
The first variational formulae for integral invariants of degree two of the
second fundamental form of a map between pseudo-Riemannian manifolds

Rika Akiyama



Contents

1 Introduction 2

2 Preliminaries 4
2.1 Pseudo-Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The connections induced on the induced bunbles . . . . . . . . . . . . . . . . . . 5

3 Integral invariants of a map between pseudo-Riemannian manifolds 9

4 The first variational formulae for Q1-energy and Q2-energy 11
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 The first variational formula for Q1-energy . . . . . . . . . . . . . . . . . . . . . . 12
4.3 The first variational formula for Q2-energy . . . . . . . . . . . . . . . . . . . . . . 18

5 The Euler–Lagrange equation of the Chern–Federer energy 23
5.1 Alternative expression of the Euler–Lagrange equation of the Chern–Federer en-

ergy functional I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Alternative expression of the Euler–Lagrange equation of the Chern–Federer en-

ergy functional II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Chern–Federer submanifolds in Riemannian space forms 29
6.1 Euler–Lagrange equations for isometric immersions . . . . . . . . . . . . . . . . . 29
6.2 Examples of Chern–Federer submanifolds . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Chern–Federer isoparametric hypersurfaces in space forms . . . . . . . . . . . . . 33

1



1 Introduction

The theory of harmonic maps and biharmonic maps is one of the important fields in differential
geometry. Recall that a smooth map ϕ : (M, gM ) → (N, gN ) between Riemannian manifolds is
said to be harmonic if it is a critical point of the energy functional

E(ϕ) =
1

2

∫
M

|dϕ|2dµgM .

By the first variational formula, then ϕ is a harmonic map if and only if

τ(ϕ) = trgM (∇̃dϕ) = 0, (1.1)

where ∇̃dϕ is the second fundamental form and τ(ϕ) is the tension field of ϕ. The Euler–
Lagrange equation (1.1) is a second order nonlinear PDE, therefore the theory of harmonic
maps has been developed in geometric analysis, furthermore it is investigated applying methods
of integrable systems. For example, geodesics, harmonic functions and minimal submanifolds
are harmonic maps. As a generalization of harmonic maps, Eells and Lemaire [10] introduced
the notion of biharmonic map, which is a critical point of the bienergy functional

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2dµgM .

Jiang [14] showed that ϕ is a biharmonic map if and only if

τ2(ϕ) = −∇∗∇τ(ϕ)− trgMR
N (dϕ(·), τ(ϕ)) dϕ(·) = 0, (1.2)

where −∇∗∇ is the rough Laplacian and RN is the Riemannian curvature tensor of (N, gN ). The
Euler–Lagrange equation (1.2) is a fourth order nonlinear PDE. By definition, it is clear that a
harmonic map is biharmonic. One of the important problems in the study of biharmonic maps
is Chen’s conjecture, that is, an arbitrary biharmonic submanifold of a Euclidean space must be
minimal. This conjecture has been partially positively resolved, but it is still open. As a higher
order energy functional, r-energy functional [19, 22], ES-r-energy functional [3, 10], F -k-energy
functional [11], and so on. have been introduced, and various researchers have studied them
from the viewpoint of variational problems and submanifolds (cf. Figure 1).

On the other hand, in integral geometry, Howard [12] provided integral invariants of subman-
ifolds by using invariant polynomials of the second fundamental form, and then he formulated
the kinematic formula in Riemannian homogeneous spaces (see also [15]). In his formulation,
there are some notable integral invariants of submanifolds. One is integral invariants in the
Chern–Federer kinematic formula. These integral invariants played significant roles in differen-
tial geometry. For example, Weyl [23] showed that the volume of a tube around a compact sub-
manifold in a Euclidean space can be represented as a polynomial of the radius of the tube, where
the coefficients are integral invariants of the second fundamental form of the submanifold. Also,
Allendoerfer and Weil [2] used these integral invariants to describe the extended Gauss–Bonnet
theorem, and this leads to the development of the theory of characteristic classes. Another
notable one is the integral invariant defined from a certain invariant homogeneous polynomial
of degree two. This invariant polynomial also appears in the definition of the Willmore–Chen
invariant, which is a conformal invariant of submanifolds ([6, 7]).

In this thesis, we study variational problems for integral invariants, which are defined as
integrations of invariant functions of the second fundamental form, of a smooth map between
pseudo-Riemannian manifolds. We derive the first variational formulae for integral invariants
defined from invariant homogeneous polynomials of degree two. Among these integral invariants,
we show that the Euler–Lagrange equation of the Chern–Federer energy functional is reduced to a
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Figure 1: Correlation diagram of higher order energy functionals

second order PDE. Then we give some examples of Chern–Federer submanifolds in Riemannian
space forms. The most important point of this research is that we consider the variational
problem for a family of energy functionals, rather than fixing one energy functional.

In Section 2, we recall fundamental notions of pseudo-Riemannian manifolds and induced
bundles. In Section 3, with an idea of integral geometry, we introduce integral invariants of a
smooth map ϕ : (M, gM ) → (N, gN ) between pseudo-Riemannian manifolds by using invariant
functions of the second fundamental form of ϕ. In particular, we focus on integral invariants of ϕ
defined from invariant homogeneous polynomials of degree two. The space of those polynomials
is spanned by the square norm of the second fundamental form and the square norm of the
tension field, which are denoted by Q1 and Q2 respectively. Hence, here the family of integral
invariants includes the bienergy functional. In this thesis, we study variational problems for
these integral invariants of ϕ. In Section 4, we derive the first variational formulae for Q1-
and Q2-energy functionals. By the linearity, then we have the first variational formulae for all
integral invariants of degree two. Note that it implies an alternative expression of the Euler–
Lagrange equation of the bienergy functional. As mentioned above, from the viewpoint of
integral geometry, there are two notable polynomials, called the Chern–Federer polynomial and
the Willmore–Chen polynomial, in the space of invariant homogeneous polynomials of degree
two. In Section 5, we discuss some properties of the Chern–Federer energy functional from
the viewpoint of variational problems. The Euler–Lagrange equation of an integral invariant of
degree two is a fourth order PDE in general, however, we show that the Euler–Lagrange equation
of the Chern–Federer energy functional is reduced to a second order PDE. In Section 5.2, we
describe a symmetry of the Euler–Lagrange equation of the Chern–Federer energy functional
comparing with a symmetry of the Chern–Federer polynomial. In Section 6, we give some
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examples of Chern–Federer submanifolds in Riemannian space forms. Here, a Chern–Federer
submanifold is the image of an isometric immersion which is a Chern–Federer map. For an
isometric immersion into a Riemannian space form, a necessary and sufficient condition to
be a Chern–Federer map is described in Theorem 6.1. Considering this condition, there is
an obstruction for the domain manifold. In addition, as a trivial example, we can see that
any isometric immersion of a Ricci-flat manifold into a Euclidean space is a Chern–Federer
map. Finally, we discuss isometric immersions of flat tori into the 3-sphere and isoparametric
hypersurfaces in Riemannian space forms.

This thesis includes the content of the paper [1] to be published in Osaka Journal of Math-
ematics.

2 Preliminaries

In this section, we explain fundamental properties of pseudo-Riemannian manifolds and induced
bundles for later use ([21, 24]).

2.1 Pseudo-Riemannian manifolds

Let (Mm
p , gM ) be a pseudo-Riemannian manifold of dimension m with a nondegenerate metric

with index p. Here nondegeneracy means that, at each point x ∈M , the only vector X ∈ TxM
satisfying (gM )x(X,Y ) = 0 for all Y ∈ TxM is X = 0. Every pseudo-Riemannian manifold has
the unique Levi-Civita connection ∇. Also, a local pseudo-orthonormal frame field of (Mm

p , gM )
is a set of m-local vector fields {ei}mi=1 such that gM (ei, ej) = εiδij with ε1 = · · · = εp =
−1, εp+1 = · · · εm = 1.

For a local pseudo-orthonormal frame field {ei}mi=1 on a neighborhood U of (Mm
p , gM ), we

have the following local expressions

X =

m∑
i=1

εigM (X, ei)ei,

gradf =

m∑
i=1

εi df(ei)ei,

divX =

m∑
i=1

εigM (∇eiX, ei),

trgMH =

m∑
i=1

εiH(ei, ei),

where X ∈ Γ(TM), f ∈ C∞(M) and H is any bilinear form.
The Riemannian curvature tensor RM of (Mm

p , gM ) is a correspondence that assigns to every
pair X,Y ∈ Γ(TM) a mapping:

RM (X,Y ) : Γ(TM) → Γ(TM)

defined by
RM (X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, Z ∈ Γ(TM).

Also, let {xi}mi=1 be a local coordinate system on M , then we get that:

RM

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=
(
∇ ∂

∂xi
∇ ∂

∂xj
−∇ ∂

∂xj
∇ ∂

∂xi

) ∂

∂xk
,

since
[

∂
∂xi ,

∂
∂xj

]
= 0.
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Proposition 2.1 ([21]). Let M be a pseudo-Riemannian manifold. The curvature tensor of M
satisfies the following properties:

RM (X,Y )Z = −RM (Y,X)Z,〈
RM (X,Y )Z,W

〉
= −

〈
RM (X,Y )W,Z

〉
,

RM (X,Y )Z +RM (Y, Z)X +RM (Z,X)Y = 0,〈
RM (X,Y )Z,W

〉
=
〈
RM (Z,W )X,Y,

〉
for any vector fields X,Y, Z,W ∈ Γ(TM).

The third equation is well-known as the first Bianchi identity.

Proposition 2.2 ([21]). Let M be a pseudo-Riemannian manifold. The curvature tensor of M
satisfies the second Bianchi identity:

(∇RM )(X,Y, Z) + (∇RM )(Y, Z,X) + (∇RM )(Z,X, Y ) = 0,

for any vector fields X,Y, Z ∈ Γ(TM), where (∇RM )(X,Y, Z) is defined by

(∇RM )(X,Y, Z)W := ∇X

(
RM (Y, Z)W

)
−RM (∇XY, Z)W −RM (Y,∇XZ)W −RM (Y, Z)∇XW

for any vector field W ∈ Γ(TM).

2.2 The connections induced on the induced bunbles

Let (Mm
p , gM ) be an m-dimensional pseudo-Riemannian manifold with index p, (Nn

q , gN ) an
n-dimensional pseudo-Riemannian manifold with index q, and ϕ : M → N a C∞-map. Then,
the fiber metric (·, ·) is naturally defined on the tensor product T ∗M ⊗ϕ−1TN from the pseudo-
Riemannian metrics gM and gN . In this section, we see that the connection is naturally intro-
duced on the tensor product T ∗M ⊗ ϕ−1TN , which is compatible with the fiber metric (·, ·).

First, we see that the fiber metric (·, ·) is defined on T ∗M ⊗ ϕ−1TN . Let U be an open set
of M and {xi}mi=1 a local coordinate system on U . Then,{(

∂

∂x1

)
x

, · · · ,
(

∂

∂xm

)
x

}
, x ∈ U

is the basis of the tangent space TxM , and{
(dx1)x, · · · , (dxm)x

}
is the dual basis of the dual space T ∗

xM . So that:

(dxi)x

((
∂

∂xj

)
x

)
= δij (1 ≤ i, j ≤ m).

Also, the pseudo-Riemannian metric gM of M on U is expressed as

gM =

m∑
i,j=1

(gM )ijdx
i ⊗ dxj .

Here, (gM )ij is a C∞-function on U defined as follows:

(gM )ij = gM

(
∂

∂xi
,
∂

∂xj

)
,
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and [(gM )ij ] forms an m-order symmetric matirix at each point on U . Then, the inverse matrix
of [(gM )ij ] is expressed as [(gM )ij ]. Also, it is defined as

m∑
k=1

[(gM )ik][(gM )kj ] = δji ,

m∑
k=1

[(gM )ik][(gM )kj ] = δij , (1 ≤ i, j ≤ m).

The pseudo-Riemannian metric gM gives a natural isomorphism between TxM and T ∗
xM . That

is, the following maps is obtained:

[ : TxM → T ∗
xM, ] : T ∗

xM → TxM.

In fact, for Xx ∈ TxM and ωx ∈ T ∗
xM , we define

X♭
x(Yx) = (gM )x(Xx, Yx), (gM )x(ω

♯
x, Yx) = ωx(Yx), Yx ∈ TxM.

By using the local coordinate system, we represent

Xx =

m∑
i=1

Xi(x)

(
∂

∂xi

)
x

, ωx =

m∑
i=1

ωi(x)(dx
i)x.

Then X♭
x and ω♯

x are denoted by

X♭
x =

m∑
i=1

 m∑
j=1

(gM )ij(x)X
j(x)

 (dxi)x, ω♯
x =

m∑
i=1

 m∑
j=1

(gM )ij(x)ωj(x)

( ∂

∂xi

)
x

.

Therefore, for ωx, θx ∈ T ∗
xM , the inner product (g∗M )x on T ∗

xM is defined by

(g∗M )x(ωx, θx) := (gM )x(ω
♯
x, θ

♯
x).

Thus, we have
(g∗M )x

(
(dxi)x, (dx

j)x
)
= (gM )ij(x).

Thus, the inverse matrix
[
(gM )ij(x)

]
of
[
(gM )ij(x)

]
is the matrix that represents the components

of the inner production (g∗M )x.
Let y ∈ V be an open set of N and {yα}nα=1 a local coordinate system on V . Then, for

x ∈ U that satisfies ϕ(x) ∈ V , the local representation of ϕ(x) is expressed by the C∞-function
ϕα = yα ◦ ϕ on U as follows:

ϕ(x) =
(
ϕ1(x1, · · · , xm), · · · , ϕn(x1, · · · , xm)

)
.

Also, the pseudo-Riemannian metric gN on V is expressed as follows:

gN =

n∑
α,β=1

(gN )αβdy
α ⊗ dyβ .

Then, for x ∈ U , the differential map dϕx : TxM → Tφ(x)N is locally written as follows:

dϕx

((
∂

∂xi

)
x

)
=

n∑
α=1

(
∂ϕα

∂xi

)
(x)

(
∂

∂yα

)
φ(x)

(1 ≤ i ≤ m).

That is, dϕx is a linear map represented by a (n,m)-type matrix
((

∂φα

∂xi

)
(x)
)
.
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Let Hom(TxM,Tφ(x)N) be

Hom(TxM,Tφ(x)N) =
{
f : TxM → Tφ(x)N ; linear map

}
.

Then we have a linear isomorphism Hom(TxM,Tφ(x)N) ' T ∗
xM ⊗ Tφ(x)N . Also, since the basis

of T ∗
xM ⊗ Tφ(x)N is {

(dxi)x ⊗
(

∂

∂yα

)
φ(x)

∣∣∣∣∣ 1 ≤ i ≤ m, 1 ≤ α ≤ n

}
,

the differentiable map dϕx can be expressed by the following equation:

dϕx =

m∑
i=1

n∑
α=1

(
∂ϕα

∂xi

)
(x) (dxi)x ⊗

(
∂

∂yα

)
φ(x)

.

Next, we define the inner product (·, ·)x on the tensor product T ∗
xM ⊗Tφ(x)N from the inner

products (g∗M )x of T ∗
xM and (gN )φ(x) of Tφ(x)N . In fact, (·, ·)x defined by the following formula:(

(dxi)x ⊗
(

∂

∂yα

)
φ(x)

, (dxj)x ⊗
(

∂

∂yβ

)
φ(x)

)
x

= (gM )ij(x)(gN )αβ(ϕ(x))

and extended bilinearly to general elements of T ∗
xM ⊗ Tφ(x)N . If we denote the norm induced

this inner product (·, ·)x as |·, ·|x, we get the following equation:

|dϕx|2x = (dϕx, dϕx)x

=

m∑
i,j=1

n∑
α,β=1

(gM )ij(x)(gN )αβ(ϕ(x))

(
∂ϕα

∂xi

)
(x)

(
∂ϕβ

∂xj

)
(x).

These facts show the following. Let Γ(T ∗M ⊗ ϕ−1TN) be the space of the C∞-sections of
the vector bundle T ∗M ⊗ ϕ−1TN . Here, the map dϕ : M → T ∗M ⊗ ϕ−1TN is defined by
dϕ(x) = dϕx for x ∈ M . Hence, dϕ ∈ Γ(T ∗M ⊗ ϕ−1TN). In addition, we can naturally define
the fiber metric on the vector bundle T ∗M ⊗ϕ−1TN from the inner product (·, ·)x of the tensor
product T ∗

xM ⊗ Tφ(x)N . In fact, for σ, σ̃ ∈ Γ(T ∗M ⊗ ϕ−1TN), we define

(σ, σ̃) (x) = (σ(x), σ̃(x))x (x ∈M).

From this, for dϕ ∈ Γ(T ∗M ⊗ ϕ−1TN), we obtain the norm |dϕ| of this fiber metric (·, ·) as
follows.

|dϕ|2 =
m∑

i,j=1

n∑
α,β=1

(gM )ij(gN )αβ(ϕ)

(
∂ϕα

∂xi

)(
∂ϕβ

∂xj

)
.

Next, we show that a connection on the fiber bundle T ∗M ⊗ ϕ−1TN is naturally defined
that is compatible with the fiber metric (·, ·).

On the tangent vector bundle TM , the Levi-Civita connection ∇ is defined by the pseudo-
Riemannian metric gM . In fact, let {xi}mi=1 be a local coordinate system of M , and we define a
coefficients of connection {Γk

ij} with respect to {xi} of ∇ as

∇ ∂

∂xi

∂

∂xj
=

m∑
k=1

Γk
ij

∂

∂xk
,

then Γk
ij is given by:

Γk
ij =

1

2

m∑
l=1

(gM )kl
(
∂gjl
∂xi

+
∂gil
∂xj

− ∂gij
∂xl

)
,
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where (gM )ij are components of gM with respect to {xi} and (gM )ij are components of the
inverse matrix of [(gM )ij ]. For Y ∈ Γ(TM), we define

∇Y (X) := ∇XY (X ∈ Γ(TM)),

then we get the (1, 1)-type tensor field:

∇Y ∈ Γ(T ∗M ⊗ TM) ' Hom(TM, TM).

Therefore, the Levi-Civita connection ∇ of M defines the map:

∇ : Γ(TM) → Γ(T ∗M ⊗ TM).

Here ∇Y is called the covariant differentiation of Y .
Next, we define the connection ∇∗ on T ∗M . From the linear isomorphism of T ∗

xM ' TxM ,
we get the following isomorphism between TM and T ∗M :

[ : TM → T ∗M, ] : T ∗M → TM.

Using these isomorphisms, for ω ∈ Γ(T ∗M) and X ∈ Γ(TM), ∇∗
Xω ∈ Γ(T ∗M) is defined by the

following:

∇∗
Xω(Y ) :=

(
∇Xω

♯
)♭
(Y ) (Y ∈ Γ(TM)).

Here ∇∗
Xω is called the covariant derivative of ω with respect to X. For ω ∈ Γ(T ∗M), we define

∇∗ω(X) := ∇∗
Xω (X ∈ Γ(TM)),

then we get the (0, 2)-type tensor field:

∇∗ω ∈ Γ(T ∗M ⊗ T ∗M) ' Hom(TM, T ∗M).

And, the map:
∇∗ : Γ(T ∗M) → Γ(T ∗M ⊗ T ∗M)

is called the connection of T ∗M induced from ∇. Also, from the definitions of [ and ], we can
see the equation:

∇∗
Xω(Y ) = X

(
ω(Y )

)
− ω(∇XY ).

Furthermore, for X ∈ Γ(TM) and ω, θ ∈ Γ(T ∗M), we see that

X
(
g∗M (ω, θ)

)
= g∗M (∇∗

Xω, θ) + g∗M (ω,∇∗
Xθ),

which means that ∇∗ is compatible with the fiber metric g∗M of T ∗M .
For a smooth map ϕ :M → N , we can uniquely define the connection ∇ of ϕ−1TN from the

Levi-Civita connection ∇′ of N . Let U and V be coordinate neighborhoods of M and N such
that ϕ(U) ⊂ V , and {xi}mi=1 and {yα}nα=1 local coordinate systems on U and V respectively.
For each 1 ≤ α ≤ n, (

∂

∂yα
◦ ϕ
)
(x) =

(
∂

∂yα

)
φ(x)

(x ∈ U)

is a C∞-section of ϕ−1TN on U , and at each point x ∈ U , the set{(
∂

∂y1
◦ ϕ
)
(x), · · · ,

(
∂

∂yn
◦ ϕ
)
(x)

}
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is a basis of the fiber Tφ(x)N on x of ϕ−1TN . Here, for each 1 ≤ i ≤ m and 1 ≤ γ ≤ n, we

define the covariant derivative ∇ of the section of ϕ−1TN as:(
∇ ∂

∂xi

(
∂

∂yγ
◦ ϕ
))

(x) = ∇′
dφx

((
∂

∂xi

)
x

) ∂

∂yγ
.

Here ∇ is called the induced connection on ϕ−1TN . Notice that the induced connection ∇ is
compatible with the fiber metric ϕ∗gN = {(gN )φ(x)}x∈M of ϕ−1TN .

Lastly, we explain how the connection ∇̃ on T ∗M ⊗ϕ−1TN can be defined from the connec-
tion ∇∗ of T ∗M and the connection∇ of ϕ−1TN . In general, the C∞-section of T ∗M ⊗ϕ−1TN
is represented by the sections of T ∗M and ϕ−1TN . Therefore, for ω ∈ Γ(T ∗M) and W ∈
Γ(ϕ−1TN), we define the covariant derivative ∇̃(ω⊗W ) ∈ Γ(T ∗M⊗T ∗M⊗ϕ−1TN) as follows:

∇̃(ω ⊗W ) = (∇∗ω)⊗W + ω ⊗ (∇W ).

Under this definition, for X ∈ Γ(TM), the covariant derivative ∇̃X(ω⊗W ) is defined as follows:

∇̃X(ω ⊗W ) = (∇∗
Xω)⊗W + ω ⊗ (∇XW ).

This induces, the map:

∇̃ : Γ(T ∗M ⊗ ϕ−1TN) → Γ(T ∗M ⊗ T ∗M ⊗ ϕ−1TN),

which is called the induced connection of T ∗M ⊗ϕ−1TN . The connection ∇̃ is compatible with
the fiber metric (, ) on T ∗M ⊗ ϕ−1TN .

3 Integral invariants of a map between pseudo-Riemannian man-
ifolds

In this section, we define integral invariants of the second fundamental form of a map between
pseudo-Riemannian manifolds. An m-dimensional pseudo-Euclidean space with index p is de-
noted by Em

p = (Rm, 〈·, ·〉Em
p
) with 〈x, y〉Em

p
= −

∑p
i=1 xiyi +

∑m
j=p+1 xjyj (x, y ∈ Rm). Define

II(Em
p ,En

q ) to be

II(Em
p ,En

q ) :=
{
H : Em

p × Em
p → En

q ; symmetric bilinear map
}
,

which is a 1
2nm(m+1)-dimensional vector space. Let G be the direct product group of pseudo-

orthogonal groups defined by

G := O(p,m− p)×O(q, n− q).

The group G acts on II(Em
p ,En

q ), that is for g = (a, b) ∈ G and H ∈ II(Em
p ,En

q ) then gH is given
by

(gH)(u, v) := b
(
H(a−1u, a−1v)

)
(u, v ∈ Em

p ).

Then a function P on II(Em
p ,En

q ) is said to be G-invariant if P(gH) = P(H) for all g ∈ G and
H ∈ II(Em

p ,En
q ).

Let (Mm
p , gM ) and (Nn

q , gN ) be pseudo-Riemannian manifolds, and ϕ :M → N a C∞-map.
Thoughout this thesis, a fiber metric on a vector bundle is also denoted by 〈·, ·〉. The second
fundamental form of the map ϕ is the symmetric bilinear map ∇̃dϕ : Γ(TM) × Γ(TM) →
Γ(ϕ−1TN) defined by

(∇̃dϕ)(X,Y ) := ∇X (dϕ(Y ))− dϕ (∇XY )
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for any vector fields X,Y ∈ Γ(TM), which is a section of
⊙2 T ∗M ⊗ ϕ−1TN . Here

⊙
is

the symmetric tensor product. We denote by ∇ is the Levi–Civita connection on the tangent
bundle TM of (Mm

p , gM ), ∇ and ∇̃ are the induced connections on the bundles ϕ−1TN and
T ∗M ⊗ ϕ−1TN . If ϕ is an isometric immersion, then we have

(∇̃dϕ)(X,Y ) = ∇′
dφ(X)dϕ(Y )− dϕ (∇XY ) = ∇′

XY −∇XY,

where ∇′ is the Levi–Civita connection on the tangent bundle TN of (Nn
q , gN ), i.e. the second

fundamental form of the isometric immersion ϕ agrees with the second fundamental form of the
submanifold.

For each x ∈M , we can write

(∇̃dϕ)x : TxM × TxM → Tφ(x)N,

which is a symmetric bilinear map. Let {ei}mi=1 be a pseudo-orthonormal basis of TxM , {ei}mi=1

the dual basis of {ei}, and {ξα}nα=1 a pseudo-orthonormal basis of Tφ(x)N . Hence we identify

TxM and Tφ(x)N with Em
p and En

q , respectively. Then (∇̃dϕ)x can be expressed as

(∇̃dϕ)x =
∑
α

ε′α
∑
i,j

hαij e
i � ej ⊗ ξα,

where hαij is defined by

hαij :=
〈
(∇̃dϕ)x(ei, ej), ξα

〉
,

and

ε′α =

{
−1 (α = 1, · · · , q)
1 (α = q + 1, · · · , n).

Thus we have a linear isomorphism between T ∗
xM � T ∗

xM ⊗ Tφ(x)N and II(Em
p ,En

q ). That is,

(∇̃dϕ)x ∈ T ∗
xM � T ∗

xM ⊗ Tφ(x)N corresponds to Hx := (hαij) ∈ II(Em
p ,En

q ). Therefore, for a
G-invariant function P on II(Em

p ,En
q ), we define an invariant function of the second fundamental

form of ϕ as follows:
P
(
(∇̃dϕ)x

)
:= P(Hx).

This definition does not depend on the choices of {ei}mi=1 and {ξα}nα=1 since P is G-invariant and

a change of a basis is the action of the pseudo-orthogonal group. Also, P
(
(∇̃dϕ)x

)
is a smooth

function on M .

Definition 3.1. Let (Mm
p , gM ) be an m-dimensional compact pseudo-Riemannian manifold

with index p, (Nn
q , gN ) an n-dimensional pseudo-Riemannian manifold with index q, and P a

G-invariant function on II(Em
p ,En

q ). Then for a smooth map ϕ :M → N , we define

IP(ϕ) :=

∫
M

P
(
(∇̃dϕ)x

)
dµgM .

We call IP(ϕ) the integral invariant of ϕ with respect to P.

By definition, IP(ϕ) is an invariant of a map ϕ between pseudo-Riemannian manifolds, that
is, IP(g ◦ ϕ ◦ f−1) = IP(ϕ) holds for any f ∈ Isom(M) and g ∈ Isom(N).

We consider the followingG-invariant polynomials on II(Em
p ,En

q ). ForH = (hαij) ∈ II(Em
p ,En

q ),
define

Q1(H) :=
∑
α

ε′α
∑
i,j

εiεj(h
α
ij)

2 and Q2(H) :=
∑
α

ε′α

(∑
i

εih
α
ii

)2
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with

εi =

{
−1 (i = 1, · · · , p)
1 (i = p+ 1, · · · ,m).

Q1(H) and Q2(H) are G-invariant homogeneous polynomials of degree two on II(Em
p ,En

q ).

Definition 3.2. For ϕ ∈ C∞(M,N), the Q1-energy functional IQ1(ϕ) and the Q2-energy func-
tional IQ2(ϕ) are defined by

IQ1(ϕ) :=

∫
M

Q1

(
(∇̃dϕ)x

)
dµgM =

∫
M

〈
∇̃dϕ, ∇̃dϕ

〉
dµgM (3.1)

and

IQ2(ϕ) :=

∫
M

Q2

(
(∇̃dϕ)x

)
dµgM =

∫
M

〈
trgM (∇̃dϕ), trgM (∇̃dϕ)

〉
dµgM . (3.2)

Then ϕ is called a Q1-map if it is a critical point of IQ1(ϕ). Also, then ϕ is called a Q2-map if
it is a critical point of IQ2(ϕ).

Remark 3.3. The Q2-energy functional IQ2(ϕ) is equal to two times of the bienergy functional
E2(ϕ). Indeed, when ϕ is a smooth map between Riemannian manifolds, it holds that

IQ2(ϕ) =

∫
M

〈
trgM (∇̃dϕ), trgM (∇̃dϕ)

〉
dµgM =

∫
M

∣∣∣trgM (∇̃dϕ)
∣∣∣2 dµgM = 2E2(ϕ).

Remark 3.4. When dimM = 4, the Q1-energy functional and Q2-energy functional are invariant
under homothetic changes of the metric on the domain M .

4 The first variational formulae for Q1-energy and Q2-energy

4.1 Preliminaries

Let (Mm
p , gM ) be anm-dimensional compact pseudo-Riemannian manifold with index p, (Nn

q , gN )
an n-dimensional pseudo-Riemannian manifold with index q, and ϕ : M → N a C∞-map. In
this section, we use the following notation.

∇̃2dϕ and ∇̃3dϕ are defined by

(∇̃2dϕ)(X,Y, Z) := ∇X

(
(∇̃dϕ)(Y, Z)

)
− (∇̃dϕ) (∇XY, Z)− (∇̃dϕ) (Y,∇XZ)

and

(∇̃3dϕ)(X,Y, Z,W ) := ∇X

(
(∇̃2dϕ)(Y, Z,W )

)
− (∇̃2dϕ)(∇XY, Z,W )

− (∇̃2dϕ)(Y,∇XZ,W )− (∇̃2dϕ) (Y, Z,∇XW )

for any vector fieldsX,Y, Z,W ∈ Γ(TM). ∇̃2dϕ and ∇̃3dϕ are sections of
⊗3 T ∗M⊗ϕ−1TN and⊗4 T ∗M ⊗ ϕ−1TN , respectively. By definition, ∇̃2dϕ and ∇̃3dϕ have the following symmetry

(∇̃2dϕ)(X,Y, Z) = (∇̃2dϕ)(X,Z, Y ),

(∇̃3dϕ)(X,Y, Z,W ) = (∇̃3dϕ)(X,Y,W,Z).

The tension field τ(ϕ) of ϕ is defined by

τ(ϕ) := trgM (∇̃dϕ) =
∑
i

εi(∇̃dϕ)(ei, ei) =
∑
i

εi
(
∇̃eidϕ

)
(ei).

11



If ϕ is an isometric immersion, then its tension field is equal to m times of the mean curvature
vector field.

In general, the curvature tensor field RE of a connection ∇E on the bundle E over M is
defined by

RE(X,Y ) := ∇E
X∇E

Y −∇E
Y ∇E

X −∇E
[X,Y ] (X,Y ∈ Γ(TM)).

In particular, for the curvature tensor field R̃ of the induced connection ∇̃ on the bundle T ∗M⊗
ϕ−1TN , we have(

R̃(X,Y )dϕ
)
(Z) = Rφ−1TN (X,Y )dϕ(Z)− dϕ

(
RM (X,Y )Z

)
= RN (dϕ(X), dϕ(Y )) dϕ(Z)− dϕ

(
RM (X,Y )Z

)
(X,Y, Z ∈ Γ(TM)),

whereRM , RN andRφ−1TN are the curvature tensor fields on TM , TN and ϕ−1TN , respectively.
Then we derive the first variational formulae of the Q1-energy and Q2-energy separately.

4.2 The first variational formula for Q1-energy

We consider a smooth variation {ϕt}t∈I (I := (−ε, ε)) of ϕ, that is we consider a smooth map
Φ given by

Φ :M × I → N, (x, t) 7→ Φ(x, t) =: ϕt(x)

such that ϕ0(x) = ϕ(x) for all x ∈M , and denote by V its variational vector field, that is

V = dΦ

(
∂

∂t

∣∣∣∣
t=0

)
∈ Γ(ϕ−1TN).

We denote by ∇, ∇ and ∇̃ the induced connections on T (M × I), Φ−1TN and T ∗(M × I) ⊗
Φ−1TN , respectively. Let {ei}mi=1 be a local pseudo-orthonormal frame field on a neighborhood
U of x ∈ M , then

{
ei,

∂
∂t

}
is a pseudo-orthonormal frame field on the neighborhood U × I of

(x, t) ∈M × I, and it holds that

∇ ∂
∂t

∂

∂t
= 0, ∇ ∂

∂t
ei = ∇ei

∂

∂t
= 0 (1 ≤ i ≤ m).

First, we can write the formula (3.1) as

IQ1(ϕ) =

∫
M

〈
∇̃dϕ, ∇̃dϕ

〉
dµgM =

∫
M

∑
i,j

εiεj

〈(
∇̃dϕ

)
(ei, ej),

(
∇̃dϕ

)
(ei, ej)

〉
dµgM .

For a variation {ϕt}t∈I of ϕ, it holds that

d

dt
IQ1(ϕt) =

d

dt

∫
M

∑
i,j

εiεj

〈(
∇̃dΦ

)
(ei, ej),

(
∇̃dΦ

)
(ei, ej)

〉
dµgM

= 2

∫
M

∑
i,j

εiεj

〈
∇ ∂

∂t

(
(∇̃dΦ)(ei, ej)

)
, (∇̃dΦ)(ei, ej)

〉
dµgM . (4.1)
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Then we have

∇ ∂
∂t

(
(∇̃dΦ)(ei, ej)

)
=
(
∇̃2dΦ

)( ∂

∂t
, ei, ej

)
+
(
∇̃dΦ

)(
∇ ∂

∂t
ei, ej

)
+
(
∇̃dΦ

)(
ei,∇ ∂

∂t
ej

)
=
(
∇̃ ∂

∂t
∇̃eidΦ

)
(ej)

=
(
∇̃ei∇̃ ∂

∂t
dΦ
)
(ej)−

(
∇̃[ei, ∂

∂t ]
dΦ
)
(ej)−

(
R̃

(
ei,

∂

∂t

)
dΦ

)
(ej)

= ∇ei

((
∇̃dΦ

)( ∂

∂t
, ej

))
−
(
∇̃dΦ

)(
∇ei

∂

∂t
, ej

)
−
(
∇̃dΦ

)( ∂

∂t
,∇eiej

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ej)

= ∇ei

((
∇̃dΦ

)(
ej ,

∂

∂t

))
−
(
∇̃dΦ

)( ∂

∂t
,∇eiej

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ej)

=
(
∇̃2dΦ

)(
ei, ej ,

∂

∂t

)
+ (∇̃dΦ)

(
∇eiej ,

∂

∂t

)
+ (∇̃dΦ)

(
ej ,∇ei

∂

∂t

)
− (∇̃dΦ)

(
∂

∂t
,∇eiej

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ej)

=
(
∇̃2dΦ

)(
ei, ej ,

∂

∂t

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ej). (4.2)

By substituting (4.2) into (4.1), we have

d

dt
IQ1(ϕt) = 2

∫
M

∑
i,j

εiεj

〈(
∇̃2dΦ

)(
ei, ej ,

∂

∂t

)
,
(
∇̃dΦ

)
(ei, ej)

〉
dµgM

− 2

∫
M

∑
i,j

εiεj

〈
RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ej),

(
∇̃dΦ

)
(ei, ej)

〉
dµgM . (4.3)

We need the following lemma to calculate the first variation of IQ1(ϕ).

Lemma 4.1. Under the setting above, for any variation {ϕt}t∈I of ϕ, it holds∫
M

∑
i,j

εiεj

〈
(∇̃2dΦ)

(
ei, ej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉
dµgM

=

∫
M

∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ) (ei, ej , ei, ej)

〉
dµgM . (4.4)

Proof. We define vector fields on M depending on t ∈ I by

X̃t :=
∑
i,j

εiεj

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (ei, ej)

〉
ei

and

Ỹt :=
∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ej , ei, ej)

〉
ei,

where {ei}mi=1 is a local pseudo-orthonormal frame field on a neighborhood U of M . X̃t and Ỹt
are well-defined because of the independence of the choice of {ei}. Hence X̃t and Ỹt are global
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vector fields on M . Indeed, let {fi}mi=1 be another local pseudo-orthonormal frame field, then
the transformation function (pij)1≤i,j≤m : U → O(p,m− p) is given by

fi =
∑
j

pijej (1 ≤ i ≤ m).

Using this, we have∑
i,j

εiεj

〈
(∇̃dΦ)

(
fj ,

∂

∂t

)
, (∇̃dΦ) (fi, fj)

〉
fi

=
∑

i,j,a,b,c,d

εiεjpjapibpjcpid

〈
(∇̃dΦ)

(
ea,

∂

∂t

)
, (∇̃dΦ) (eb, ec)

〉
ed

=
∑
a,b,c,d

εaεbδacδbd

〈
(∇̃dΦ)

(
ea,

∂

∂t

)
, (∇̃dΦ) (eb, ec)

〉
ed

=
∑
a,b

εaεb

〈
(∇̃dΦ)

(
ea,

∂

∂t

)
, (∇̃dΦ) (eb, ea)

〉
eb.

In a similar way, we can check that Ỹt is well-defined.
The divergnce of X̃t is given by

divX̃t

=
∑
k

εk

〈
∇ekX̃, ek

〉

=
∑
k

εk

〈
∇ek

∑
i,j

εiεj

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (ei, ej)

〉
ei

 , ek

〉

=
∑
i,j,k

εkεiεjek

(〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (ei, ej)

〉)
〈ei, ek〉

+
∑
i,j,k

εkεiεj

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (ei, ej)

〉
〈∇ekei, ek〉

=
∑
i,j

εiεj

{〈
∇ei

(
(∇̃dΦ)

(
ej ,

∂

∂t

))
, (∇̃dΦ)(ei, ej)

〉

+

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
,∇ei

(
(∇̃dΦ)(ei, ej)

)〉}
−
∑
j,k

εjεk

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ)(∇ekek, ej)

〉

=
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
ei, ej ,

∂

∂t

)
+ (∇̃dΦ)

(
∇eiej ,

∂

∂t

)
+ (∇̃dΦ)

(
ej ,∇ei

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉

+

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃2dΦ)(ei, ei, ej) + (∇̃dΦ) (∇eiei, ej) + (∇̃dΦ) (ei,∇eiej)

〉
−
〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (∇eiei, ej)

〉}
=
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
ei, ej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉
+

〈
(∇̃dΦ)

(
∇eiej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉

+

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃2dΦ)(ei, ei, ej)

〉
+

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (ei,∇eiej)

〉}
.
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At the fourth equality, we use the following∑
i,j,k

εkεiεj

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉
〈∇ekei, ek〉

= −
∑
i,j,k

εkεiεj

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉
〈ei,∇ekek〉

= −
∑
j,k

εjεk

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ)

(∑
i

εi 〈ei,∇ekek〉 ei, ej

)〉

= −
∑
j,k

εjεk

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃dΦ) (∇ekek, ej)

〉
.

Now, take a neighborhood U of x ∈M such that the exponential map at x is injective onto
U , which is called a normal neighborhood. And we construct a pseudo-orthonormal frame field
{ei}mi=1 by parallel transporting a pseudo-orthonormal basis at x along a geodesic γ : [0, 1] →M
from γ(0) = x to γ(1) = y for every y ∈ U . The pseudo-orthonormal frame field {ei}mi=1 is
called a geodesic frame field. We note that a geodesic frame field {ei}mi=1 around a point x ∈M
satisfies

(∇eiej)x = 0, [ei, ej ]x = 0 (1 ≤ i, j ≤ m)

at x. Since (∇eiej)(x,t) = (∇eiej)x = 0 for all t ∈ I, we have(
divX̃t

)
x

=
∑
i,j

εiεj

{〈(
(∇̃2dΦ)

(
ei, ej ,

∂

∂t

))
(x,t)

,
(
(∇̃dΦ)(ei, ej)

)
(x,t)

〉

+

〈(
(∇̃dΦ)

(
∇eiej ,

∂

∂t

))
(x,t)

,
(
(∇̃dΦ)(ei, ej)

)
(x,t)

〉

+

〈(
(∇̃dΦ)

(
ej ,

∂

∂t

))
(x,t)

,
(
(∇̃2dΦ)(ei, ei, ej)

)
(x,t)

〉

+

〈(
(∇̃dΦ)

(
ej ,

∂

∂t

))
(x,t)

,
(
(∇̃dΦ) (ei,∇eiej)

)
(x,t)

〉}

=
∑
i,j

εiεj

{〈
(∇̃2dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t)

)〉

+

〈
(∇̃dΦ)(x,t)

(
(∇eiej)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t)

)〉

+

〈
(∇̃dΦ)(x,t)

(
(ej)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃2dΦ)(x,t)

(
(ei)(x,t), (ei)(x,t), (ej)(x,t)

)〉

+

〈
(∇̃dΦ)(x,t)

(
(ej)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃dΦ)(x,t)

(
(ei)(x,t), (∇eiej)(x,t)

)〉}

=
∑
i,j

εiεj

{〈
(∇̃2dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t)

)〉

+

〈
(∇̃dΦ)(x,t)

(
(ej)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃2dΦ)(x,t)

(
(ei)(x,t), (ei)(x,t), (ej)(x,t)

)〉}
. (4.5)
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Each term of the last formula of (4.5) is a tensor, so we have

divX̃t =
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
ei, ej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉

+

〈
(∇̃dΦ)

(
ej ,

∂

∂t

)
, (∇̃2dΦ)(ei, ei, ej)

〉}
, (4.6)

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.

In a similar way, we calculate the divergence of Ỹt. We have

divỸt

=
∑
k

εk

〈
∇ek Ỹt, ek

〉

=
∑
k

εk

〈
∇ek

∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ej , ei, ej)

〉
ei

 , ek

〉

=
∑
i,j,k

εkεiεjek

(〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ej , ei, ej)

〉)
〈ei, ek〉

+
∑
i,j,k

εkεiεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ej , ei, ej)

〉
〈∇ekei, ek〉

=
∑
i,j

εiεj

{〈
∇ei

(
dΦ

(
∂

∂t

))
, (∇̃2dΦ)(ej , ei, ej)

〉
+

〈
dΦ

(
∂

∂t

)
,∇ei

(
(∇̃2dΦ)(ej , ei, ej)

)〉}

−
∑
j,k

εkεj

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ) (ej ,∇ekek, ej)

〉

=
∑
i,j

εiεj

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
+ dΦ

(
∇ei

∂

∂t

)
, (∇̃2dΦ)(ej , ei, ej)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ej , ei, ej) + (∇̃2dΦ) (∇eiej , ei, ej) + (∇̃2dΦ) (ej ,∇eiei, ej)

+(∇̃2dΦ) (ej , ei,∇eiej)
〉

−
〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ) (ej ,∇eiei, ej)

〉}
=
∑
i,j

εiεj

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ej , ei, ej)

〉
+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ej , ei, ej)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ) (∇eiej , ei, ej)

〉
+

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ) (ej , ei,∇eiej)

〉}
.

Then, assuming that {ei} is a geodesic frame field around a point x ∈M , we have(
divỸt

)
x

=
∑
i,j

εiεj

{〈
(∇̃dΦ)(x,t)

(
(ei)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃2dΦ)(x,t)

(
(ej)(x,t), (ei)(x,t), (ej)(x,t)

)〉

+

〈
(dΦ)(x,t)

((
∂

∂t

)
(x,t)

)
, (∇̃3dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t), (ei)(x,t), (ej)(x,t)

)〉}
. (4.7)
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Each term of the right hand side of (4.7) is a tensor, so we have

divỸt =
∑
i,j

εiεj

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ej , ei, ej)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ej , ei, ej)

〉}
, (4.8)

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.
By Green’s theorem, we have∫

M
divX̃t dµgM = 0 =

∫
M

divỸt dµgM ,

and together with (4.6) and (4.8), we have∫
M

∑
i,j

εiεj

〈
(∇̃2dΦ)

(
ei, ej ,

∂

∂t

)
, (∇̃dΦ)(ei, ej)

〉
dµgM

=

∫
M

∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ) (ei, ej , ei, ej)

〉
dµgM .

Here we use the symmetry of ∇̃2dΦ.

Substituting (4.4) into (4.3), we have

d

dt
IQ1(ϕt)

= 2

∫
M

∑
i,j

εiεj

〈
(∇̃3dΦ)(ei, ej , ei, ej)−RN

(
dΦ(ej), (∇̃dΦ)(ei, ej)

)
dΦ(ei), dΦ

(
∂

∂t

)〉
dµgM .

Therefore we obtain the following theorem.

Theorem 4.2. Let (Mm
p , gM ) be a compact pseudo-Riemannian manifold, (Nn

q , gN ) a pseudo-
Riemannian manifold and ϕ :M → N a C∞-map. Consider a C∞-variation {ϕt}t∈I of ϕ with
variational vector field V . Then the following formula holds

d

dt
IQ1(ϕt)

∣∣∣∣
t=0

= 2

∫
M

〈∑
i,j

εiεj

{(
∇̃3dϕ

)
(ei, ej , ei, ej) +RN

(
(∇̃dϕ)(ei, ej), dϕ(ei)

)
dϕ(ej)

}
, V

〉
dµgM ,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM ) with gM (ei, ej) = εiδij,

ε1 = · · · = εp = −1, εp+1 = · · · = εm = 1.

For a map ϕ ∈ C∞(M,N), we define W1(ϕ) ∈ Γ(ϕ−1TN) by

W1(ϕ) :=
∑
i,j

εiεj

{(
∇̃3dϕ

)
(ei, ej , ei, ej) +RN

(
(∇̃dϕ)(ei, ej), dϕ(ei)

)
dϕ(ej)

}
.

Hence ϕ is a Q1-map if and only if W1(ϕ) = 0. We can adopt the Euler–Lagrange equation
W1(ϕ) = 0 as the definition of a Q1-map. Then the domain M of ϕ is not nesessarily compact.

Remark 4.3. In an analytical setting, Moser [20] studied a variational problem for the Q1-energy
functional IQ1(ϕ) =

∫
M |∇̃dϕ|2dµgM .
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4.3 The first variational formula for Q2-energy

In a similar way, we show the first variational formula of the Q2-energy. Let {ϕt}t∈I be a C∞-
variation of ϕ with variational vector field V and {ei} a local pseudo-orthonormal frame field
on a neighborhood U .

First, we can write (3.2) as

IQ2(ϕ) =

∫
M

〈
trgM (∇̃dϕ), trgM (∇̃dϕ)

〉
dµgM

=

∫
M

∑
i,j

εiεj

〈
(∇̃dϕ)(ei, ei), (∇̃dϕ)(ej , ej)

〉
dµgM .

For a variation {ϕt}t∈I of ϕ, it holds that

d

dt
IQ2(ϕt) =

d

dt

∫
M

∑
i,j

εiεj

〈
(∇̃dΦ)(ei, ei), (∇̃dΦ)(ej , ej)

〉
dµgM

= 2

∫
M

∑
i,j

εiεj

〈
∇ ∂

∂t

(
(∇̃dΦ)(ei, ei)

)
, (∇̃dΦ)(ej , ej)

〉
dµgM . (4.9)

Then we have

∇ ∂
∂t

(
(∇̃dΦ)(ei, ei)

)
= (∇̃2dΦ)

(
∂

∂t
, ei, ei

)
+ 2(∇̃dΦ)

(
∇ ∂

∂t
ei, ei

)
=
(
∇̃ ∂

∂t
∇̃eidΦ

)
(ei)

=
(
∇̃ei∇̃ ∂

∂t
dΦ
)
(ei)−

(
∇̃[ei, ∂

∂t ]
dΦ
)
(ei)−

(
R̃

(
ei,

∂

∂t

)
dΦ

)
(ei)

= ∇ei

(
(∇̃dΦ)

(
∂

∂t
, ei

))
− (∇̃dΦ)

(
∇ei

∂

∂t
, ei

)
− (∇̃dΦ)

(
∂

∂t
,∇eiei

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei)

= ∇ei

(
(∇̃dΦ)

(
ei,

∂

∂t

))
− (∇̃dΦ)

(
∂

∂t
,∇eiei

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei)

= (∇̃2dΦ)

(
ei, ei,

∂

∂t

)
+ (∇̃dΦ)

(
∇eiei,

∂

∂t

)
+ (∇̃dΦ)

(
ei,∇ei

∂

∂t

)
− (∇̃dΦ)

(
∂

∂t
,∇eiei

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei)

= (∇̃2dΦ)

(
ei, ei,

∂

∂t

)
−RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei). (4.10)

By substituting (4.10) into (4.9), we have

d

dt
IQ2(ϕt) = 2

∫
M

∑
i,j

εiεj

〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉
dµgM

− 2

∫
M

∑
i,j

εiεj

〈
RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei), (∇̃dΦ)(ej , ej)

〉
dµgM . (4.11)
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Lemma 4.4. Under the setting above, for any variation {ϕt}t∈I of ϕ, it holds∫
M

∑
i,j

εiεj

〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉
dµgM

=

∫
M

∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, ej , ej)

〉
dµgM . (4.12)

Proof. For each t ∈ I, we define vector fields on M by

X̂t :=
∑
i,j

εiεj

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ) (ej , ej)

〉
ei

and

Ŷt :=
∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ei, ej , ej)

〉
ei,

where {ei}mi=1 is a pseudo-orthonormal frame field on a neighborhood U of M . Note that X̂t

and Ŷt are globally defined vector fields on M .
The divergence of X̂t is given by

divX̂t

=
∑
k

εk

〈
∇ekX̂t, ek

〉

=
∑
k

εk

〈
∇ek

∑
i,j

εiεj

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ) (ej , ej)

〉
ei

 , ek

〉

=
∑
i,j,k

εkεiεjek

(〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ) (ej , ej)

〉)
〈ei, ek〉

+
∑
i,j,k

εkεiεj

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ) (ej , ej)

〉
〈∇ekei, ek〉

=
∑
i,j

εiεj

{〈
∇ei

(
(∇̃dΦ)

(
ei,

∂

∂t

))
, (∇̃dΦ) (ej , ej)

〉

+

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
,∇ei

(
(∇̃dΦ) (ej , ej)

)〉}
−
∑
j,k

εkεj

〈
(∇̃dΦ)

(
∇ekek,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉

=
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
+ (∇̃dΦ)

(
∇eiei,

∂

∂t

)
+ (∇̃dΦ)

(
ei,∇ei

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉

+

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ) (ei, ej , ej) + 2(∇̃dΦ) (∇eiej , ej)

〉
−
〈
(∇̃dΦ)

(
∇eiei,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉}
=
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉
+

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, ej , ej)

〉

+2

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ) (∇eiej , ej)

〉}
.
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Then, assuming that {ei} is a geodesic frame field around a point x ∈M , we have(
divX̂t

)
x

=
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
(ei)(x,t), (ei)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃dΦ)

(
(ej)(x,t), (ej)(x,t)

)〉

+

〈
(∇̃dΦ)

(
(ei)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃2dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t), (ej)(x,t)

)〉}
. (4.13)

Each term of the right hand side of (4.13) is a tensor, so we have

divX̂t =
∑
i,j

εiεj

{〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉

+

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, ej , ej)

〉}
, (4.14)

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.

In a similar way, we calculate the divergence of Ŷt. We have

divŶt

=
∑
k

εk

〈
∇ek Ŷt, ek

〉

=
∑
k

εk

〈
∇ek

∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ei, ej , ej)

〉
ei

 , ek

〉

=
∑
i,j,k

εkεiεjek

(〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ei, ej , ej)

〉)
〈ei, ek〉

+
∑
i,j,k

εkεiεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(ei, ej , ej)

〉
〈∇ekei, ek〉

=
∑
i,j

εiεj

{〈
∇ei

(
dΦ

(
∂

∂t

))
,
(
∇̃2dΦ

)
(ei, ej , ej)

〉
+

〈
dΦ

(
∂

∂t

)
,∇ei

((
∇̃2dΦ

)
(ei, ej , ej)

)〉}

−
∑
j,k

εkεj

〈
dΦ

(
∂

∂t

)
,
(
∇̃2dΦ

)
(∇ekek, ej , ej)

〉

=
∑
i,j

εiεj

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
+ dΦ

(
∇ei

∂

∂t

)
, (∇̃2dΦ)(ei, ej , ej)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, ej , ej) + (∇̃2dΦ) (∇eiei, ej , ej) + 2(∇̃2dΦ) (ei,∇eiej , ej)

〉
−
〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ) (∇eiei, ej , ej)

〉}
=
∑
i,j

εiεj

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, ej , ej)

〉
+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, ej , ej)

〉

+2

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ) (ei,∇eiej , ej)

〉}
.
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Then, assuming that {ei} is a geodesic frame field around a point x ∈M , we have(
divŶt

)
x

=
∑
i,j

εiεj

{〈
(∇̃dΦ)(x,t)

(
(ei)(x,t),

(
∂

∂t

)
(x,t)

)
, (∇̃2dΦ)(x,t)

(
(ei)(x,t), (ej)(x,t), (ej)(x,t)

)〉

+

〈
(dΦ)(x,t)

((
∂

∂t

)
(x,t)

)
, (∇̃3dΦ)(x,t)

(
(ei)(x,t), (ei)(x,t), (ej)(x,t), (ej)(x,t)

)〉}
. (4.15)

Each term of the right hand side of (4.15) is a tensor, so we have

divŶt =
∑
i,j

εiεj

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, ej , ej)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, ej , ej)

〉}
, (4.16)

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.
By Green’s theorem, we have∫

M
divX̂t dµgM = 0 =

∫
M

divŶt dµgM ,

and together with (4.14) and (4.16), we have∫
M

∑
i,j

εiεj

〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(ej , ej)

〉
dµgM

=

∫
M

∑
i,j

εiεj

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, ej , ej)

〉
dµgM .

Substituting (4.12) into (4.11), we have

d

dt
IQ2(ϕt)

= 2

∫
M

∑
i,j

εiεj

〈
(∇̃3dΦ)(ei, ei, ej , ej)−RN

(
dΦ(ei), (∇̃dΦ)(ej , ej)

)
dΦ(ei), dΦ

(
∂

∂t

)〉
dµgM .

Therefore we obtain the following theorem.

Theorem 4.5. Let (Mm
p , gM ) be a compact pseudo-Riemannian manifold, (Nn

q , gN ) a pseudo-
Riemannian manifold and ϕ :M → N a C∞-map. Consider a C∞-variation {ϕt}t∈I of ϕ with
variational vector field V . Then the following formula holds

d

dt
IQ2(ϕt)

∣∣∣∣
t=0

= 2

∫
M

〈∑
i,j

εiεj

{(
∇̃3dϕ

)
(ei, ei, ej , ej) +RN

(
(∇̃dϕ)(ei, ei), dϕ(ej)

)
dϕ(ej)

}
, V

〉
dµgM ,

where {ei}m=1 is a local pseudo-orthonormal frame field of (Mm
p , gM ) with gM (ei, ej) = εiδij,

ε1 = · · · = εp = −1, εp+1 = · · · = εm = 1.

21



For a map ϕ ∈ C∞(M,N), we define W2(ϕ) ∈ Γ(ϕ−1TN) by

W2(ϕ) :=
∑
i,j

εiεj

{(
∇̃3dϕ

)
(ei, ei, ej , ej) +RN

(
(∇̃dϕ)(ei, ei), dϕ(ej)

)
dϕ(ej)

}
.

Hence ϕ is a Q2-map if and only if W2(ϕ) = 0.

Remark 4.6. For a pseudo-Riemannian manifold (Mm
p , gM ), if the index p = 0 then (Mm

0 , gM )
is a Riemannian manifold. Therefore a map ϕ : (Mm

0 , gM ) → (Nn
0 , gN ) between Riemannian

manifolds is a Q1-map if and only if∑
i,j

{(
∇̃3dϕ

)
(ei, ej , ei, ej) +RN

(
(∇̃dϕ)(ei, ej), dϕ(ei)

)
dϕ(ej)

}
= 0,

where {ei}mi=1 is a local orthonormal frame field of (Mm, gM ). Similarly, we have that a map
ϕ : (Mm

0 , gM ) → (Nn
0 , gN ) between Riemannian manifolds is a Q2-map if and only if∑

i,j

{(
∇̃3dϕ

)
(ei, ei, ej , ej) +RN

(
(∇̃dϕ)(ei, ei), dϕ(ej)

)
dϕ(ej)

}
= 0.

By Theorem 4.2 and Theorem 4.5, we obtain all the first variational formulae of the integral
invariants which belong to the space spanned by the Q1-energy and Q2-energy.

By comparing the first variational formula of the bienergy (cf. [14]) and that of Q2-energy
(Theorem 4.5), we have the following proposition.

Proposition 4.7. Let ϕ : M → N be a C∞-map between pseudo-Riemannian manifolds
(Mm

p , gM ) and (Nn
q , gN ). Then the following formula holds

−∇∗∇τ(ϕ) =
∑
i,j

εiεj(∇̃3dϕ)(ei, ei, ej , ej),

where −∇∗∇ is the rough Laplacian and {ei}mi=1 is a local pseudo-orthonormal frame field of
(Mm

p , gM ).

Proof. For any V ∈ Γ(ϕ−1TN), we define vector fields on M by

W :=

m∑
i,j

εiεj

〈
V,∇ei

(
(∇̃dϕ)(ej , ej)

)〉
ei

and

W̃ :=

m∑
i,j

εiεj

〈
V, (∇̃2dϕ)(ei, ej , ej)

〉
ei,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM ). Then, assuming that {ei}

is a geodesic frame field around a point x ∈M , we have

W̃x =
∑
i,j

εiεj

〈
Vx,
(
∇ei

(
(∇̃dϕ)(ej , ej)

))
x
− 2
(
(∇̃dϕ)(∇eiej , ej)

)
x

〉
(ei)x

=
∑
i,j

εiεj

〈
Vx,
(
∇ei

(
(∇̃dϕ)(ej , ej)

))
x

〉
(ei)x

=Wx.
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Therefore W = W̃ . Thus,

0 = div(W − W̃ )x

=
∑
i,j

εiεj

{〈(
∇eiV

)
x
,
(
∇ei

(
(∇̃dϕ)(ej , ej)

))
x

〉
+
〈
Vx,
(
∇ei

(
∇ei

(
(∇̃dϕ)(ej , ej)

)))
x

〉}
−
∑
i,j

εiεj

{〈(
∇eiV

)
x
,
((
∇̃2dϕ

)
(ei, ej , ej)

)
x

〉
+
〈
Vx,
(
∇ei

(
(∇̃2dϕ)(ei, ej , ej)

))
x

〉}

=

〈
Vx,
(
−∇∗∇τ(ϕ)

)
x
−
∑
i,j

εiεj
(
(∇̃3dϕ)(ei, ei, ej , ej)

)
x

〉
,

where {ei}mi=1 is a geodesic frame field around a point x ∈M . So we have

−∇∗∇τ(ϕ) =
∑
i,j

εiεj(∇̃3dϕ)(ei, ei, ej , ej),

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.

5 The Euler–Lagrange equation of the Chern–Federer energy

We inherit the settings in the previous section. In this section, we introduce the Chern–Federer
energy functional for a map ϕ : (Mm

p , gM ) → (Nn
q , gN ) between pseudo-Riemannian manifolds,

which is an integral invariant defined by a homogeneous polynomial of degree two on II(Em
p ,En

q )
called the Chern–Federer polynomial. Then we verify the Euler–Lagrange equation of the Chern–
Federer energy functional.

For H = (hαij) ∈ II(Em
p ,En

q ), the Chern–Federer polynomial CF(H) is defined by

CF(H) := Q2(H)−Q1(H). (5.1)

From Theorems 4.2 and 4.5, the Euler–Lagrange equation of the Chern–Federer energy functional
ICF(ϕ) is

0 =W2(ϕ)−W1(ϕ)

=
∑
i,j

εiεj

{
(∇̃3dϕ)(ei, ei, ej , ej)− (∇̃3dϕ)(ei, ej , ei, ej)

+RN
(
(∇̃dϕ)(ei, ei), dϕ(ej)

)
dϕ(ej)−RN

(
(∇̃dϕ)(ei, ej), dϕ(ei)

)
dϕ(ej)

}
, (5.2)

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM ). In this section, we give al-

ternative expressions of the Euler–Lagrange equation of the Chern–Federer energy functional. In
particular, the Euler–Lagrange equation of ICF(ϕ) is a second-order partial differential equation
for ϕ. Moreover, we describe the symmetry of the Euler–Lagrange equation of the Chern–Federer
energy functional and that of the Chern–Federer polynomial.

We also introduce the Willmore–Chen energy functional, which is an integral invariant de-
fined by the homogeneous polynomial of degree two called the Willmore–Chen polynomial. For
H = (hαij) ∈ II(Em

p ,En
q ), the Willmore–Chen polynomial WC(H) is defined by

WC(H) := mQ1(H)−Q2(H).

Let α and β be constant numbers such that α2 + β2 6= 0. A C∞-map ϕ : M → N is called
an (αQ1 + βQ2)-map if it satisfies

αW1(ϕ) + βW2(ϕ) = 0.

By definition, an (αQ1 + βQ2)-map ϕ is
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• a Q1-map when (α, β) = (1, 0);

• a Q2-map, that is, a biharmonic map, when (α, β) = (0, 1);

• a Chern–Federer map when (α, β) = (−1, 1);

• a Willmore–Chen map when (α, β) = (m,−1).

In Section 6, we construct some examples of these maps. In previous research, the mainstream
was to increase the order of the energy functional. In contrast, we extended the energy func-
tionals with a second order class (cf. Figure 2).

Figure 2: Correlation diagram of energies used in previous research and our research

5.1 Alternative expression of the Euler–Lagrange equation of the Chern–
Federer energy functional I

First, we prepare the following lemmas.

Lemma 5.1. For a smooth map ϕ : M → N and X,Y, Z ∈ Γ(TM), the following equation
holds:

(∇̃2dϕ)(X,Y, Z)− (∇̃2dϕ)(Y,X,Z) = RN (dϕ(X), dϕ(Y )) dϕ(Z)− dϕ
(
RM (X,Y )Z

)
.

Proof. Let {ei}mi=1 be a geodesic frame field of (Mm
p , gM ) around x ∈M . At x, we have

(∇̃2dϕ)(ei, ej , ek)− (∇̃2dϕ)(ej , ei, ek)

= ∇ei

(
(∇̃dϕ)(ej , ek)

)
− (∇̃dϕ)(∇eiej , ek)− (∇̃dϕ)(ej ,∇eiek)−∇ej

(
(∇̃dϕ)(ei, ek)

)
+ (∇̃dϕ)(∇ejei, ek) + (∇̃dϕ)(ei,∇ejek)

= ∇ei

(
(∇̃dϕ)(ej , ek)

)
−∇ej

(
(∇̃dϕ)(ei, ek)

)
= ∇ei

(
∇ej (dϕ(ek))− dϕ(∇ejek)

)
−∇ej

(
∇ei (dϕ(ek)− dϕ(∇eiek))

)
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=
(
∇ei∇ej −∇ej∇ei

)
dϕ(ek)−∇ei

(
dϕ(∇ejek)

)
+∇ej (dϕ(∇eiek))

=
(
∇ei∇ej −∇ej∇ei −∇[ei,ej ]

)
dϕ(ek)

−
{
(∇̃dϕ)

(
ei,∇ejek

)
+ dϕ

(
∇ei∇ejek

)}
+
{
(∇̃dϕ)(ej ,∇eiek) + dϕ

(
∇ej∇eiek

)}
= Rφ−1TN (ei, ej)dϕ(ek)− dϕ

(
∇ei∇ejek −∇ej∇eiek −∇[ei,ej ]ek

)
= RN (dϕ(ei), dϕ(ej)) dϕ(ek)− dϕ

(
RM (ei, ej)ek

)
.

Since all terms of the first and last formulae are tensors, we have the lemma.

Lemma 5.2. For a smooth map ϕ : M → N and X,Y, Z,W ∈ Γ(TM), the following equation
holds:

(∇̃3dϕ)(X,Y, Z,W )− (∇̃3dϕ)(X,Z, Y,W )

=
(
∇RN

)
(dϕ(X), dϕ(Y ), dϕ(Z)) dϕ(W ) +RN

(
(∇̃dϕ)(X,Y ), dϕ(Z)

)
dϕ(W )

+RN
(
dϕ(Y ), (∇̃dϕ)(X,Z)

)
dϕ(W ) +RN (dϕ(Y ), dϕ(Z)) (∇̃dϕ)(X,W )

− (∇̃dϕ)
(
X,RM (Y, Z)W

)
− dϕ

((
∇RM

)
(X,Y, Z)W

)
.

Proof. First, we show that the following equation:

(∇̃3dϕ)(X,Y, Z,W )− (∇̃3dϕ)(X,Z, Y,W )

=
(
∇Rφ−1TN

)
(X,Y, Z)dϕ(W ) +Rφ−1TN (Y, Z)(∇̃dϕ)(X,W )

− (∇̃dϕ)(X,RM (Y, Z)W )− dϕ
((
∇RM

)
(X,Y, Z)W

)
, (5.3)

where X,Y, Z,W ∈ Γ(TM). Let {ei}mi=1 be a geodesic frame field of (Mm
p , gM ) around x ∈ M .

At x, we have

(∇̃3dϕ)(ei, ej , ek, el)− (∇̃3dϕ)(ei, ek, ej , el)

= ∇ei

(
(∇̃2dϕ)(ej , ek, el)

)
−∇ei

(
(∇̃2dϕ)(ek, ej , el)

)
= ∇ei

(
RN (dϕ(ej), dϕ(ek)) dϕ(el)− dϕ

(
RM (ej , ek)el

))
= ∇ei

(
RN (dϕ(ej), dϕ(ek)) dϕ(el)

)
− (∇̃dϕ)

(
ei, R

M (ej , ek)el
)
− dϕ

(
∇ei

(
RM (ej , ek)el

))
= ∇ei

(
Rφ−1TN (ej , ek)dϕ(el)

)
− (∇̃dϕ)

(
ei, R

M (ej , ek)el
)
− dϕ

(
∇ei

(
RM (ej , ek)el

))
=
(
∇Rφ−1TN

)
(ei, ej , ek)dϕ(el) +Rφ−1TN (∇eiej , ek) dϕ(el) +Rφ−1TN (ej ,∇eiek) dϕ(el)

+Rφ−1TN (ej , ek)∇ei (dϕ(el))− (∇̃dϕ)
(
ei, R

M (ej , ek)el
)

− dϕ
((
∇RM

)
(ei, ej , ek, el) +RM (∇eiej , ek)el +RM (ej ,∇eiek)el +RM (ej , ek)∇eiel

)
=
(
∇Rφ−1TN

)
(ei, ej , ek)dϕ(el) +Rφ−1TN (ej , ek)(∇̃dϕ)(ei, el)− (∇̃dϕ)

(
ei, R

M (ej , ek)el
)

− dϕ
((
∇RM

)
(ei, ej , ek, el)

)
.

Here, the second equality holds because of Lemma 5.1. Since all terms of the first and last
formulae are tensors, we have (5.3). Then, on Endϕ−1TN , we have

Rφ−1TN (Y, Z)
(
(∇̃dϕ)(X,W )

)
= RN (dϕ(Y ), dϕ(Z))

(
(∇̃dϕ)(X,W )

)
, (5.4)

where X,Y, Z,W ∈ Γ(TM), since the following equation holds:

Rφ−1TN (X,Y ) = (ϕ−1RN )(X,Y ) = RN (dϕ(X), dϕ(Y )).
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Also, we can verify the following equation:(
∇Rφ−1TN

)
(X,Y, Z) = (∇RN )(dϕ(X), dϕ(Y ), dϕ(Z))

+RN (dϕ(Y ), (∇̃dϕ)(X,Z)) +RN ((∇̃dϕ)(X,Y ), dϕ(Z)). (5.5)

Thus we have(
∇Rφ−1TN

)
(X,Y, Z)

= ∇X(Rφ−1TN (Y, Z))−Rφ−1TN (∇XY, Z)−Rφ−1TN (Y,∇XZ)

= ∇X(RN (dϕ(Y ), dϕ(Z)))−RN (dϕ(∇XY ), dϕ(Z))−RN (dϕ(Y ), dϕ(∇XZ))

= ∇X(RN (dϕ(Y ), dϕ(Z))) +RN ((∇̃dϕ)(X,Y ), dϕ(Z)) +RN (dϕ(Y ), (∇̃dϕ)(X,Z))
−RN (∇X(dϕ(Y )), dϕ(Z))−RN (dϕ(Y ),∇X(dϕ(Z)))

= RN ((∇̃dϕ)(X,Y ), dϕ(Z)) +RN (dϕ(Y ), (∇̃dϕ)(X,Z)) + (∇RN )(dϕ(X), dϕ(Y ), dϕ(Z)).

Here, by taking local frame fields of (M, gM ) and (N, gN ) and calculating locally, we verify the
last equality. Therefore the assertion holds from (5.3), (5.4) and (5.5).

Remark 5.3. Recall that ∇Rφ−1TN is the derivative of the curvature tensor field Rφ−1TN , defined
by (

∇Rφ−1TN
)
(X,Y, Z)s := ∇X

(
Rφ−1TN (Y, Z)s

)
−Rφ−1TN (∇XY, Z) s

−Rφ−1TN (Y,∇XZ) s−Rφ−1TN (Y, Z)∇Xs,

where X,Y, Z ∈ Γ(TM) and s ∈ Γ(ϕ−1TN).

Using Lemma 5.2, we obtain the following proposition.

Proposition 5.4. A smooth map ϕ :M → N is a Chern–Federer map if and only if

0 =
∑
i,j

εiεj

{(
∇RN

)
(dϕ(ei), dϕ(ei), dϕ(ej)) dϕ(ej)− (∇̃dϕ)

(
ei, R

M (ei, ej)ej
)

− dϕ
((
∇RM

)
(ei, ei, ej)ej

)
+ 2RN

(
(∇̃dϕ)(ei, ei), dϕ(ej)

)
dϕ(ej)

+2RN
(
dϕ(ei), (∇̃dϕ)(ei, ej)

)
dϕ(ej)

}
, (5.6)

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM ).

By the equation (5.6), it can be seen that the Euler–Lagrange equation of the Chern–Federer
energy functional for a map ϕ is a second-order partial differential equation for ϕ.

5.2 Alternative expression of the Euler–Lagrange equation of the Chern–
Federer energy functional II

Here, we express the Chern–Federer polynomial as follows:

CF(H) = Q2(H)−Q1(H)

=
∑
α

ε′α

(∑
i

εih
α
ii

)2

−
∑
α

ε′α
∑
i,j

εiεj(h
α
ij)

2

=
∑
α

ε′α
∑
i,j

εiεjdet

(
hαii hαij
hαij hαjj

)
.

Then we have the following alternative expression of the Euler–Lagrange equation of the Chern–
Federer energy functional.
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Theorem 5.5. Let ϕ : M → N be a C∞-map between pseudo-Riemannian manifolds. We
define (0, 4)-type tensor fields µ and ν valued on ϕ−1TN by

µ(X1, X2, X3, X4) := (∇̃3dϕ)(X1, X2, X3, X4)

and
ν(X1, X2, X3, X4) := RN

(
(∇̃dϕ)(X3, X4), dϕ(X1)

)
dϕ(X2),

where X1, X2, X3, X4 ∈ Γ(TM). Then ϕ is a Chern–Federer map if and only if

C(µ+ ν) = 0. (5.7)

Here C is the contraction of a (0, 4)-tensor field on M defined by

C := det

(
C12 C13

C24 C34

)
,

where Cij is the contraction of the i-th and j-th variables.

Proof. From the definition of µ and ν, we have µ, ν ∈ Γ(T ∗M⊗T ∗M⊗(T ∗M�T ∗M)⊗ϕ−1TN).
For simplicity, we set

µijkl := µ(ei, ej , ek, el)

and
νijkl := ν(ei, ej , ek, el),

where {ei}mi=1 is a local pseudo-orthonormal frame field of M . Note that, by the pseudo-
Riemannian metric gM , there is a natural correspondence between a covariant tensor and a
contravariant tensor on M . Hence we can consider a contraction of (0, 4)-tensor field on M .
Then we have ∑

i,j

εiεj

{
(∇̃3dϕ)(ei, ei, ej , ej)− (∇̃3dϕ)(ei, ej , ei, ej)

}
=
∑
i,j

εiεj (µiijj − µijij) =
∑
i,j

(
µi

i
j
j − µij

ij
)

= C12C34µ− C13C24µ = det

(
C12 C13

C24 C34

)
µ.

In a similar way, we have∑
i,j

εiεj

{
RN
(
(∇̃dϕ)(ei, ei), dϕ(ej)

)
dϕ(ej)−RN

(
(∇̃dϕ)(ei, ej), dϕ(ei)

)
dϕ(ej)

}
= det

(
C12 C13

C24 C34

)
ν.

Therefore the Euler–Lagrange equation (5.2) of the Chern–Federer energy functional can be
expressed as the following equation:

det

(
C12 C13

C24 C34

)
(µ+ ν) = 0.
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In addition, we observe symmetry of the equation (5.7) and the Chern–Federer polynomial
(5.1). Let U be the space of O(p,m − p) × O(q, n − q)-invariant homogeneous polynomials of
degree two on II(Em

p ,En
q ), which is spanned by Q1 and Q2:

U := spanR {Q1,Q2} .

Also we denote by V the space of sections of ϕ−1TN spanned by v1 := C13C24(µ + ν) and
v2 := C12C34(µ+ ν):

V := spanR {v1, v2} .

Then, by the first variational formula of the (αQ1 + βQ2)-energy functional, we have a linear
isomorphism between U and V. From the first variational formula (5.7) of the Chern–Federer
energy functional, we observe the invariance of v2 − v1 under the symmetric group S4 of degree
four acting on V as the permutation of the variables. The symmetric group S4 is generated by
transpositions (1 2), (1 3) and (1 4). Here, we set

σ1 :=

(
1 2 3 4
2 1 3 4

)
, σ2 :=

(
1 2 3 4
3 2 1 4

)
, σ3 :=

(
1 2 3 4
4 2 3 1

)
.

By the symmetry of the third and fourth variables of µ and ν, we have the following relations:

σ1(v1) = v1, σ1(v2) = v2, σ2(v1) = v1, σ2(v2) = v1, σ3(v1) = v2, σ3(v2) = v1.

From these, it can be seen that v1 and v2 are symmetric by the transposition (1 2) = σ1, and
v2 − v1 is antisymmetric by the permutation σ3. There are totally 24 elements in S4, however,
due to the invariance by the permutation σ1 and the symmetry for the third and fourth variables
of µ and ν, the action of S4 on V is reduced to the following six permutations:

σ1, σ2, σ3, σ4 :=

(
1 2 3 4
3 4 1 2

)
, σ5 :=

(
1 2 3 4
1 4 3 2

)
, σ6 :=

(
1 2 3 4
1 3 2 4

)
.

Then we can verify that v2 − v1 is antisymmetric by the permutations σ3 and σ6. Furthermore,
an element of V is antisymmetric by σ3 and σ6 if and only if it is a scalar multiple of v2 − v1.

In a similar way, we observe the invariance of the Chern–Federer polynomial under the
symmetric group S4. First, we rewrite the Chern–Federer polynomial as follows. For H =
(hαij) ∈ II(Em

p ,En
q ), we define ρ ∈ ⊗4(Em

p )∗ as follows

ρ :=
∑
i,j,k,l

ρijkl e
i ⊗ ej ⊗ ek ⊗ el,

where ρijkl is defined by

ρijkl :=
∑
α

ε′αh
α
ijh

α
kl

and {ei}mi=1 is the dual basis of the standard basis of Em
p . Then we have

Q1(H) =
∑
α

ε′α
∑
i,j

εiεjh
α
ijh

α
ij =

∑
i,,j

εiεjρijij =
∑
i,j

ρij
ij = C13C24ρ

and

Q2(H) =
∑
α

ε′α
∑
i,j

εiεjh
α
iih

α
jj =

∑
i,j

εiεjρiijj = C12C34ρ.
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Therefore we can rewrite the Chern–Federer polynomial CF(H) as follows:

CF(H) = Q2(H)−Q1(H) = det

(
C12 C13

C24 C34

)
ρ.

As in the case of V, the action of S4 on U is reduced to six elements σi (i = 1, 2, · · · , 6). Then we
can verify that an element of U is antisymmetric by σ3 and σ6 if and only if it is a scalar multiple
of the Chern–Federer polynomial CF(H). Consequently, we find that CF(H) and v2 − v1 have
the same symmetry via the first variational formula and the actions of S4 on U and V.

6 Chern–Federer submanifolds in Riemannian space forms

Let (Mm, gM ), (Nn, gN ) be two Riemannian manifolds. From now on, we deal with isometric
immersions ϕ : (Mm, gM ) → (Nn, gN ). In this section, we firstly derive the Euler–Lagrange
equation for an isometric immersion from a Riemannian manifold into a Riemannian space
form. Secondly, we construct examples in the case of curves or surfaces. Finally, we consider
Chern–Federer isoparametric hypersurfaces in Riemannian space forms.

6.1 Euler–Lagrange equations for isometric immersions

For an isometric immersion ϕ : (Mm, gM ) → (Nn, gN ), we denote the shape operator and the
mean curvature vector field by A and H, respectively. Namely, they are defined by

〈Aξ(X), Y 〉 = 〈(∇̃dϕ)(X,Y ), ξ〉, H =
1

m
trgM (∇̃dϕ) = 1

m
τ(ϕ)

for any X,Y ∈ Γ(TM), ξ ∈ Γ(T⊥M), where T⊥M is the normal bundle over M of ϕ. In
addition, we simply denote by h the second fundamental form ∇̃dϕ in this section.

We denote a Riemannian space form of constant curvature c ∈ R by Nn(c). Namely, it is
locally isometric to one of a Euclidean space (c = 0), a round sphere (c > 0) and a hyperbolic
space (c < 0).

When we denote the Ricci operator of (Mm, gM ) by Q, we obtain the Euler–Lagrange equa-
tion for an isometric immersion into a Riemannian space form.

Theorem 6.1. Let ϕ : (Mm, gM ) → Nn(c) be an isometric immersion. Then ϕ is a Chern–
Federer map if and only if it satisfies that

CF(ϕ) = −dϕ(trgM (∇Q)) + 2cm(m− 1)H− trgMh(Q(·), ·) = 0, (6.1)

equivalently,

(>) : trgM (∇Q) = 0, (⊥) : 2cm(m− 1)H− trgMh(Q(·), ·) = 0, (6.2)

where (>) and (⊥) denote the tangent component and the normal component of (6.1), respec-
tively.

Remark 6.2. We define two (1, 1)-type tensor fields AC and Ξ on Mm as

AC(X) :=

k∑
α=1

A2
ξα(X), Ξ(X) := Aτ(φ)(X)−AC(X) = mAH(X)−AC(X),

where k = n−m and {ξα}kα=1 is a local orthonormal frame of T⊥M . The operator AC is called
the Casorati operator (cf. [8, 9]). Then, from the Gauss equation, we have

Q(X) = c(m− 1)X + Ξ(X).

From this, we can also describe the formula (6.2) as

(>) : trgM (∇Ξ) = 0, (⊥) : cm(m− 1)H− trgMh(Ξ(·), ·) = 0. (6.3)
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Proof of Theorem 6.1

Since the target space Nn(c) is of constant curvature c and ϕ∗gN = gM , by using Proposition 5.4,
we compute

m∑
i,j=1

{(
∇RN

)
(dϕ(ei), dϕ(ei), dϕ(ej), dϕ(ej))− dϕ((∇RM )(ei, ei, ej , ej))

−h(ei, RM (ei, ej)ej) + 2RN (h(ei, ei), dϕ(ej))dϕ(ej) + 2RN (dϕ(ei), h(ei, ej))dϕ(ej)
}

= −dϕ(trgM (∇Q))− trgMh(Q(·, ·) + 2c(m− 1)τ(ϕ).

Therefore, the proof is completed since τ(ϕ) = mH.

6.2 Examples of Chern–Federer submanifolds

Here, we construct some examples of Chern–Federer maps in the case of isometric immersions.
When an isometric immersion ϕ : (Mm, gM ) → (Nn, gN ) is a Chern–Federer map, we call the
image a Chern–Federer submanifold in (Nn, gN ).

Let I ⊂ R be an open interval. Then an arbitrary curve γ : I → (Nn, gN ) is a Chern–Federer
map. Actually, we have W1(γ) =W2(γ) from Theorems 4.2 and 4.5. Therefore, it is trivial that

CF(γ) =W2(γ)−W1(γ) = 0.

There are other obvious examples in the following way. We consider a Euclidean n-space En

as a target space (Nn, gM ), which is a flat Riemannian space form. If (Mm, gM ) is a Ricci-flat
Riemannian manifold, then an arbitrary isometric immersion ϕ : (Mm, gM ) → En is Chern–
Federer. For example, Calabi–Yau manifolds, Hyperkähler manifolds and G2-manifolds are
all Ricci-flat. Moreover, for any Riemannian manifold (Mm, gM ), there exists an isometric
immersion into a Euclidean space by Nash’s theorem.

Next, we consider the two-dimensional case (m = 2).

Proposition 6.3. Let ϕ : (M2, gM ) → Nn(c) be an isometric immersion and K the sectional
curvature of (M2, gM ). Then ϕ is Chern–Federer if and only if

(i) K is constant and ϕ is minimal, or

(ii) K = 2c and ϕ is arbitrary, that is, unconditional on ϕ.

Proof. In the two-dimensional case, we have, for any X ∈ Γ(TM),

Q(X) = KX.

Thus, since ϕ is Chern–Federer if and only if

(>) : trgM (∇Q) = gradK = 0,

(⊥) : 4cH−KtrgMh(·, ·) = 2(2c−K)H = 0,

we have the conclusion.

Let M2(K) be a two-dimensional Riemannian space form of constant curvature K. For
minimal isometric immersions ϕ : M2(K) → Nn(c), the research has already completed. In
fact,

• when c = 0, it implies that K = 0 and ϕ is totally geodesic;
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• when c = −1, it implies that K = −1 and ϕ is totally geodesic;

• when c = 1, it implies that K ≥ 0. In addition, if Nn(1) is isometric to a round sphere

Sn(1) := {(x1, · · · , xn+1) ∈ En+1 | x21 + · · ·+ x2n+1 = 1},

then ϕ is locally congruent to generalized Clifford tori, or Bor̊uvka spheres ψk (k ≥ 1).
Here a generalized Clifford torus is a minimal 2-torus in Sn(1) which is an orbit of an
abelian closed Lie subgroup of SO(n+ 1), and a Bor̊uvka sphere is a minimal 2-sphere in
Sn(1) which is an orbit of an irreducible representation of SO(3). See [4, 16] in detail.

At the end of Subsection 6.2, we consider flat tori in the unit 3-sphere S3(1).
Let T 2 be a flat torus, ϕ : T 2 → S3(1) an isometric immersion. Then the flat torus T 2 admits

an asymptotic Chebyshev net (s1, s2), that is, by using the asymptotic Chebyshev net (s1, s2),
we can express

gT = ds21 + 2 cosω ds1ds2 + ds22, hT = 2 sinω ds1ds2,

where ω = ω(s1, s2) is some smooth function, and gT , hT are the induced metric and the second
fundamental form of ϕ, respectively. Moreover, we compute the mean curvature function H of
ϕ from this as

H(s1, s2) = − cot [ω(s1, s2)].

See [17] in more precise details regarding an asymptotic Chebyshev net of a flat torus.

Theorem 6.4. Let T 2 be a flat torus, ϕ : T 2 → S3(1) an isometric immersion with constant
mean curvature H. Then ϕ is an (αQ1 + βQ2)-map if and only if

(i) H = 0 (when α+ β = 0),

(ii) H = 0

(
when α+ β 6= 0,

α

α+ β
≥ 0

)
,

(iii) H = 0, or H2 = − α

2(α+ β)

(
when α+ β 6= 0,

α

α+ β
< 0

)
.

Moreover, in the case of (iii), H2 runs across the whole range of (0,∞).

In [18], Kitagawa showed that any isometric embedding ϕ : T 2 → S3(1) with constant mean
curvature are congruent to Clifford tori. Therefore, we have the following classification theorem.

Corollary 6.5. Let T 2 be a flat torus, ϕ : T 2 → S3(1) an isometric embedding with constant
mean curvature H. Then ϕ is an (αQ1 + βQ2)-map if and only if it is congruent to one of the
following Clifford tori

(i) a minimal Clifford torus defined by

S1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1) (when α+ β = 0),

(ii) a minimal Clifford torus defined by

S1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1)

(
when α+ β 6= 0,

α

α+ β
≥ 0

)
,
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(iii) a minimal Clifford torus defined by

S1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1),

or a non-minimal Clifford torus defined by

S1(r1)× S1(r2) ↪→ S3(1)
(
when α+ β 6= 0,

α

α+ β
< 0

)
,

where r1, r2 are defined by

r1 =
1

2


√√√√1 +

√
2(α+ β)

α+ 2β
−

√√√√1−

√
2(α+ β)

α+ 2β

 ,
r2 =

1

2


√√√√1 +

√
2(α+ β)

α+ 2β
+

√√√√1−

√
2(α+ β)

α+ 2β

 ,
and the mean curvature of the Clifford torus S1(r1)× S1(r2) ↪→ S3(1) satisfies that

H2 = − α

2(α+ β)
.

Proof of Theorem 6.4

Let (s1, s2) be an asymptotic Chebyshev net for T 2. We define a frame field by using this
coordinates

e1 =
∂

∂s1
, e2 = H ∂

∂s1
+
√
1 +H2

∂

∂s2
.

Then {e1, e2} defines a geodesic frame. By using this, we compute

W1(ϕ) = −4H(1 + 2H2)ξ, W2(ϕ) = −8H3ξ,

where ξ is a unit normal vector along ϕ. Namely, we have

αW1(ϕ) + βW2(ϕ) = −4H{α+ 2(α+ β)H2}ξ.

This completes the proof.

Remark 6.6. Regarding the following hypersurfaces in unit spheres

• Sm
(

1√
2

)
⊂ Sm+1(1) (a totally umbilical small sphere),

• Sm
(

1√
2

)
× Sm

(
1√
2

)
⊂ S2m+1(1) (a minimal generalized Clifford torus),

these inclusion maps are both (αQ1 + βQ2)-maps for any α, β ∈ R such that α2 + β2 6= 0.
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6.3 Chern–Federer isoparametric hypersurfaces in space forms

We remark that for a hypersurface Mm ⊂ Nm+1 with a unit normal vector field ξ, it holds that

h(X,Y ) = 〈Aξ(X), Y 〉ξ (6.4)

for any X,Y ∈ Γ(TM), and we may denote the shape operator Aξ by A for simplicity.
Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface, that is, a hypersurface with constant

principal curvatures. Then the inclusion map ι :Mm ↪→ Nm+1(c) gives an isometric immersion
by considering the induced metric gM by ι, and we have an orthogonal direct sum decomposition
as vector bundles

TM =

g⊕
α=1

Eα,

where g denotes the number of distinct principal curvatures and Eα are the principal (curvature)
distributions. We remark that each Eα is auto-parallel, that is, the following holds

∇XY ∈ Γ(Eα) (X,Y ∈ Γ(Eα)),

where ∇ denotes the Levi–Civita connection of (Mm, gM ). In particular, each Eα is integrable.
More precisely, see [5, Lemma 3.9] in detail.

Theorem 6.7. Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface in a Riemannian space
form. Then Mm is Chern–Federer if and only if it satisfies that

c(m− 1)(trA)− (trA)(trA2) + (trA3) = 0.

We give a proof of Theorem 6.7 after Lemmas 6.9 and 6.10 stated below.

Remark 6.8. Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface. Then the inclusion map ι
is a Q1-map if and only if

W1(ι) = c(trA)− (trA3) = 0,

the inclusion map is a Q2-map (that is, a biharmonic map) if and only if

W2(ι) =
(
mc− (trA2)

)
(trA) = 0,

and the inclusion map is a Willmore–Chen map if and only if

WC(ι) = mW1(ι)−W2(ι) = (trA)(trA2)−m(trA3) = 0.

Lemma 6.9. Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface, ι : Mm ↪→ Nm+1(c) the
inclusion map and gM the induced metric of Mm by ι. Then it holds that

trgM (∇Ξ) = 0.

Proof. Let {ei}mi=1 be an orthonormal frame of Mm such that

A(ei) = λiei,

where λi’s are principal curvatures, which are constant. Then we have by using (6.4)

trgM (∇Ξ) =
m∑
k=1

〈trgM (∇Ξ), ek〉ek

=
m∑

i,j,k=1

[〈
∇ei(Ah(ej ,ej)ei)− (Ah(ej ,ej)∇eiei), ek

〉
−
〈
∇ei(Ah(ei,ej)ej)− (Ah(∇eiei,ej)

ej), ek

〉]
ek
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=
m∑

i,j,k=1

[−λiλjδij〈∇eiej , ek〉+ λiλjδjk〈∇eiei, ej〉] ek

=

m∑
i,j=1

(λiλj − λ2i )〈∇eiei, ej〉ej .

From the last formula, we can claim the following statements for ei ∈ Γ(Eα), ej ∈ Γ(Eβ): When
α = β, we have

λiλj − λ2i = 0

since λi = λj . When α 6= β, we have

〈∇eiei, ej〉 = 0

since ∇eiei ∈ Γ(Eα) and Eα is orthogonal to Eβ . Therefore, we complete the proof.

Lemma 6.10. Under the assumption of Lemma 6.9, it holds that

trgMh(Ξ(·), ·) = [(trA)(trA2)− (trA3)]ξ,

where ξ is a unit normal vector field of Mm.

Proof. Taking an orthonormal frame {ei}mi=1 of Mm such that A(ei) = λiei, we compute by
using (6.4) that

trgMh(Ξ(·), ·) =
m∑

i,j=1

h(Ah(ej ,ej)ei −Ah(ei,ej)ej , ei)

=

m∑
i,j=1

h(ei, 〈A(ej), ej〉A(ei)− 〈A(ei), ej〉A(ej))

=
m∑

i,j=1

[
λ2iλj − λ2iλjδ

2
ij

]
ξ = [(trA)(trA2)− (trA3)]ξ.

Thus, the proof is completed.

Proof of Theorem 6.7

From Lemma 6.9 and Lemma 6.10, we can see that an isoparametric hypersurface Mm ⊂
Nm+1(c) is Chern–Federer if and only if it holds that

(>) : trgM (∇Ξ) = 0 (trivially holds),

(⊥) : cm(m− 1)H− trgMh(Ξ(·), ·) =
[
c(m− 1)(trA)− (trA)(trA2) + (trA3)

]
ξ = 0.

Thus, we obtain the conclusion.
Let Ln be a Minkowski n-space. By using the classification [5, Theorem 3.12, Theorem 3.14]

of isoparametric hypersurfaces in a Euclidean space Em+1 and a hyperbolic space

Hm+1(−1) := {(x1, · · · , xm+2) ∈ Lm+2 | −x21 + x22 + · · ·+ x2m+2 = −1, x1 > 0},

we have the following results:

Theorem 6.11. LetMm ⊂ Em+1 be an isoparametric hypersurface. ThenMm is Chern–Federer
if and only if it is congruent to an open portion of one of the following hypersurfaces
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[g = 1] Em ⊂ Em+1 (a totally geodesic hyperplane ),

[g = 2] S1(r)× Em−1 ⊂ Em+1 (a generalized right circular cylinder ).

Theorem 6.12. Let Mm ⊂ Hm+1(−1) be an isoparametric hypersurface. Then Mm is Chern–
Federer if and only if it is totally geodesic.

In the case of a unit sphere Sm+1(1), there exist fruitfully Chern–Federer isoparametric hy-
persurfaces which is not minimal. This is a different situation from that of biharmonic isopara-
metric hypersurfaces in a unit sphere. See [13] on the classification of biharmonic isoparametric
hypersurfaces. In this thesis, we do not classify Chern–Federer isoparametric hypersurfaces
in Sm+1(1). However, we show some examples of Chern–Federer homogeneous hypersurfaces,
which are also isoparametric. Since all of their proofs are done by direct calculations by using
Theorem 6.7, detailed calculations are omitted. We again remark that g denotes the number of
distinct principal curvatures of isoparametric hypersurfaces.

• [g = 1]

The classification is the following totally umbilical hypersurfaces

Sm(r) =
{
(x,
√
1− r2) ∈ Em+2 | ||x||2 = r2

}
⊂ Sm+1(1) (0 < r ≤ 1), (6.5)

where || · || denotes the canonical Euclidean norm of Em+1. From this, we obtain:

Proposition 6.13. The isoparametric hypersurface (6.5) is Chern–Federer if and only if r = 1
(totally geodesic one), or r = 1/

√
2 (proper biharmonic one).

• [g = 2]

The classification is the following Clifford hypersurfaces

Sp(r1)× Sm−p(r2) ⊂ Sm+1(1) (r21 + r22 = 1). (6.6)

We denote the distinct principal curvatures of (6.6) by λ1, λ2. Then by setting

λ := λ1 = cot t
(
0 < t <

π

2

)
,

we have

λ2 = cot
(
t+

π

2

)
= − 1

cot t
= − 1

λ
.

From this, we obtain:

Proposition 6.14. The isoparametric hypersurface (6.6) is Chern–Federer if and only if λ
satisfies that

p(p− 1)λ6 − p(2m− p− 1)λ4 + (m− p)(m+ p− 1)λ2 − (m− p)(m− p− 1) = 0.

• [g = 3]

The classification is the following four Cartan hypersurfaces

M3 = SO(3)/Z2 × Z2 → S4(1), (6.7)

M6 = SU(3)/T 2 → S7(1), (6.8)

M12 = Sp(3)/Sp(1)3 → S13(1), (6.9)

M24 = F4/Spin(8) → S25(1). (6.10)
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We denote the distinct principal curvatures of (6.7–6.10) by λ1, λ2, λ3. Then by setting

λ := λ1 = cot t
(
0 < t <

π

3

)
,

we have

λ2 =
λ−

√
3√

3λ+ 1
, λ3 = − λ+

√
3√

3λ− 1
.

From this, we obtain:

Proposition 6.15. The isoparametric hypersurfaces (6.7), (6.9) or (6.10) are Chern–Federer
if and only if λ =

√
3 (the only minimal one).

The isoparametric hypersurface (6.8) is Chern–Federer if and only if λ satisfies that

(λ2 − 3)(3λ3 − 3λ2 − 9λ+ 1)(3λ3 + 3λ2 − 9λ− 1) = 0.

Namely, there are non-minimal ones in the case.

• [g = 4]

In this case, we deal with homogeneous hypersurfaces. Non-homogeneous isoparametric ones are
called to be of OT–FKM type. The classification of homogeneous hypersurfaces is the following
ones

M8 = SO(5)/T 2 → S9(1), (6.11)

M18 = U(5)/SU(2)× SU(2)× U(1) → S19(1), (6.12)

M30 = U(1) · Spin(10)/S1 · Spin(6) → S31(1), (6.13)

M4m−2 = S(U(2)× U(m))/S(U(1)× U(1)× U(m− 2)) → S4m−1(1) (m ≥ 2), (6.14)

M2m−2 = SO(2)× SO(m)/Z2 × SO(m− 2) → S2m−1(1) (m ≥ 3), (6.15)

M8m−2 = Sp(2)× Sp(m)/Sp(1)× Sp(1)× Sp(m− 2) → S8m−1(1) (m ≥ 2). (6.16)

We denote the distinct principal curvatures of (6.11–6.16) by λ1, λ2, λ3, λ4. Then by setting

λ := λ1 = cot t
(
0 < t <

π

4

)
,

we have

λ2 =
λ− 1

λ+ 1
, λ3 = − 1

λ
, λ4 = −λ+ 1

λ− 1
.

From this, we obtain:

Proposition 6.16. The isoparametric hypersurface (6.11) is Chern–Federer if and only if λ =
1 +

√
2 (the only minimal one).

The isoparametric hypersurface (6.12) is Chern–Federer if and only if λ satisfies that

3λ12 − 40λ10 + 223λ8 − 692λ6 + 223λ4 − 40λ2 + 3 = 0,

which is not minimal.
The isoparametric hypersurface (6.13) is Chern–Federer if and only if λ satisfies that

12λ12 − 111λ10 + 488λ8 − 1098λ6 + 488λ4 − 111λ2 + 12 = 0,

which is not minimal.
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The isoparametric hypersurface (6.14) is Chern–Federer if and only if λ satisfies that

λ12 − 4(2m− 1)λ10 + (72m−85)λ8 − 32(4m2 − 10m+ 7)λ6

+ (72m− 85)λ4 − 4(2m− 1)λ2 + 1 = 0.

The isoparametric hypersurface (6.15) is Chern–Federer if and only if λ satisfies that

(2m− 3)λ8 − 4(5m− 9)λ6 + 2(16m2 − 62m+ 63)λ4 − 4(5m− 9)λ2 + 2m− 3 = 0.

The isoparametric hypersurface (6.16) is Chern–Federer if and only if λ satisfies that

3λ12 − 16mλ10 + (136m−117)λ8 − 4(64m2 − 116m+ 63)λ6

+ (136m− 117)λ4 − 16mλ2 + 3 = 0.

• [g = 6]

The classification is the following two homogeneous hypersurfaces

M6 = SO(4)/Z2 × Z2 → S7(1), (6.17)

M12 = G2/T
2 → S13(1). (6.18)

We denote the distinct principal curvatures of (6.17), (6.18) by λ1, λ2, λ3, λ4, λ5, λ6. Then by
setting

λ := λ1 = cot t
(
0 < t <

π

6

)
,

we have

λ2 =

√
3λ− 1

λ+
√
3
, λ3 =

λ−
√
3√

3λ+ 1
, λ4 = − 1

λ
, λ5 = − λ+

√
3√

3λ− 1
, λ6 = −

√
3λ+ 1

λ−
√
3
.

From this, we obtain:

Proposition 6.17. The isoparametric hypersurfaces (6.17) or (6.18) are Chern–Federer if and
only if λ = 2 +

√
3 (the only minimal one).

From the configuration of the examples of the Chern–Federer map so far, we obtained the
examples of the star parts in Figure 3.

Figure 3: Correlation diagram of maps
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