), we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) ≥ ρ(V1,∞, V2,∞, V3,∞;α).

This is a contradiction to (C1)α.
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(2) and (3) From l0 in Theorem 4.4 (1), up to a subsequence, there exists
xl0,0 ∈ RN such that

U(l0)
n ⇀ U(l0) weakly in H,

U
(l0)
j,n → U

(l0)
j in Cloc(RN),

U(l0) ̸= (0, 0, 0), xl0,n → xl0,0.

Recall that

U(l0)
n (y) = un(xl0,n + εny).

By the same argument as in the proof of Theorem 4.4 (1),

lim inf
n→∞

c̃εn

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

|∇U (l0)
j,n |2 + Vj(xl0,n + εny)(U

(l0)
j,n )2

+
p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l0)
j,n )p+1

}

≥ 1

6

3∑
j=1

∫
RN

|∇U (l0)
j |2 + Vj(xl0,0)(U

(l0)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l0)
j )p+1

= ĨV(xl0,0
),α(U(l0))

≥ ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α)

≥ inf
x∈RN

ρ(V1(x), V2(x), V3(x);α),

where

V(xl0,0) := (V1(xl0,0), V2(xl0,0), V3(xl0,0)).

From Lemma 4.10 (i), we have

lim
n→∞

c̃εn = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α),

ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α) = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α)

U(l0) is a minimizer for ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α).
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Similar to Remark 4.1, U(l0) is a ground state of (P̃V(xl0,0
),α). Moreover, we

have

lim inf
n→∞

∫
RN

|∇U (l0)
j,n |2 + Vj(xl0,n + εny)(U

(l0)
j,n )2 ≥

∫
RN

|∇U (l0)
j |2 + Vj(xl0,0)(U

(l0)
j )2,

lim inf
n→∞

∫
RN

(U
(l0)
j,n )p+1 ≥

∫
RN

(U
(l0)
j )p+1

and

1

6

3∑
j=1

∫
RN

|∇U (l0)
j,n |2 + Vj(xl0,n + εny)(U

(l0)
j,n )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l0)
j,n )p+1

→ 1

6

3∑
j=1

∫
RN

|∇U (l0)
j |2 + Vj(xl0,0)(U

(l0)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l0)
j )p+1.

Thus, we have

lim
n→∞

∫
RN

|∇U (l0)
j,n |2 + Vj(xl0,n + εny)(U

(l0)
j,n )2 =

∫
RN

|∇U (l0)
j |2 + Vj(xl0,0)(U

(l0)
j )2,

(4.13)

lim
n→∞

∫
RN

(U
(l0)
j,n )p+1 =

∫
RN

(U
(l0)
j )p+1.

In addition, it follows that

lim
n→∞

∫
RN

∇U (l0)
j,n · ∇φ+ Vj(xl0,n + εny)U

(l0)
j,n φ

=

∫
RN

∇U (l0)
j · ∇φ+ Vj(xl0,0)U

(l0)
j φ for all φ ∈ H1(RN). (4.14)

From (4.13) and (4.14), we have

lim
n→∞

∫
RN

|∇U (l0)
j,n −∇U (l0)

j |2 + Vj(xl0,n + εny)(U
(l0)
j,n − U

(l0)
j )2 = 0,

that is,

∥U (l0)
j,n − U

(l0)
j ∥H1 → 0.

2

108



Chapter 4 A singular perturbation problem for a nonlinear Schrödinger
system with three wave interaction

Remark 4.7. Suppose that (V1),(V2) and (C1)α. If U(l0) is vector, then
the same conclusion as in Theorem 4.5 holds. On the other hand, if U(l0)

is scalar, then the same conclusion as in Theorem 4.6 holds. Here U(l0)

appeared in the proof of Theorem 4.4.

Indeed, if U(l0) is vector, then U(l) is also vector (l ̸= l0). Indeed, by the
same argument as in the proof of Theorem 4.5 (1) (Step 2), U(l) ̸= (0, 0, 0)
for all l ∈ {1, 2, 3}. Suppose that there exists k0 ̸= l0 such that U(k0) is

scalar. For simplicity, we may assume that l0 = 1, k0 = 2, U(2) = (U
(2)
1 , 0, 0),

U
(2)
1 ̸= 0. By the same argument as in the proof of Theorem 4.4 (3), we

have ∥U (2)
j,n − U

(2)
j ∥H1 → 0. Since U(2) = (U

(2)
1 , 0, 0), we have U

(2)
1,n → U

(2)
1 ,

U
(2)
j,n → 0 (j = 2, 3). Since U

(1)
j,n (y) = U

(2)
j,n (y + (x1,n − x2,n)/εn), we have

U
(1)
j,n → 0 (j = 2, 3). Thus we obtain U

(1)
j = 0 (j = 2, 3). This contradicts

that U(1) is vector. The rest of the claims of Theorem 4.5 holds by the same
argument as in the proof of Theorem 4.5.

On the other hand, if U(l0) is scalar, then U
(l)
l = 0 (l ̸= l0). Indeed, from

Theorem 4.4, it follows that U
(l0)
l0

̸= 0 and ∥U (l0)
j,n − U

(l0)
j ∥H1 → 0. Thus we

have U
(l0)
l,n → 0 (l ̸= l0). Since U

(l)
l,n(y) = U

(l0)
l,n (y + (xl,n − xl0,n)/εn), we have

U
(l)
l,n → 0 (l ̸= l0). The rest of the claims of Theorem 4.6 holds by the same

argument as in the proof of Theorem 4.6.

4.4 Proof of Theorem 4.5

We divide the proof of Theorem 4.5 into three parts. In subsection 4.4.1, we
show Theorem 4.5 (1). Subsection 4.4.2 is devoted to the proof of Theorem
4.5 (2)–(3). Finally, Theorem 4.5 (4) is proved in subsection 4.4.3.

4.4.1 Proof of Theorem 4.5 (1)

Proof of Theorem 4.5 (1). By the same argument as in Theorem 4.4, up
to a subsequence, there exist l0 ∈ {1, 2, 3}, xl0,0 ∈ RN and U(l) ∈ H (l =
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1, 2, 3) such that

U(l)
n ⇀ U(l) weakly in H,

U
(l)
j,n → U

(l)
j in Cloc(RN),

U
(l0)
l0

̸= 0,

U(l0) is a ground state of (P̃V(xl0,0
),α),

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α).

(Step 1) U(l0) is vector.
If U(l0) is scalar, then

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α)

= ĨV(xl0,0
),α(U(l0)) ≥ min

j=1,2,3
c
Vj(xl0,0

)

1 ≥ min
j=1,2,3

c
Vj,0

1 .

This contradicts (C2)α.

(Step 2) For all l = 1, 2, 3, U(l) is vector.
We assume that there exists k0 ∈ {1, 2, 3} such that U(k0) = (0, 0, 0). Since

U
(k0)
k0

(0) = 0 and

U
(k0)
k0,n

(0) = uk0,n(xk0,n) ≥ uk0,n(xl,n + εny) = U
(l)
k0,n

(y) (l = 1, 2, 3)

and U
(l)
k0,n

→ U
(l)
k0

in Cloc(RN), it follows that U
(l)
k0

= 0 (l = 1, 2, 3). In

particular, we have U
(l0)
k0

= 0. This is contrary to U(l0) being vector. Also,
by the same argument as in (Step 1), there does not exist l ∈ {1, 2, 3} such
that U(l) is scalar.

(Step 3) supn∈N |xl,n| <∞ for all l = 1, 2, 3.
From (Step 2), it follows that U(l) ̸= (0, 0, 0). By the same argument as in
Lemma 4.4 (1), it follows that supn∈N |xl,n| <∞ for all l = 1, 2, 3. 2
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4.4.2 Proof of Theorem 4.5 (2) and (3)

Proof of Theorem 4.5 (2) and (3). (Step 1) From Theorem 4.5 (1),
up to a subsequence, for all l ∈ {1, 2, 3}, there exists xl,0 ∈ RN such that

U(l) ̸= (0, 0, 0), xl,n → xl,0 for all l = 1, 2, 3.

By the same argument as in Theorem 4.4 (2) and (3), it follows that for all
l ∈ {1, 2, 3},

c̃ε = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1), as ε→ +0,

xl,n → xl,0,

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(xl,0), V2(xl,0), V3(xl,0);α),

U(l) is a ground state of (P̃V(xl,0),α),

∥U(l)
n −U(l)∥H → 0,

where V(xl,0) = (V1(xl,0), V2(xl,0), V3(xl,0)).

Now, we show that

sup
n∈N

|xj,n − xk,n|
εn

<∞ for all j, k with j ̸= k. (4.15)

We assume that

sup
n∈N

|xj,n − xk,n|
εn

= ∞.

For simplicity, we may assume that j = 1 and k = 2. Then, up to a subse-
quence,

|x1,n − x2,n|
εn

→ ∞.

By the same argument as in the proof of Theorem 4.4 (2) and (3), we have

∥U (l)
j,n − U

(l)
j ∥H1 → 0 for all j, l = 1, 2, 3.

Set

Wj,n := U
(j)
j,n , Wj,0 := U

(j)
j .
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In particular,

∥Wj,n −Wj,0∥H1 → 0 for all j = 1, 2, 3.

Then

cεn = Iεn(un)

=
1

2

3∑
j=1

∫
RN

ε2n|∇uj,n|2 + Vj(x)u
2
j,n

− 1

p+ 1

3∑
j=1

∫
RN

(uj,n)
p+1 − α

∫
RN

u1,nu2,nu3,n

= εNn

{
1

2

3∑
j=1

∫
RN

|∇Wj,n|2 + Vj(xj,n + εny)(Wj,n)
2 − 1

p+ 1

3∑
j=1

∫
RN

(Wj,n)
p+1

−α
∫
RN

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n)

}
, (4.16)

where

xjk,n =
xj,n − xk,n

εn
.

Since ∥Wj,n −Wj,0∥H1 → 0, we have

sup
n∈N

∫
|y|≥R

(Wj,n)
q → 0, as R → ∞, 2 ≤ q < 2∗. (4.17)

Indeed, since ∥Wj,n → Wj,0∥H1 → 0, up to a subsequence, for all q ∈ [2, 2∗),
there exists g ∈ Lq(RN) such that

Wj,n ≤ g a.e. in RN .

Thus,

sup
n∈N

∫
|y|≥R

(Wj,n)
q ≤

∫
|y|≥R

gq → 0, as R → ∞.

From (4.17), for all δ > 0, there exist R,L > 0 such that(∫
|y|≥L

W2,n(y)
3

)1/3

< δ,

(∫
|y|≥R

W1,n(y)
3

)1/3

< δ.
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Since |x12,n| → ∞, for n sufficiently large, we have∫
RN

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n)

=

∫
BR

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n)

+

∫
RN\BR

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n)

≤ ∥W1,n∥L3

(∫
|y|≥L

W2,n(y)
3

)1/3

∥W3,n∥L3

+

(∫
|y|≥R

W1,n(y)
3

)1/3

∥W2,n∥L3∥W3,n∥L3

< Cδ.

Thus

lim sup
n→∞

∫
RN

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n) ≤ Cδ.

Letting δ → +0, we have

lim
n→∞

∫
RN

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n) = 0. (4.18)

Wj,n satisfies
−∆W1,n + V1(x1,n + εny)W1,n = (W1,n)

p + αW2,n(y + x12,n)W3,n(y + x13,n),

−∆W2,n + V2(x2,n + εny)W2,n = (W2,n)
p + αW1,n(y + x21,n)W3,n(y + x23,n),

−∆W3,n + V3(x3,n + εny)W3,n = (W3,n)
p + αW1,n(y + x31,n)W2,n(y + x32,n).

(4.19)

Since (4.18) and Wj,n → Wj,0 in H1(RN), Wj,0 satisfies
−∆W1,0 + V1(x1,0)W1,0 = (W1,0)

p,

−∆W2,0 + V2(x2,0)W2,0 = (W2,0)
p,

−∆W3,0 + V3(x3,0)W3,0 = (W3,0)
p.

(4.20)
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Indeed, noting that x21,n = −x12,n and x32,n − x31,n = x12,n, we have

|x21,n| → ∞,

|x31,n| → ∞ or |x32,n| → ∞.

From (4.19), as in the proof of (4.18), we have (4.20). It follows that W0 ̸=
(0, 0, 0) from Lemma 4.11. From (4.16) and noting that

c
Vj(xj,0)
1 = inf

u∈H1(RN )\{0}
max
t>0

I
Vj(xj,0)
1 (tu)

≥ inf
u∈H1(RN )\{0}

max
t>0

I
Vj,0

1 (tu) = c
Vj,0

1

(see for example, [3, 57]), we have

lim
n→∞

c̃εn

=
1

2

3∑
j=1

∫
RN

|∇Wj,0|2 + Vj(xj,0)(Wj,0)
2 − 1

p+ 1

3∑
j=1

∫
RN

(Wj,0)
p+1

≥ min
j=1,2,3

c
Vj(xj,0)
1 ≥ min

j=1,2,3
c
Vj,0

1 .

From Lemma 4.10 (i), we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) ≥ min
j=1,2,3

c
Vj,0

1 .

This contradicts the assumption (C2)α. Therefore, we have proved (4.15).
Hence

x1,0 = x2,0 = x3,0 =: x0. (4.21)

Up to a subsequence, there exists xjk,0 ∈ RN such that

xjk,n =
xj,n − xk,n

εn
→ xjk,0.

From (4.19), for all φ ∈ C∞
0 (RN),∫

RN

∇W1,n · ∇φ+ V1(x1,n + εny)W1,nφ
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=

∫
RN

(W1,n)
pφ+ α

∫
RN

φ(y)W2,n(y + x12,n)W3,n(y + x13,n).

Since ∥Wj,n −Wj,0∥L3 → 0,∣∣∣∣∫
RN

φ(y)W2,n(y + x12,n)W3,n(y + x13,n)

−
∫
RN

φ(y)W2,0(y + x12,0)W3,0(y + x13,0)

∣∣∣∣
=

∣∣∣∣∫
RN

φ(y)W2,n(y + x12,n)W3,n(y + x13,n)

−
∫
RN

φ(y)W2,0(y + x12,n)W3,0(y + x13,n)

∣∣∣∣
+

∣∣∣∣∫
RN

φ(y)W2,0(y + x12,n)W3,0(y + x13,n)

−
∫
RN

φ(y)W2,0(y + x12,0)W3,0(y + x13,0)

∣∣∣∣
→ 0.

Then it holds that

−∆W1,0 + V1(x0)W1,0 = (W1,0)
p + αW2,0(y + x12,0)W3,0(y + x13,0).

By the same argument as in the above, we have{
−∆W2,0 + V2(x0)W2,0 = (W2,0)

p + αW1,0(y + x21,0)W3,0(y + x23,0),

−∆W3,0 + V3(x0)W3,0 = (W3,0)
p + αW1,0(y + x31,0)W2,0(y + x32,0).

Thus (W1,0,W2,0(·+ x12,0),W3,0(·+ x13,0)) ∈ ÑV(x0),α. From (4.16),

ρ(V1(x0), V2(x0), V3(x0);α)

= lim
n→∞

c̃εn

= lim
n→∞

{
1

2

3∑
j=1

∫
RN

|∇Wj,n|2 + Vj(xj,n + εny)(Wj,n)
2

− 1

p+ 1

3∑
j=1

∫
RN

(Wj,n)
p+1 − α

∫
RN

W1,n(y)W2,n(y + x12,n)W3,n(y + x13,n)

}
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=
1

2

3∑
j=1

∫
RN

|∇Wj,0|2 + Vj(x0)(Wj,0)
2

− 1

p+ 1

3∑
j=1

∫
RN

(Wj,0)
p+1 − α

∫
RN

W1,0(y)W2,0(y + x12,0)W3,0(y + x13,0),

Thus
(W1,0,W2,0(·+ x12,0),W3,0(·+ x13,0))

is a minimizer for ρ(V1(x0), V2(x0), V3(x0);α).
(4.22)

(Step 2) Next, we prove xjk,0 = 0 for all j, k ∈ {1, 2, 3}, j ̸= k. This
means |xj,n − xk,n|/εn → 0.

Since U(l) is a ground state of (P̃V(xl,0),α) for all l = 1, 2, 3, then the

functions U
(l)
j (j = 1, 2, 3) are satisfy

−∆U
(l)
1 + V1(x0)U

(l)
1 = (U

(l)
1 )p + αU

(l)
2 U

(l)
3 ,

−∆U
(l)
2 + V2(x0)U

(l)
2 = (U

(l)
2 )p + αU

(l)
1 U

(l)
3 ,

−∆U
(l)
3 + V3(x0)U

(l)
3 = (U

(l)
3 )p + αU

(l)
1 U

(l)
2 ,

U
(l)
j ≥ 0, (j = 1, 2, 3),

where V(xl,0) = (V1(xl,0), V2(xl,0), V3(xl,0)). From Theorem 4.5 (1), it follows

that U
(l)
j ̸≡ 0 for all j = 1, 2, 3. By the strong maximum principle, we have

U
(l)
j > 0 in RN for all j = 1, 2, 3.

Now we claim that there exists a point y0 ∈ RN such that the functions
U

(l)
j are radially symmetric with respect to the origin y0, that is U

(l)
j (y) =

U
(l)
j (|y − y0|), j = 1, 2, 3. Moreover,

dU
(l)
j

dr
< 0 for all r = |y − y0| > 0.

If N ≥ 2, then it follows from Theorem 1 in Busca-Sirakov [9]. If N = 1,
then it follows from Theorem 4.22 in Appendix. Since

U
(j)
j,n(0) = max

y∈RN
U

(j)
j,n(y), U

(j)
j,n → U

(j)
j in Cloc(RN),
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we have

U
(j)
j (0) = max

y∈RN
U

(j)
j (y).

Thus we have y0 = 0. Since Wj,0 = U
(j)
j , Wj,0 is radially symmetric and

strictly decreasing. From Burchard-Hajaiej [8], we have∫
RN

W1,0(y)W2,0(y + x12,0)W3,0(y + x13,0) ≤
∫
RN

W1,0(y)W2,0(y)W3,0(y).

Let t0 > 0 be a number such that t0W0 ∈ ÑV(x0),α, where V(x0) = (V1(x0),
V2(x0), V3(x0)). Then

ρ(V1(x0), V2(x0), V3(x0);α)

= ĨV(x0),α(W1,0,W2,0(·+ x12,0),W3,0(·+ x13,0))

≥ ĨV(x0),α(t0(W1,0,W2,0(·+ x12,0),W3,0(·+ x13,0)))

≥ ĨV(x0),α(t0W0) ≥ ρ(V1(x0), V2(x0), V3(x0);α).

Thus we have

ĨV(x0),α(t0(W1,0,W2,0(·+ x12,0),W3,0(·+ x13,0))) = ĨV(x0),α(t0W0),

that is,∫
RN

W1,0(y)W2,0(y + x12,0)W3,0(y + x13,0) =

∫
RN

W1,0(y)W2,0(y)W3,0(y).

If (x12,0, x13,0) ̸= (0, 0), from [8] we have∫
RN

W1,0(y)W2,0(y + x12,0)W3,0(y + x13,0) <

∫
RN

W1,0(y)W2,0(y)W3,0(y).

This is a contradiction. Thus we have x12,0 = x13,0 = 0. From (4.22), W0 is
a minimizer for ρ(V1(x0), V2(x0), V3(x0);α). That is, W0 is a ground state of
(P̃V(x0),α) and it follows that

|xj,n − xk,n|
εn

→ 0, as n→ ∞, j ̸= k.

2
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4.4.3 Proof of Theorem 4.5 (4)

Proof of Theorem 4.5 (4). Since un is a non-negative ground state of

(Pεn) and U
(l)
n (y) = u(xl,n + εny), we have
−∆U

(l)
1,n + V1(xl,n + εny)U

(l)
1,n = (U

(l)
1,n)

p + αU
(l)
2,nU

(l)
3,n,

−∆U
(l)
2,n + V2(xl,n + εny)U

(l)
2,n = (U

(l)
2,n)

p + αU
(l)
1,nU

(l)
3,n,

−∆U
(l)
3,n + V3(xl,n + εny)U

(l)
3,n = (U

(l)
3,n)

p + αU
(l)
1,nU

(l)
2,n,

U
(l)
j,n ≥ 0, (l = 1, 2, 3).

Set U
(l)
n := U

(l)
1,n + U

(l)
2,n, then we have

−∆U (l)
n + V0U

(l)
n ≤ 2(U (l)

n )p + αU
(l)
3,nU

(l)
n .

Let η > 0 be a number such that η < V0. Let ε > 0 be a number such that
η < V0 − ε. From Lemma 4.10 (v), it follows that

sup
n∈N

U
(l)
j,n(y0) → 0, as |y0| → ∞.

Then there exists R > 0 such that if |y| ≥ R, then

sup
n∈N

{2(U (l)
n (y))p−1 + αU

(l)
3,n(y)} < ε.

Then if |y| ≥ R, we have

−∆U (l)
n + (V0 − ε)U (l)

n ≤ 0.

By the same argument as in the proof of Lemma 2.7 in [42], there exists
Cη > 0 such that

U
(l)
j,n(y) ≤ U (l)

n (y) ≤ Cηe
−√

η|y| for all y ∈ RN , n ∈ N, j = 1, 2.

We can prove also that

U
(l)
3,n(y) ≤ Cηe

−√
η|y| for all y ∈ RN , n ∈ N.

Recall U
(l)
j,n(y) = uj,n(xl,n + εny). Then we have

uj,n(x) ≤ Cηe
−√

η|x−xl,n|/εn for all x ∈ RN , n ∈ N, j, l = 1, 2, 3.

In particular, we have

uj,n(x) ≤ Cηe
−√

η|x−xj,n|/εn for all x ∈ RN , n ∈ N, j = 1, 2, 3.

2
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4.5 Proof of Theorem 4.6

To prove Theorem 4.6, we prove the following two lemmas needed later.

Lemma 4.12. Assume (V1),(V2) and fix α so that (C1)α and (C3)α hold.
In addition, we assume that there exists α′ > α such that (C3)α′ holds. Let
y0 ∈ RN be a point such that

ρ(V1(y0), V2(y0), V3(y0);α) = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α).

Let v be a ground state of (P̃V(y0),α), where V(y0) = (V1(y0), V2(y0), V3(y0)).
Then, there exists j0 ∈ {1, 2, 3} such that vj0 ̸= 0 and vj = 0 for j ̸= j0.

Proof. If vj ̸= 0 for all j = 1, 2, 3, by the same argument as in Theorem
1.4 in [30], we have ρ(V1(y0), V2(y0), V3(y0);α) > ρ(V1(y0), V2(y0), V3(y0);α

′).
Thus

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = ρ(V1(y0), V2(y0), V3(y0);α)

> ρ(V1(y0), V2(y0), V3(y0);α
′)

≥ inf
x∈RN

ρ(V1(x), V2(x), V3(x);α
′).

(4.23)

Since (C3)α and (C3)α′ hold, it follows that

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α
′).

This contradicts (4.23). 2

Lemma 4.13. Assume (V1),(V2) and fix α so that (C1)α holds. Let
{εn}∞n=1 ⊂ (0,∞) such that εn → +0 and let un be a ground state of (Pεn,α).

Let xj,n be a maximum point of uj,n. Set U
(l)
j,n(y) = uj,n(xl,n + εny). Then, if

supn∈N|xl,n| = ∞, then U
(l)
j,n ⇀ 0 weakly in H1(RN) for all j = 1, 2, 3.

Proof. Recall that from Lemma 4.10 (iii),(iv), {U (l)
j,n}∞n=1 is bounded in

H1(RN) and up to a subsequence, there exists U
(l)
j ∈ H1(RN) such that
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U
(l)
j,n ⇀ U

(l)
j weakly in H1(RN). If U(l) ̸= (0, 0, 0), by the same argument as

in the proof of Theorem 4.4 (2) and (3), we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) ≥ ρ(V1,∞, V2,∞, V3,∞;α).

This contradicts (C1)α. Hence, we obtain U(l) = (0, 0, 0). 2

Proof of Theorem 4.6. From Lemma 4.10 (iv), up to a subsequence, it

follows that U
(l)
j,n ⇀ U

(l)
j weakly in H1(RN). From Theorem 4.4 and (C3)α,

up to a subsequence, there exist l0 ∈ {1, 2, 3} and xl0,0 ∈ RN such that

cε = εN
(

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) + o(1)

)
= εN

(
min

j=1,2,3
c
Vj,0

1 + o(1)

)
, as ε→ +0,

xl0,n → xl0,0,

ρ(V1(xl0,0), V2(xl0,0), V3(xl0,0);α) = inf
x∈RN

ρ(V1(x), V2(x), V3(x);α),

U(l0) is a ground state of (P̃V (xl0,0
),α), U

(l0)
j,n → U

(l0)
j in H1(RN).

(4.24)

From (C3)α and (C3)α′ and Lemma 4.12, there exists j0 ∈ {1, 2, 3} such that

U
(l0)
j = 0 for all j ̸= j0. Since U

(l0)
l0

̸= 0, it follows that j0 = l0. Thus it holds

that U
(l0)
l0

̸= 0 and U
(l0)
j = 0 for all j ̸= l0. From (4.24), we have

∥U (l0)
l0,n

− U
(l0)
l0

∥H1 → 0,

∥U (l0)
j,n ∥H1 → 0 for all j ̸= l0.

Since U
(l0)
j,n (y) = U

(j)
j,n(y + (xl0,n − xj,n)/εn), we have

∥U (j)
j,n∥H1 → 0 for all j ̸= l0.

Note that U(l0) satisfies the following system:
−∆U

(l0)
1 + V1(xl0,0)U

(l0)
1 = (U

(l0)
1 )p + αU

(l0)
2 U

(l0)
3 ,

−∆U
(l0)
2 + V2(xl0,0)U

(l0)
2 = (U

(l0)
2 )p + αU

(l0)
1 U

(l0)
3 ,

−∆U
(l0)
3 + V3(xl0,0)U

(l0)
3 = (U

(l0)
3 )p + αU

(l0)
1 U

(l0)
2 ,

U
(l0)
j ≥ 0.
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Since U
(l0)
l0

̸= 0 and U
(l0)
j = 0 (j ̸= l0), U

(l0)
l0

satisfies{
−∆U

(l0)
l0

+ Vl0(xl0,0)U
(l0)
l0

= (U
(l0)
l0

)p,

U
(l0)
l0

≥ 0.

Then it follows that

min
j=1,2,3

c
Vj,0

1 = lim inf
n→∞

c̃εn

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

|∇U (l0)
j,n |2 + Vj(xl0,n + εny)(U

(l0)
j,n )2

+
p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l0)
j,n )p+1

}

=
1

6

∫
RN

|∇U (l0)
l0

|2 + Vl0(xl0,0)(U
(l0)
l0

)2 +
p− 2

3(p+ 1)

∫
RN

(U
(l0)
l0

)p+1

= I
Vl0

(xl0,0
)

1 (U
(l0)
l0

) ≥ c
Vl0

(xl0,0
)

1 ≥ c
Vl0,0

1 ≥ min
j=1,2,3

c
Vj,0

1 = cV0
1 .

Hence we have Vl0(xl0,0) = Vl0,0 = V0 and minj=1,2,3 c
Vj,0

1 = c
Vl0,0

1 . From (4.24),
we have

cε = εN
(

min
j=1,2,3

c
Vj,0

1 + o(1)

)
= εN

(
c
Vl0,0

1 + o(1)
)
, as ε→ +0.

Moreover, since Vl0(xl0,0) = Vl0,0 = V0, U
(l0)
l0

satisfies{
−∆U

(l0)
l0

+ V0U
(l0)
l0

= (U
(l0)
l0

)p,

U
(l0)
l0

≥ 0.

By the elliptic regularity, we have

U
(l0)
l0

∈ C2(RN), lim
|x|→∞

U
(l0)
l0

(x) = 0.

By the strong maximum principle, we have U
(l0)
l0

> 0. In addition, since

U
(l0)
l0,n

(0) = max
y∈RN

U
(l0)
l0,n

(y), U
(l0)
l0,n

→ U
(l0)
l0

in Cloc(RN),

it follows that U
(l0)
l0

(0) = maxy∈RN U
(l0)
l0

(y). Thus from [21] and [32], it holds

that U
(l0)
l0

= W . 2
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4.6 Asymptotic behavior of infx∈RN ρ(V1(x), V2(x),

V3(x);α) as α → ∞

In this section, we consider the asymptotic expansion of infx∈R ρ(V1(x), V2(x),
V3(x);α) as α → ∞. We prove the following proposition:

Proposition 4.14. Suppose that (V1),(V2). Then it follows that

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α)

= inf
x∈RN

ρ∞(V1(x), V2(x), V3(x))/α
2 + o(1/α2), as α → ∞,

where

λ := (λ1, λ2, λ3),

ρ∞(λ1, λ2, λ3) := inf
w∈Mλ,∞

Jλ,∞(w),

Jλ,∞(w) :=
1

2

3∑
j=1

∫
RN

|∇wj|2 + λjw
2
j −

∫
RN

w1w2w3,

Mλ,∞ := {w ∈ H \ {(0, 0, 0)} | F λ,∞(w) = 0},

F λ,∞(w) :=
3∑

j=1

∫
RN

|∇wj|2 + λjw
2
j − 3

∫
RN

w1w2w3.

To prove Proposition 4.14, we prove the following lemmas needed later.
The following lemma follows from Lemma 2.5 in [43].

Lemma 4.15. Suppose that (V1),(V2). Then it follows that

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α1)

≥ inf
x∈RN

ρ(V1(x), V2(x), V3(x);α2) for all 0 < α1 < α2.

Now we Set

Q(x;α) := ρ(V1(x), V2(x), V3(x);α), Q0(α) := inf
x∈RN

Q(x;α).

We prove the continuity of Q0 over [0,∞).
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Lemma 4.16. Suppose that (V1),(V2). Then Q0 : [0,∞) → R is continu-
ous.

Proof. Let α0 ≥ 0 and let {αn}∞n=1 be a positive sequence such that αn → α0

as n → ∞. We show the continuity of Q0 at α = α0. From the definition of
infimum, for all δ > 0, there exists xδ ∈ RN such that

Q(xδ;α0) < Q0(α0) + δ.

Then there exists a non-negative minimizer vδ for Q(xδ;α0). Moreover, there
exists tδ,n > 0 such that tδ,nvδ ∈ ÑV(xδ),αn , where V(xδ) = (V1(xδ), V2(xδ),
V3(xδ)). Since tδ,nvδ ∈ ÑV(xδ),αn , it follows that

3∑
j=1

∫
RN

|∇vj,δ|2 + Vj(xδ)v
2
j,δ = tp−1

δ,n

3∑
j=1

∫
RN

|vj,δ|p+1 + 3tδ,nαn

∫
RN

v1,δv2,δv3,δ.

(4.25)

From (4.25), {tδ,n}∞n=1 is bounded for all δ > 0. Then it holds that

Q0(α0) + δ > Q(xδ;α0) = ĨV(xδ),α0(vδ) ≥ ĨV(xδ),α0(tδ,nvδ)

= ĨV(xδ),αn(tδ,nvδ) + o(1) ≥ Q(xδ;αn) + o(1) ≥ Q0(αn) + o(1).

Thus we have

lim sup
n→∞

Q0(αn) ≤ Q0(α0) + δ

and letting δ → +0, we have

lim sup
n→∞

Q0(αn) ≤ Q0(α0). (4.26)

On the other hand, there exists zn ∈ RN such that

Q(zn;αn) < Q0(αn) +
1

n
.

Let vn be a non-negative minimizer for Q(zn;αn). Note that

Q(zn;αn)−
1

n
< Q0(αn) = inf

x∈RN
ρ(V1(x), V2(x), V3(x);αn)
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≤ inf
x∈RN

ρ(V1(x), V2(x), V3(x); 0) <∞.

Then we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x); 0) +
1

n
> Q(zn;αn) = ĨV(zn),αn(vn)

=
1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(zn)v
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

|vj,n|p+1

≥ 1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj,0v
2
j,n.

Thus {vn} is bounded in H. Let sn > 0 be a number such that snvn ∈
ÑV(zn),α0 . Hence

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(zn)v
2
j,n = sp−1

n

3∑
j=1

∫
RN

|vj,n|p+1 = 3snα0

∫
RN

v1,nv2,nv3,n.

As in the argument in Appendix A in Kurata-Osada [30], up to a subsequence,
there exists C > 0 such that

3∑
j=1

∫
RN

|vj,n|p+1 ≥ C for all n ∈ N.

Then {sn} is bounded. Thus we have

Q0(αn) +
1

n
> Q(zn;αn) = ĨV(zn),αn(vn) ≥ ĨV(zn),αn(snvn)

= ĨV(zn),α0(snvn) + o(1) ≥ Q(zn;α0) + o(1) ≥ Q0(α0) + o(1).

Hence

lim inf
n→∞

Q0(αn) ≥ Q0(α0). (4.27)

From (4.26)–(4.27), we have

lim
n→∞

Q0(αn) = Q0(α0).

2
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We prove the upper bound for infx∈RN ρ(V1(x), V2(x), V3(x);α).

Lemma 4.17. Suppose that (V1),(V2). Then it follows that

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α)

≤ inf
x∈RN

ρ∞(V1(x), V2(x), V3(x))/α
2 for all α > 0.

Proof. From Proposition 2 (Step 1) in Kurata-Osada [30], we have

ρ(V1(x), V2(x), V3(x);α) ≤ ρ∞(V1(x), V2(x), V3(x))/α
2 for all α > 0, x ∈ RN .

Thus we have the desired inequality. 2

Now, we prove Proposition 4.14.

Proof of Proposition 4.14. Let {αn}∞n=1 ⊂ (0,∞) be a sequence such that
αn → ∞. Let zn ∈ RN be a point such that

Q(zn;αn) < Q0(αn) +
1

α3
n

for all n ∈ N.

Let vn be a minimizer forQ(zn;αn). Setwn := αnvn. Let sn > 0 be a number
such that snwn ∈ MV(zn),∞, where V(zn) := (V1(zn), V2(zn), V3(zn)). By the
same argument as in the proof of Lemma 4.16, {vn}∞n=1 is bounded in H and
{sn}∞n=1 is bounded. Then we have

Q0(αn) +
1

α3
n

> Q(zn;αn) = ĨV(zn),αn(vn) ≥ ĨV(zn),αn(snvn)

=
1

α2
n

JV(zn),∞(snwn) + o(1/α2
n) ≥

1

α2
n

ρ∞(V1(zn), V2(zn), V3(zn)) + o(1/α2
n)

≥ 1

α2
n

inf
x∈RN

ρ∞(V1(x), V2(x), V3(x)) + o(1/α2
n).

Combining with Lemma 4.17, we have

inf
x∈RN

ρ(V1(x), V2(x), V3(x);αn)

= inf
x∈RN

ρ∞(V1(x), V2(x), V3(x))/α
2
n + o(1/α2

n), as αn → ∞.

Therefore we obtain the conclusion. 2
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4.7 Positivity of α∗

In this section, we show the positivity of α∗ (see Proposition 4.18). Recall

Q(x;α) := ρ(V1(x), V2(x), V3(x);α), Q0(α) := inf
x∈RN

Q(x;α).

From Lemma 4.15, Lemma 4.16 and 4.17, we can define the following thresh-
old for infx∈RN ρ(V1(x), V2(x), V3(x);α). That is,

α∗ := max{α ≥ 0 | Q0(α) = Q0(0)}.

Moreover, to clarify the Vj(x) dependency of infx∈RN ρ(V1(x), V2(x), V3(x);α),
we introduce a positive number θ and a functional I[w̃] as follows:

θ :=
p+ 1

p− 1
− N

2
> 0, I[w̃] :=

1

2

∫
RN

|∇w̃|2 + w̃2 − 1

p+ 1

∫
RN

w̃p+1,

Moreover, let w be the unique solution of the following equation:
−∆w + w = wp in RN ,

w > 0 in RN ,

w(0) = maxx∈RN w(x),

w(x) → 0, as |x| → ∞.

(4.28)

Proposition 4.18. Assume (V1),(V2),(V3). Then α∗ > 0. Moreover, it
follows that

inf
x∈RN

ρ(V1(x), V2(x), V3(x); 0) = min
j=1,2,3

c
Vj,0

1 = min
j=1,2,3

inf
x∈RN

Vj(x)
θI[w],

Furthermore, if 0 ≤ α ≤ α∗, then

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = min
j=1,2,3

c
Vj,0

1 = min
j=1,2,3

inf
x∈RN

Vj(x)
θI[w].

Remark 4.8. We can prove α∗ > 0 if we assume that (C1)α for α suffi-
ciently small instead of (V3).

Proof of Proposition 4.18. (Step 1) Suppose that α∗ = 0. ThenQ0(α) <
Q0(0) for all α > 0. Let {αn}∞n=1 be a sequence such that αn > 0 and αn → 0
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as n → ∞. From (V3), (C1)α holds for all α ≥ 0 (see Remark 4.3). Then
there exists a point xn ∈ RN such that infx∈RN ρ(V1(x), V2(x), V3(x);αn) =
ρ(V1(xn), V2(xn), V3(xn);αn). Then

ρ(V1(xn), V2(xn), V3(xn);αn) < Q0(0) ≤ ρ(V1(xn), V2(xn), V3(xn); 0).

From the proof of Theorem 1.4 in [30], (P̃V(xn),αn) has only vector ground
state where V(xn) = (V1(xn), V2(xn), V3(xn)). Let vn be a non-negative
ground state of (P̃V(xn),αn). Then vj,n ̸= 0 for all j = 1, 2, 3. Since {Vj(xn)}∞n=1

is bounded, up to a subsequence, there exists λj,0 (j = 1, 2, 3) such that
Vj(xn) → λj,0.

(Claim 1) There exist k0 ∈ {1, 2, 3} and vk0,0 ∈ H1(RN) such that ∥vk0,n−
vk0,0∥H1 → 0 and ∥vj,n∥H1 → 0 for j ̸= k0.

(Step A) We first show that ρ(V1(xn), V2(xn), V3(xn);αn) ≤ minj=1,2,3 c
λj,0

1 +
o(1), as n→ ∞.

Let j0 be a number such that minj=1,2,3 c
λj,0

1 = c
λj0,0

1 . For simplicity, we

assume j0 = 1. Let w1,0 be a positive ground state of (Pλ1,0

1 ). Set

W0 = (W1,0,W2,0,W3,0),

W1,0 = w1,0, W2,0 = W3,0 = 0.

Let tn > 0 be a number such that tnW0 ∈ ÑV(xn),αn . Then∫
RN

|∇w1,0|2 + V1(xn)w
2
1,0 = tp−1

n

∫
RN

wp+1
1,0 .

Thus {tn}∞n=1 is bounded. Hence

min
j=1,2,3

c
λj,0

1 = c
λ1,0

1 = I
λ1,0

1 (w1,0) ≥ I
λ1,0

1 (tnw1,0) = I
V1(xn)
1 (tnw1,0) + o(1)

= ĨV(xn),αn(tnW0) + o(1) ≥ ρ(V1(xn), V2(xn), V3(xn);αn) + o(1).

(Step B) Recall vn is a ground state of (P̃V(xn),αn). Let j0 ∈ {1, 2, 3} be

a number such that minj=1,2,3 c
λj,0

1 = c
λj0,0

1 . For simplicity, we assume j0 = 1.
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From (Step A), we have

min
j=1,2,3

c
λj,0

1 + o(1) ≥ ρ(V1(xn), V2(xn), V3(xn);αn)

=
1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(xn)v
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,n

≥ 1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj,0v
2
j,n.

Thus {vn} is bounded in H. Then, up to a subsequence, there exists v0 ∈ H
such that

vn ⇀ v0 weakly in H, (4.29)

vj,n → vj,0 a.e. in RN , (4.30)

vj,n → vj,0 in Lq
loc(R

N), 1 ≤ q < 2∗. (4.31)

Since v0 ∈ H, for all δ > 0, there exists R > 0 such that

1

6

3∑
j=1

∣∣∣∣∫
BR

|∇vj,0|2 + λj,0v
2
j,0 −

∫
RN

|∇vj,0|2 + λj,0v
2
j,0

∣∣∣∣
+

p− 2

3(p+ 1)

3∑
j=1

∣∣∣∣∫
BR

vp+1
j,0 −

∫
RN

vp+1
j,0

∣∣∣∣ < δ.

Since vn is a ground state of (P̃V(xn),αn), vn satisfies
−∆v1,n + V1(xn)v1,n = vp1,n + αnv2,nv3,n,

−∆v2,n + V2(xn)v2,n = vp2,n + αnv1,nv3,n,

−∆v3,n + V3(xn)v3,n = vp3,n + αnv1,nv2,n.

(4.32)

From (4.29),(4.31) and αn → 0, we have
−∆v1,0 + λ1,0v1,0 = vp1,0,

−∆v2,0 + λ2,0v2,0 = vp2,0,

−∆v3,0 + λ3,0v3,0 = vp3,0.

(4.33)
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Then

min
j=1,2,3

c
λj,0

1

≥ lim inf
n→∞

ρ(V1(xn), V2(xn), V3(xn);αn)

≥ lim inf
n→∞

1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(xn)v
2
j,n + lim inf

n→∞

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,n

≥ lim inf
n→∞

1

6

3∑
j=1

∫
BR

|∇vj,n|2 + Vj(xn)v
2
j,n + lim inf

n→∞

p− 2

3(p+ 1)

3∑
j=1

∫
BR

vp+1
j,n

≥ 1

6

3∑
j=1

∫
BR

|∇vj,0|2 + λj,0v
2
j,0 +

p− 2

3(p+ 1)

3∑
j=1

∫
BR

vp+1
j,0

≥ 1

6

3∑
j=1

∫
RN

|∇vj,0|2 + λj,0v
2
j,0 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,0 − δ.

Letting δ → +0 and from (4.33), we have

min
j=1,2,3

c
λj,0

1 ≥ lim inf
n→∞

ρ(V1(xn), V2(xn), V3(xn);αn)

≥ lim inf
n→∞

1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(xn)v
2
j,n

+ lim inf
n→∞

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,n

≥ 1

6

3∑
j=1

∫
RN

|∇vj,0|2 + λj,0v
2
j,0 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,0

=
3∑

j=1

I
λj,0

1 (vj,0).

(4.34)

If vj,0 ̸= 0 for all j = 1, 2, 3,

3∑
j=1

I
λj,0

1 (vj,0) ≥
3∑

j=1

c
λj,0

1 > min
j=1,2,3

c
λj,0

1 .
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This contradicts (4.34). Hence there exists k0 ∈ {1, 2, 3} such that vk0,0 ̸= 0
and vj,0 = 0 for j ̸= k0. From (4.34), we have

min
j=1,2,3

c
λj,0

1 ≥ lim inf
n→∞

ρ(V1(xn), V2(xn), V3(xn);αn)

≥
3∑

j=1

I
λj,0

1 (vj,0) = I
λk0,0

1 (vk0,0) ≥ c
λk0,0

1 = min
j=1,2,3

c
λj,0

1 .

Thus, we have

vk0,0 is a minimizer for c
λk0,0

1 , (4.35)

ρ(V1(xn), V2(xn), V3(xn);αn) → min
j=1,2,3

c
λj,0

1 . (4.36)

Moreover, from (4.34) and (4.35), we have

lim inf
n→∞

1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(xn)v
2
j,n ≥ 1

6

3∑
j=1

∫
RN

|∇vj,0|2 + λj,0v
2
j,0

lim inf
n→∞

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,n ≥ p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,0 ,

lim
n→∞

{
1

6

3∑
j=1

∫
RN

|∇vj,n|2 + Vj(xn)v
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,n

}

=
1

6

3∑
j=1

∫
RN

|∇vj,0|2 + λj,0v
2
j,0 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

vp+1
j,0 .

By the same argument as in Lemma 3.3, we have

∥vk0,n − vk0,0∥H1 → 0, ∥vj,n∥H1 → 0 for j ̸= k0. (4.37)

(Step 2) The following argument is based on Theorem 1.4 in [30].

For simplicity, we assume k0 = 1. From (4.32), we have∫
RN

|∇v2,n|2 + V2(xn)v
2
2,n =

∫
RN

vp+1
2,n + αn

∫
RN

v1,nv2,nv3,n,∫
RN

|∇v3,n|2 + V3(xn)v
2
3,n =

∫
RN

vp+1
3,n + αn

∫
RN

v1,nv2,nv3,n.
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Then there exists C1 > 0 such that

C1(∥v2,n∥2H1 + ∥v3,n∥2H1) ≤ ∥v2,n∥p+1
Lp+1 + ∥v3,n∥p+1

Lp+1 + 2αn

∫
RN

v1,nv2,nv3,n.

(4.38)

Since {vn} is bounded in H, there exist C2, C3 > 0 such that

2αn

∫
RN

v1,nv2,nv3,n ≤ αn

∫
RN

v1,n(v
2
2,n + v23,n)

≤ C2αn∥v1,n∥L3(∥v2,n∥2H1 + ∥v3,n∥2H1)

≤ C3αn(∥v2,n∥2H1 + ∥v3,n∥2H1).

(4.39)

For n sufficiently large, C3αn ≤ C1/2. From (4.38) and (4.39), we have

C1(∥v2,n∥2H1 + ∥v3,n∥2H1)

≤ ∥v2,n∥p+1
Lp+1 + ∥v3,n∥p+1

Lp+1 + C3αn(∥v2,n∥2H1 + ∥v3,n∥2H1)

≤ ∥v2,n∥p+1
Lp+1 + ∥v3,n∥p+1

Lp+1 +
C1

2
(∥v2,n∥2H1 + ∥v3,n∥2H1).

Then there exists C4 > 0 such that

C1

2
(∥v2,n∥2H1 + ∥v3,n∥2H1) ≤ ∥v2,n∥p+1

Lp+1 + ∥v3,n∥p+1
Lp+1

≤ C4(∥v2,n∥2H1 + ∥v3,n∥2H1)(p+1)/2.

Then there exists C5 > 0 such that

C5 ≤ (∥v2,n∥2H1 + ∥v3,n∥2H1)(p−1)/2.

This contradicts (4.37). Thus we obtain α∗ > 0.

(Step 3) From Lemma 4.1 in [30], it follows that

ρ(V1(x), V2(x), V3(x); 0) = min
j=1,2,3

c
Vj(x)
1 .

In addition, it is easy to see that

c
Vj(x)
1 = Vj(x)

θI[w].
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Then

ρ(V1(x), V2(x), V3(x); 0) = min
j=1,2,3

c
Vj(x)
1 = min

j=1,2,3
Vj(x)

θI[w].

Since

min
j=1,2,3

Vj(x)
θI[w] ≥ min

j=1,2,3
V θ
j,0I[w],

we have

inf
x∈RN

min
j=1,2,3

Vj(x)
θI[w] ≥ min

j=1,2,3
V θ
j,0I[w]. (4.40)

On the other hand, let j0 ∈ {1, 2, 3} be a number such that

Vj0,0 = min
j=1,2,3

Vj,0.

Let z0 ∈ RN be a point such that Vj0(z0) = Vj0,0. Then, it follows that

min
j=1,2,3

Vj(z0)
θI[w] = V θ

j0,0
I[w] = min

j=1,2,3
V θ
j,0I[w] (4.41)

and

min
j=1,2,3

Vj(z0)
θI[w] ≥ inf

x∈RN
min

j=1,2,3
Vj(x)

θI[w]. (4.42)

From (4.40)–(4.42), we have

inf
x∈RN

min
j=1,2,3

Vj(x)
θI[w] = min

j=1,2,3
V θ
j,0I[w].

Hence,

inf
x∈RN

ρ(V1(x), V2(x), V3(x); 0) = min
j=1,2,3

V θ
j,0I[w] = min

j=1,2,3
c
Vj,0

1 .

Furthermore, if 0 ≤ α ≤ α∗, then Q0(α) = Q0(0). Thus, if 0 ≤ α ≤ α∗, then

inf
x∈RN

ρ(V1(x), V2(x), V3(x);α) = min
j=1,2,3

V θ
j,0I[w] = min

j=1,2,3
c
Vj,0

1 .

2
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4.8 When all the ground states of (Pε,α) are

scalar or vector

To clear the dependence on α, we write (Pε), (P̃ε), cε, c̃ε, Iε, Ĩε, Nε, Ñε, Gε

and G̃ε as (Pε,α), (P̃ε,α), cε,α, c̃ε,α, Iε,α, Ĩε,α, Nε,α, Ñε,α, Gε,α and G̃ε,α.

In this section, we consider when all the ground states of (Pε,α) are scalar
or vector. To state the main proposition in this section, we give thresholds
Γ∗
ε, α

∗
0 and α

∗
1 as follows: From [30], cε,α is monotone decreasing with respect

to the parameter α over [0,∞) and continuous. Moreover, cε,α converges to
0 as α → ∞. Thus we can define Γ∗

ε as follows:

Γ∗
ε := max{α ≥ 0 | cε,α = cε,0}.

In addition, we can define thresholds α∗
0 and α∗

1 such that

α∗
0 := lim inf

ε→+0
Γ∗
ε := lim

r→+0
inf

0<ε<r
Γ∗
ε,

α∗
1 := lim sup

ε→+0
Γ∗
ε := lim

r→+0
sup
0<ε<r

Γ∗
ε.

We can show α∗
0 > 0 and α∗

1 < ∞ under (V1),(V2) (see Lemmas 4.20 and
4.21).

The next proposition tells us when all the ground states of (Pε,α) become
scalar or vector depending on the size of α.

Proposition 4.19. Suppose that (V1),(V2). Then we can define the thresh-
old α∗

0 and α∗
1 as above. Then the followings hold:

(i) If 0 ≤ α < α∗
0, then there exists ε0 > 0 such that all the ground states

of (Pε,α) are scalar for 0 < ε < ε0.

(ii) If α > α∗
1, then there exists ε1 > 0 such that all the ground states of

(Pε,α) are vector for 0 < ε < ε1.

(iii) If α > α∗
0, then there exists {ε0,n}∞n=1 ⊂ (0,∞) such that ε0,n → 0 and

all the ground states of (Pε0,n,α) are vector for all n ∈ N.

(iv) If 0 ≤ α < α∗
1, then there exists {ε1,n}∞n=1 ⊂ (0,∞) such that ε1,n → 0

and all the ground states of (Pε1,n,α) are scalar for all n ∈ N.
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Lemma 4.20. Suppose that (V1),(V2). Then, there exists r > 0 such that

(α∗
0 ≥) inf

0<ε<r
Γ∗
ε > 0.

Proof. (Claim 1) There exists r1 > 0 such that if 0 < ε < r1, α ≥ 0, then

c̃ε,α < minj=1,2,3 c
Vj,∞
1 .

Indeed, suppose that minj=1,2,3 c
Vj,0

1 = c
V1,0

1 for simplicity. Let w1,0 be a

positive minimizer for c
V1,0

1 . From (V1),(V2), let z0 be a minimum point of
V1(x). Set v0,ε = (v1,0,ε, 0, 0), v1,0,ε(y) = w1,0(y − z0/ε). Moreover, let t0,ε be
a positive number such that t0,εv0,ε ∈ Ñε,α. Then it follows that∫

RN

|∇v1,0,ε|2 + V1(εy)v
2
1,0,ε = tp−1

0,ε

∫
RN

vp+1
1,0,ε,

that is, ∫
RN

|∇w1,0|2 + V1(z0 + εy)w2
1,0 = tp−1

0,ε

∫
RN

wp+1
1,0 .

Note that t0,ε is bounded and independent of α. Since

lim
ε→+0

∫
RN

V1(z0 + εy)w2
1,0 =

∫
RN

V1(z0)w
2
1,0,

there exists r1 > 0 such that if 0 < ε < r1, then

t20,ε
2

∣∣∣∣∫
RN

V1(z0 + εy)w2
1,0 −

∫
RN

V1(z0)w
2
1,0

∣∣∣∣ < minj=1,2,3 c
Vj,∞
1 −minj=1,2,3 c

Vj,0

1

2
.

Then if 0 < ε < r1,

min
j=1,2,3

c
Vj,∞
1 > min

j=1,2,3
c
Vj,0

1 +
minj=1,2,3 c

Vj,∞
1 −minj=1,2,3 c

Vj,0

1

2

= c
V1,0

1 +
minj=1,2,3 c

Vj,∞
1 −minj=1,2,3 c

Vj,0

1

2

= I
V1,0

1 (w1,0) +
minj=1,2,3 c

Vj,∞
1 −minj=1,2,3 c

Vj,0

1

2

≥ I
V1,0

1 (t0,εw1,0) +
minj=1,2,3 c

Vj,∞
1 −minj=1,2,3 c

Vj,0

1

2
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=
t20,ε
2

∫
RN

|∇w1,0|2 + V1(z0 + εy)w2
1,0 −

tp+1
0,ε

p+ 1

∫
RN

wp+1
1,0

+
t20,ε
2

(∫
RN

V1(z0)w
2
1,0 −

∫
RN

V1(z0 + εy)w2
1,0

)
+

minj=1,2,3 c
Vj,∞
1 −minj=1,2,3 c

Vj,0

1

2
> Ĩε,α(t0,εv0,ε) ≥ c̃ε,α.

We can prove the following claim by the similar argument as in (Claim 1):

(Claim 2) There exists r2 > 0 such that if 0 < ε < r2, then c̃
Vj

2,ε < c̃
Vj,∞
2 for

all j = 1, 2, 3, where

Ĩ
Vj

2,ε(w) :=
1

2

∫
RN

|∇w|2 + Vj(εy)w
2 − 1

p+ 1

∫
RN

|w|p+1,

c̃
Vj

2,ε := inf
w∈Ñ

Vj
2,ε

Ĩ
Vj

2,ε,

Ñ Vj

2,ε := {w ∈ H1(RN) \ {0} | G̃Vj

2,ε(w) = 0},

G̃
Vj

2,ε(w) :=

∫
RN

|∇w|2 + Vj(εy)w
2 − |w|p+1,

Set 2r := min{r1, r2}. We now prove inf0<ε<r Γ
∗
ε > 0. Suppose that inf0<ε<r Γ

∗
ε =

0. Then there exists {εn}∞n=1 ⊂ (0, r) such that Γ∗
εn → 0. Let {αn}∞n=1 ⊂

(0,∞) be a sequence such that αn → 0 and αn > Γ∗
εn . From (Claim 1), we

have c̃εn,αn < minj=1,2,3 c
Vj,∞
1 for all n ∈ N. From Theorem 1.4 in [30], there

exists α∗
V∞ > 0 such that

ρ(V1,∞, V2,∞, V3,∞;α) = min
j=1,2,3

c
Vj,∞
1 for all 0 ≤ α ≤ α∗

V∞ .

Then for n sufficiently large,

ρ(V1,∞, V2,∞, V3,∞;αn) = min
j=1,2,3

c
Vj,∞
1 .

Then, for n sufficiently large,

c̃εn,αn < ρ(V1,∞, V2,∞, V3,∞;αn).
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Then by the same argument as in [43], there exists a non-negative ground
state vn of (P̃εn,αn). Set un(x) = vn(x/εn). Then un is a non-negative
ground state of (Pεn,αn). Since αn > Γ∗

εn , then cεn,αn < cεn,0. From Theorem
1.4 in [30], it follows that

uj,n ̸= 0 for all j = 1, 2, 3. (4.43)

Since 0 < εn < r, up to a subsequence, there exists ε0 ≥ 0 such that εn → ε0.
Now, we divided the proof into the case ε0 = 0 and the case ε0 > 0.

(Case 1) First, we shall prove that ε0 = 0 does not occur.

Recall U
(l)
j,n(y) = uj,n(xl,n + εny). Since un satisfies

−ε2n∆u1,n + V1(x)u1,n = up1,n + αnu2,nu3,n,

−ε2n∆u2,n + V2(x)u2,n = up2,n + αnu1,nu3,n,

−ε2n∆u3,n + V3(x)u3,n = up3,n + αnu1,nu2,n,

U
(l)
j,n satisfies

−∆U
(l)
1,n + V1(xl,n + εny)U

(l)
1,n = (U

(l)
1,n)

p + αnU
(l)
2,nU

(l)
3,n,

−∆U
(l)
2,n + V2(xl,n + εny)U

(l)
2,n = (U

(l)
2,n)

p + αnU
(l)
1,nU

(l)
3,n,

−∆U
(l)
3,n + V3(xl,n + εny)U

(l)
3,n = (U

(l)
3,n)

p + αnU
(l)
1,nU

(l)
2,n.

Recall that from Lemma 4.10 (iii),(iv), {U(l)
n }∞n=1 is bounded in H and up to

a subsequence, there exists U(l) ∈ H such that

U(l)
n ⇀ U(l) weakly in H,

U
(l)
j,n → U

(l)
j in Cloc(RN).

Suppose that supn∈N|xl,n| = ∞. Then up to a subsequence, |xl,n| → ∞.
Then from αn → +0, we have

−∆U
(l)
1 + V1,∞U

(l)
1 = (U

(l)
1 )p,

−∆U
(l)
2 + V2,∞U

(l)
2 = (U

(l)
2 )p,

−∆U
(l)
3 + V3,∞U

(l)
3 = (U

(l)
3 )p.

Suppose that U(l) ̸= (0, 0, 0). By the same argument as in the proof of
Theorem 4.4 (2) and (3), we have

min
j=1,2,3

c
Vj,0

1 ≥ lim sup
n→∞

c̃εn,αn ≥ lim inf
n→∞

c̃εn,αn
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= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

|∇U (l)
j,n|2 + Vj(xl,n + εny)(U

(l)
j,n)

2

+
p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j,n)

p+1

}

≥ 1

6

3∑
j=1

∫
RN

|∇U (l)
j |2 + Vj,∞(U

(l)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j )p+1

≥ min
j=1,2,3

c
Vj,∞
1 > min

j=1,2,3
c
Vj,0

1 .

This is a contradiction. Thus if supn∈N|xl,n| = ∞, then U(l) = (0, 0, 0).
Moreover, there exists l ∈ {1, 2, 3} such that supn∈N|xl,n| <∞. Indeed, if for
all l ∈ {1, 2, 3}, supn∈N|xl,n| = ∞, then it follows that U(l) = (0, 0, 0) for all
l ∈ {1, 2, 3} by the argument as above. This contradicts Lemma 4.11. Thus,
there exists l ∈ {1, 2, 3} such that supn∈N|xl,n| < ∞. Up to a subsequence,
there exists xl,0 ∈ RN such that xl,n → xl,0. We next show there exists

j0 ∈ {1, 2, 3} such that ∥U (l)
j0,n

−U
(l)
j0
∥H1 → 0 and ∥U (l)

j,n∥H1 → 0 for all j ̸= j0.

If U
(l)
j ̸= 0 for all j ∈ {1, 2, 3}, then U(l) satisfies

−∆U
(l)
1 + V1(xl,0)U

(l)
1 = (U

(l)
1 )p,

−∆U
(l)
2 + V2(xl,0)U

(l)
2 = (U

(l)
2 )p,

−∆U
(l)
3 + V3(xl,0)U

(l)
3 = (U

(l)
3 )p.

Then

min
j=1,2,3

c
Vj,0

1 ≥ lim sup
n→∞

c̃εn,αn ≥ lim inf
n→∞

c̃εn,αn

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

|∇U (l)
j,n|2 + Vj(xl,n + εny)(U

(l)
j,n)

2

+
p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j,n)

p+1

}

≥ 1

6

3∑
j=1

∫
RN

|∇U (l)
j |2 + Vj(xl,0)(U

(l)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j )p+1

≥
3∑

j=1

c
Vj(xl,0)
1 > min

j=1,2,3
c
Vj,0

1 .
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This is a contradiction. Thus there exists j0 ∈ {1, 2, 3} such that U
(l)
j0

̸= 0

and U
(l)
j = 0 for all j ̸= j0. Then

min
j=1,2,3

c
Vj,0

1 ≥ lim sup
n→∞

c̃εn,αn ≥ lim inf
n→∞

c̃εn,αn

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

|∇U (l)
j,n|2 + Vj(xl,n + εny)(U

(l)
j,n)

2

+
p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j,n)

p+1

}

≥ 1

6

3∑
j=1

∫
RN

|∇U (l)
j |2 + Vj(xl,0)(U

(l)
j )2 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

(U
(l)
j )p+1

≥ min
j=1,2,3

c
Vj(xl,0)
1 ≥ min

j=1,2,3
c
Vj,0

1 .

By the same argument as in the proof of Theorem 4.4 (2) and (3), we have

∥U (l)
j0,n

− U
(l)
j0
∥H1 → 0,

∥U (l)
j,n∥H1 → 0 for all j ̸= j0. (4.44)

For simplicity, we assume j0 = 1. Noting (4.43), by the same argument as in
(Step 2) in Proposition 4.18, there exists C > 0 such that

∥U (l)
2,n∥2H1 + ∥U (l)

3,n∥2H1 ≥ C.

This contradicts (4.44). Thus the case ε0 = 0 does not occur.

(Case 2) Next, we exclude the possibility of ε0 > 0.
We first show the upper bound of cεn,αn . To this end, we consider the follow-
ing equation and define the following minimization problem:

− ε2∆u+ Vj(x)u = |u|p−1u, (PVj

2,ε)

c
Vj

2,ε := inf
u∈N

Vj
2,ε

I
Vj

2,ε(u),

where

I
Vj

2,ε(u) :=
1

2

∫
RN

ε2|∇u|2 + Vj(x)u
2 − 1

p+ 1

∫
RN

|u|p+1,
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N Vj

2,ε := {u ∈ H1(RN) \ {0} | GVj

2,ε(u) = 0},

G
Vj

2,ε(u) :=

∫
RN

ε2|∇u|2 + Vj(x)u
2 − |u|p+1.

Now, we prove the following:

cεn,αn ≤ min
j=1,2,3

c
Vj

2,ε0
+ o(1) as n→ ∞. (4.45)

Indeed, let j0 be a number such that c
Vj0
2,ε0

= minj=1,2,3 c
Vj

2,ε0
. For simplicity,

we assume j0 = 1. Note that 0 < ε0 ≤ r < 2r. From (Claim 2), there exists
a positive ground state u0 of (PV1

2,ε0
). Set

u0 = (u1,0, u2,0, u3,0), u1,0 = u0, u2,0 = u3,0 = 0.

Let tn > 0 be a number such that tnun ∈ Nεn,αn . Then it follows that

3∑
j=1

∫
RN

ε2n|∇uj,0|2 + Vj(x)u
2
j,0 = tp−1

n

3∑
j=1

∫
RN

up+1
j,0 ,

that is, ∫
RN

ε2n|∇u0|2 + V1(x)u
2
0 = tp−1

n

∫
RN

up+1
0 .

Since εn → ε0 > 0, {tn}∞n=1 is bounded. Then

cV1
2,ε0

= IV1
2,ε0

(u0) ≥ IV1
2,ε0

(tnu0)

=
1

2

∫
RN

ε20|∇(tnu0)|2 + V1(x)(tnu0)
2 − 1

p+ 1

∫
RN

(tnu0)
p+1

= Iεn,αn(tnu0) + o(1)

≥ cεn,αn + o(1) as n→ ∞.

Thus we have (4.45). For n sufficiently large,

min
j=1,2,3

c
Vj

2,ε0
+ o(1) ≥ cεn,αn

=
1

6

3∑
j=1

∫
RN

ε2n|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,n
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≥ 1

6

3∑
j=1

∫
RN

ε20
2
|∇uj,n|2 + Vj,0u

2
j,n.

Then {un}∞n=1 is bounded in H. Thus, up to a subsequence, there exists
u0 ∈ H such that

un ⇀ u0 weakly in H,
uj,n → uj,0 in Lq

loc(R
N), 1 ≤ q < 2∗,

uj,n → uj,0 a.e. in RN .

(Claim 3) u0 ̸= (0, 0, 0).
If we assume u0 = (0, 0, 0), then it follows that

uj,n → 0 in Lq
loc(R

N), 1 ≤ q < 2∗. (4.46)

Let tn > 0 be a number such that tnun ∈ NV∞
ε0,αn

, where

IV∞
ε,α (u) :=

1

2

3∑
j=1

∫
RN

ε2|∇uj|2 + Vj,∞u
2
j −

1

p+ 1

3∑
j=1

∫
RN

|uj|p+1 − α

∫
RN

u1u2u3,

cV∞
ε,α := inf

u∈NV∞
ε,α

IV∞
ε,α (u),

NV∞
ε,α := {u ∈ H \ {(0, 0, 0)} | GV∞

ε,α (u) = 0},

GV∞
ε,α (u) :=

3∑
j=1

∫
RN

ε2|∇uj|2 + Vj,∞u
2
j − |uj|p+1 − 3α

∫
RN

u1u2u3.

Then

3∑
j=1

∫
RN

ε20|∇uj,n|2 + Vj,∞u
2
j,n = tp−1

n

3∑
j=1

∫
RN

up+1
j,n + 3tnαn

∫
RN

u1,nu2,nu3,n.

As in the argument in Appendix A in [30], up to a subsequence, there exists
C > 0 such that

3∑
j=1

∫
RN

up+1
j,n ≥ C for all n ∈ N.
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Since {un}∞n=1 is bounded in H and εn → ε0 and ε0 > 0, {tn}∞n=1 is bounded.
From the argument as in Proposition 1 in [30], it follows that

cεn,αn = Iεn,αn(un) ≥ Iεn,αn(tnun)

= IV∞
εn,αn

(tnun) + o(1) = IV∞
ε0,αn

(tnun) + o(1) ≥ cV∞
ε0,αn

+ o(1).

In addition, from Theorem 1.4 in [30], there exists α∗
ε0,V∞ > 0 such that

cV∞
ε0,α

= cV∞
ε0,0

= min
j=1,2,3

c
Vj,∞
2,ε0

for all 0 ≤ α ≤ α∗
ε0,V∞ .

Then we have for n sufficiently large,

lim inf
n→∞

cεn,αn ≥ lim inf
n→∞

cV∞
ε0,αn

= min
j=1,2,3

c
Vj,∞
2,ε0

. (4.47)

On the other hand, from (4.45) and (Claim 2), it follows that

lim sup
n→∞

cεn,αn ≤ min
j=1,2,3

c
Vj

2,ε0
< min

j=1,2,3
c
Vj,∞
2,ε0

.

This contradicts (4.47). Hence u0 ̸= (0, 0, 0).

Since un is a ground state of (Pεn,αn), un satisfies
−ε2n∆u1,n + V1(x)u1,n = up1,n + αnu2,nu3,n,

−ε2n∆u2,n + V2(x)u2,n = up2,n + αnu1,nu3,n,

−ε2n∆u3,n + V3(x)u3,n = up3,n + αnu1,nu2,n.

Since εn → ε0 and αn → 0, then u0 satisfies
−ε20∆u1,0 + V1(x)u1,0 = up1,0,

−ε20∆u2,0 + V2(x)u2,0 = up2,0,

−ε20∆u3,0 + V3(x)u3,0 = up3,0.

If there exist j1, j2 ∈ {1, 2, 3} such that j1 ̸= j2 and uj1,0 ̸= 0 and uj2,0 ̸= 0,
then

lim inf
n→∞

cεn,αn

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

ε2n|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,n

}
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= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

ε20|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,n

}

≥ 1

6

3∑
j=1

∫
RN

ε20|∇uj,0|2 + Vj(x)u
2
j,0 +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,0

=
3∑

j=1

I
Vj

2,ε0
(uj,0) ≥

3∑
j=1

c
Vj

2,ε0
> min

j=1,2,3
c
Vj

2,ε0
.

This contradicts (4.45). Thus there exists j0 ∈ {1, 2, 3} such that uj0,0 ̸= 0
and uj,0 = 0 for all j ̸= j0. For simplicity, we assume j0 = 1. Then

lim inf
n→∞

cεn,αn

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

ε2n|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,n

}

= lim inf
n→∞

{
1

6

3∑
j=1

∫
RN

ε20|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,n

}

≥ 1

6

∫
RN

ε20|∇u1,0|2 + V1(x)u
2
1,0 +

p− 2

3(p+ 1)

∫
RN

up+1
1,0

≥ IV1
2,ε0

(u1,0) ≥ cV1
2,ε0

≥ min
j=1,2,3

c
Vj

2,ε0
.

From (4.45), we have

lim
n→∞

{
1

6

3∑
j=1

∫
RN

ε20|∇uj,n|2 + Vj(x)u
2
j,n +

p− 2

3(p+ 1)

3∑
j=1

∫
RN

up+1
j,n

}

=
1

6

∫
RN

ε20|∇u1,0|2 + V1(x)u
2
1,0 +

p− 2

3(p+ 1)

∫
RN

up+1
1,0 ,

lim inf
n→∞

∫
RN

ε20|∇u1,n|2 + V1(x)u
2
1,n ≥

∫
RN

ε20|∇u1,0|2 + V1(x)u
2
1,0,

lim inf
n→∞

∫
RN

ε20|∇uj,n|2 + Vj(x)u
2
j,n ≥ 0 j = 2, 3,

lim inf
n→∞

∫
RN

up+1
1,n ≥

∫
RN

up+1
1,0 , lim inf

n→∞

∫
RN

up+1
j,n ≥ 0 j = 2, 3.

Then we have

∥u1,n − u1,0∥H1 → 0, ∥uj,n∥H1 → 0 j = 2, 3. (4.48)
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By the same argument as in (Step 2) in Proposition 4.18, there exists C > 0
such that

∥u2,n∥2H1 + ∥u3,n∥2H1 ≥ C.

This contradicts (4.48). Thus the case ε0 > 0 does not occur.

From (Case 1) and (Case 2), we can conclude that

inf
0<ε<r

Γ∗
ε > 0.

2

Lemma 4.21. Suppose that (V1),(V2). Then it follows that

(α∗
1 ≤) sup

0<ε<1
Γ∗
ε <∞.

Proof. We define the following minimization problem:

c̃V,∞
ε := inf

v∈ÑV,∞
ε

ĨV,∞
ε (v),

ĨV,∞
ε (v) :=

1

2

3∑
j=1

∫
RN

|∇vj|2 + Vj(εy)v
2
j −

∫
RN

v1v2v3,

ÑV,∞
ε := {v ∈ H \ {(0, 0, 0)} | G̃V,∞

ε (v) = 0},

G̃V,∞
ε (v) :=

3∑
j=1

∫
RN

|∇vj|2 + Vj(εy)v
2
j −

∫
RN

v1v2v3.

By the same argument as in Proposition 2 (Step 1) in [30] and, we obtain

c̃ε,α ≤ c̃V,∞
ε /α2 for all α > 0. (4.49)

We have c̃V,∞
ε ≤ c̃Vmax,∞

1 , where

Vmax := (V1,max, V2,max, V3,max), Vj,max := sup
x∈RN

Vj(x),

c̃Vmax,∞
1 := inf

v∈ÑVmax,∞
1

ĨVmax,∞
1 (v),
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ĨVmax,∞
1 (v) :=

1

2

3∑
j=1

∫
RN

|∇vj|2 + Vj,maxv
2
j −

∫
RN

v1v2v3,

ÑVmax,∞
1 := {v ∈ H \ {(0, 0, 0)} | G̃Vmax,∞

1 (v) = 0},

G̃Vmax,∞
1 (v) :=

3∑
j=1

∫
RN

|∇vj|2 + Vj,maxv
2
j −

∫
RN

v1v2v3.

Indeed, from Proposition 1 in [30], there exists a minimizer v for c̃Vmax,∞
1 .

Note that
∫
RN v1v2v3 > 0. By the same argument as in Lemma 2.3 in [43],

there exists tε > 0 such that tεv ∈ ÑV,∞
ε . Since v ∈ ÑVmax,∞

1 and Lemma
2.3 in [43], it follows that IVmax,∞

1 (tv) ≤ IVmax,∞
1 (v) for all t > 0. Hence, we

have

c̃V,∞
ε ≤ ĨV,∞

ε (tεv) ≤ ĨVmax,∞
1 (tεv) ≤ ĨVmax,∞

1 (v) = c̃Vmax,∞
1 . (4.50)

Note that

c̃ε,0 = min
j=1,2,3

c̃
Vj

2,ε.

Then we have

c̃ε,0 = min
j=1,2,3

c̃
Vj

2,ε ≥ min
j=1,2,3

c̃
Vj,0

1 > 0. (4.51)

Then there exists α0 > 0 (independent of ε) such that

c̃Vmax,∞
1 /α2 < min

j=1,2,3
c̃
Vj,0

1 for all α > α0. (4.52)

From (4.49)–(4.52), we have

c̃ε,α < c̃ε,0 for all α > α0, 0 < ε < 1.

Hence we obtain

Γ∗
ε ≤ α0 for all 0 < ε < 1.

2

Suppose that (V1),(V2). From Lemma 4.20 and 4.21, it follows that α∗
0 > 0

and α∗
1 <∞. Now, we prove Proposition 4.19.
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Proof of Proposition 4.19. (i) Let 0 ≤ α < α∗
0. By the definition of α∗

0,
there exists ε0 > 0 such that

inf
0<ε<ε0

Γ∗
ε > α.

Hence we have Γ∗
ε > α for all 0 < ε < ε0. From Theorem 1.4 in [30], all the

ground states of (Pε,α) are scalar.

(ii) Let α > α∗
1. By the definition of α∗

1, there exists ε0 > 0 such that

sup
0<ε<ε0

Γ∗
ε < α.

Hence we have Γ∗
ε < α for all 0 < ε < ε0. From Theorem 1.4 in [30], all the

ground states of (Pε,α) are vector.

(iii) Let α > α∗
0. By the definition of α∗

0, there exists {ε0,n}∞n=1 ⊂ (0,∞)
such that ε0,n → 0 and Γ∗

ε0,n
→ α∗

0. Since α∗
0 < α, up to a subsequence,

Γ∗
ε0,n

< α. From Theorem 1.4 in [30], all the ground states of (Pε0,n,α) are
vector.

(iv) Let 0 ≤ α < α∗
1. By the definition of α∗

1, there exists {ε1,n}∞n=1 ⊂ (0,∞)
such that ε1,n → 0 and Γ∗

ε1,n
→ α∗

1. Since α < α∗
1, up to a subsequence,

Γ∗
ε1,n

> α. From Theorem 1.4 in [30], all the ground states of (Pε1,n,α) are
scalar. 2

4.9 Appendix

In this Appendix, we consider the radial symmetry and monotonicity of clas-
sical solutions of elliptic system of the following type:

u′′i + fi(x, u1, . . . , uk) = 0 in R, i = 1, . . . , k,

ui > 0 in R,
ui(x) → 0, as |x| → ∞,

(4.53)

145



4.9 Appendix

where k ≥ 1.

Busca-Sirakov [9] studied the radial symmetry and monotonicity of classi-
cal solutions of elliptic systems for N ≥ 2. Moreover, Ikoma [25] considered
the symmetry and monotonicity of the solutions in the case N = 1 and k = 2.

Here, we show the symmetry result for N = 1 after slight modification.

Let us note u = (u1, . . . , uk) ∈ (0,∞)k and

A(x,u) =

(
∂fi
∂uj

(x,u)

)
1≤i,j≤k

.

We suppose that fi ∈ C1(R× (0,∞)k,R) for all i = 1, . . . , k and (A0)–(A4):

(A0) fi(−x,u) = fi(x,u) for all x ∈ R, u ∈ (0,∞)k and i = 1, . . . , k.

(A1) (∂fi/∂x)(x,u) ≤ 0 for all x ≥ 0, u ∈ (0,∞)k and i = 1, . . . , k.

(A2) (∂fi/∂uj)(x,u) ≥ 0 for all x ∈ R, u ∈ (0,∞)k and i, j ∈ {1, . . . , k}, i ̸=
j.

(A3) there exist constants ε > 0 and R1 > 0 such that for any I, J ⊂
{1, . . . , k}, I ∩ J = ∅, I ∪ J = {1, . . . , k}, there exist i0 ∈ I and j0 ∈ J
such that (∂fi0/∂uj0)(x,u) > 0 for all (x,u) ∈ O, where

O = {(x,u) ∈ R× (0,∞)k | |x| > R1, |u| < ε}.

(A4) all k-principal minors of −A(x, u1, . . . , uk) have positive determinants,
for all (x,u) ∈ O, 1 ≤ i ≤ k. We recall that the k-principal minors of
a matrix (mij)1≤i,j≤k are the submatrices (mij)1≤i,j≤k′ with 1 ≤ k′ ≤ k.

Theorem 4.22. Suppose f1, . . . , fk satisfy (A0)–(A4), and u = (u1, . . . , uk)
is a classical solution of (4.53). Then there exists a point y0 ∈ R such that
the functions ui are radially symmetric with respect to the origin y0, that is
ui(x) = ui(|x− y0|), i = 1, . . . , k. Moreover,

dui
dr

< 0 for all r = |x− y0| > 0.
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For λ ∈ R, set Σλ := (λ,∞) and for x ∈ Σλ, we define

xλ := 2λ− x,

Uλ
i (x) := ui(x

λ)− ui(x) = ui(2λ− x)− ui(x).

Outline of the proof of Theorem 4.22. We define

Λ := inf{λ > 0 | Uµ
i ≥ 0 in Σµ for i = 1, . . . , k, and all µ ≥ λ}.

(Step 1) Since ui(x) → 0 as |x| → ∞, there exists R0 ≥ R1 such that
ui(x) < ε/

√
k if |x| ≥ R0 for all i = 1, . . . , k. We take λ∗ > R0, for which

max
1≤i≤k

x∈[2λ−R0,2λ+R0]

ui(x) < min
1≤i≤k

x∈[−R0,R0]

ui(x),

for all λ > λ∗. Hence Uλ
i > 0 in [2λ− R0, 2λ+ R0] ⊂ Σλ for all λ > λ∗. We

notice that the functions Uλ
i satisfy the following system

(Uλ
i )

′′ +
∂fi
∂x

(η)(|xλ| − x) +
k∑

j=1

∂fi
∂uj

(x, ξi1, . . . , ξik)U
λ
j = 0, i = 1, . . . , k,

where η = η(x, λ) ∈ (0,∞)k+1 and

ξij = ξij(x, λ) ∈ (min{uj(x), uj(xλ)},max{uj(x), uj(xλ)}).

Since |xλ| < x for x ∈ Σλ, we obtain from (A1) the following systems of
inequality for Uλ

i

(Uλ
i )

′′ +
k∑

j=1

∂fi
∂uj

(x, ξi1, . . . , ξik)U
λ
j ≤ 0, i = 1, . . . , k. (4.54)

We want to show that Uλ
i ≥ 0 in Σλ, for all λ > λ∗. We argue by contradic-

tion. Suppose there exist λ > λ∗ and i0 ∈ {1, . . . , k} such that infΣλ
Uλ
i0
< 0.

We set J = {j | Uλ
j ≥ 0 in Σλ}, and I = {1, . . . , k} \ J (note that i0 ∈ I).

Since all k-principal minors of −A(x,u) have positive determinants, for
all (x,u) ∈ O, we do not need to introduce a function g as in [9]. Note the
following lemma stated as Lemma 2.2 in [20].
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Lemma 4.23. Let M = (mij)1≤i,j≤k be a matrix such that mij ≤ 0 for
i ̸= j. Assume all k-principal minors of M have positive determinants. Then

(i) all minors of M obtained by dropping lines and columns of the same
order have positive determinants.

(ii) if Mij is the minor of M obtained by dropping the i th line and j th
column we have (−1)i+j detMij ≥ 0.

Hence we may assume that I = {1, . . . , p}. Since Uλ
j ≥ 0 in Σλ for j ∈ J ,

from (A2) and (4.54), we have

(Uλ
i )

′′ +

p∑
j=1

∂fi
∂uj

(x, ξi1, . . . , ξik)U
λ
j ≤ 0, i = 1, . . . , p.

Since infΣλ
Uλ
i < 0 for all i = 1, . . . , p, Uλ

i > 0 in [2λ−R0, 2λ+R0], U
λ
i (λ) = 0

and Uλ
i (x) → 0 as |x| → ∞, there exist x1, . . . , xp ∈ Σλ \ [2λ− R0, 2λ+ R0]

such that Uλ
i (xi) = minΣλ

Uλ
i < 0. Then (Uλ

i )
′′(xi) ≥ 0 and (Uλ

i )
′(xi) = 0.

Substituting x = xi at i-th equation and using the fact that Uλ
j (xj) ≤ Uλ

j (xi),
we have

p∑
j=1

∂fi
∂uj

(xi, ξi1, . . . , ξik)U
λ
j (xj) ≤ 0, i = 1, . . . , p. (4.55)

(4.55) can be written as

MU = Y,

where

U := (Uλ
1 (x1), . . . , U

λ
p (xp)), M = (mij)1≤i,j≤p, Y = (y1, . . . , yp),

yi ≥ 0, mi,j := − ∂fi
∂uj

(xi, ξi1, . . . , ξik)

Since xi ̸∈ [2λ−R0, 2λ+R0], then x
λ
i ̸∈ [−R0, R0], that is, |xλi | > R0. Noting

that xi > R0, we have uj(xi), uj(x
λ
i ) < ε/

√
k. Thus we have ξi1(xi, λ)

2 +
· · · + ξik(xi, λ)

2 < ε2. From (A2) and (A4), we have mij ≤ 0 for i ̸= j, and
all p-principal minors of M have positive determinants. Since detM > 0, it
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follows that U = M−1Y . From Lemma 4.23, Uλ
i (xi) ≥ 0 for all i = 1, . . . , p.

This contradicts the fact that Ui(xi) < 0. Hence Λ <∞.

The rest of the proof of Theorem 4.22 can be showed by the same argument
as in [9]. 2
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