Validation for performing 11C-methionine and 18F-FDG-PET studies on the same day
要旨

PETイメージングにおける腫瘍分野では、FDGがゴールドスタンダードとして用いられるが、脳腫瘍等では生理的集積が高い課題を生じるため、脳腫瘍では、アミノ酸をモニタリングするMETが研究利用される。異なる特性を診断する同日PETイメージングに関しては、同じコンディションで検査が可能であるが、FDGに干渉するMETが定量性および描出能へ影響を与える可能性がある。本研究においてFDGに干渉するMETをPositron cross-talk（PCT）と定義した。今まで、同日PETイメージングが行われた報告は幾つか存在するが、PCTの影響については明らかにされていない。

従って本研究の目的は、PCTの影響を明らかにし、METおよびFDGを用いた同日PETイメージングのための基盤を構築する事とした。

本研究におけるPCTの検証は、腫瘍より集積の高い肝臓に着目する事で、肝臓で診断に支障がない場合、同日PETイメージングは可能であるという仮説を立てた。また、PET診断は、定量評価法と視覚評価法に大別されるため、2つの診断法に基づきPCTの影響を検証した。

PET診断で使用される定量指標は、一般的に体重で標準化されたSUVbwであるが、体格に依存し誤差を生じる問題があるため、初めに、PET診断で使用される定量指標であるSUVbwと除脂肪体重によって標準化を行うSUVlbmにおける定量精度を健常者の各臓器および腫瘍において検証した。その後、ファントム評価および臨床評価において、定量評価法および視覚評価法に基づきPCTの影響を検証した。

臨床評価は、頭頸部がん患者を対象とし、20分の注射間隔によってG1(n=15, 30-49分)、G2(n=16, 50-69分)、G3(n=17, 70-89分)、G4(n=14, 90分以上)の4つの群(G)
に分類し、MET 投与から FDG 投与までの注射間隔と PCT の関連性を検証した。

SUV の精度において、各臓器における SUVlbm は、SUVbw と比較して体格による誤差を軽減した。また、臨床例における検証においても SUVlbm の決定係数は、0.93 となり SUVbw の決定係数 0.89 と比較して相関が優れて事が示され、定量性の向上に貢献する指標である事が示された。PCT の影響に関しては、肝臓の PCT は、G1、G2、G3 と G4 で、0.433 ± 0.151、0.264 ± 0.075、0.135 ± 0.043 と 0.137 ± 0.047 であった（ANOVA P < 0.001）。その後の多重比較によって、G3 と G4 の間に有意差は検出されなかった (Tukey P = 0.99)。従って、注射間隔を 90 分以上とした場合、定量評価法および視覚評価法ともに PCT の影響なく同日 PET イメージングが可能である事が示された。視覚評価法では、さらに検査スループットの向上が見込める事も示唆された。本研究の結果から、定量性および描出能を担保しつつ、FDG と MET を用いた同日 PET イメージングは可能である事が示された。また、患者の負担軽減に貢献し、且つ複数の薬剤を用いた PET イメージングの可能性を本研究は示した。
目次

序..1

第 1 章 序論

1.1 研究背景..2
1.2 研究目的..2
1.3 PET とは..2
 1.3.1 はじめに...2
 1.3.2 PET の原理..2
 1.3.3 同時計測法の利点...7
 1.3.4 同時計数の種類...8
1.4 PET/CT とは...9
1.5 PET/CT イメージング..11
 1.5.1 PET のデータ収集...11
 1.5.2 CT 減弱補正...13
 1.5.3 μMAP 算出法..13
 1.5.4 画像再構成..16
 1.5.4 画質評価...19

第 2 章 PET/CT 臨床

2.1 PET 製剤..20
2.2 FDG-PET..22
 2.2.1 2-[18F] fluoro-2-deoxy-D-glucose (FDG)..22
2.2.2 臨床的意義..24

2.3 MET-PET..25
 2.3.1 L-[methyl-11C] methionine (MET) ..25
 2.3.2 臨床的意義..26

2.4 定量評価..28
 2.4.1 SUV とは...28
 2.4.2 PET イメージングにおける定量性に関して..29
 2.4.3 Uptake Time..30
 2.4.4 体格差...31
 2.4.5 生理的要因..33

2.5 PET/CT 撮像プロトコル...34
 2.5.1 前処置...34
 2.5.2 ポジショニング...34
 2.5.3 撮像の流れ..35

第 3 章 PET/CT イメージングにおける SUV に関する研究

3.1 研究目的..37

3.2 方法..38
 3.2.1 装置の性能..38
 3.2.2 対象...38
 3.2.3 FDG-PET プロトコル...38
 3.2.4 SUV の算出..39
 3.2.5 SUV\textsubscript{lbm} の体格補正に関する検証...39
 3.2.6 SUV\textsubscript{lbm} の臨床的有用性に関する検証...40
第 4 章 11C-Methionine および 18F-FDG を用いた同日 PET イメージングに関する研究

4.1 研究目的...52

4.2 方法...54

4.2.1 本研究の仮説..54

4.2.2 装置の性能..54

4.2.3 ファントム評価..56

4.2.4 対象..58

4.2.5 臨床評価..59

4.2.6 統計解析..61

4.3 結果...63

4.3.1 ボランティアによる動態解析...............................63

4.3.2 ファントム評価..65

4.3.3 臨床評価..69

4.4 考察...74

4.5 結論...78
序

本研究は、18F-FDG (FDG) と 11C-methionine (MET)を用いた同日 PET イメージングの基盤を構築する事を目的とした。本論文の構成は、5章から成り立つ。

第1章は序論で、FDG と MET を用いた研究背景と研究目的について述べた。研究の遂行にあたり、PET/CT の原理および特性を理解することは重要であるため、本章では、PET の概要に関して述べた。

第2章では、PET/CT 臨床を述べた。研究の遂行にあたり、PET 薬剤の特徴や PET 診断法に関する理解は重要である。PET 製剤全般に関する特徴を述べるとともに、特に FDG および MET に着目し、その臨床的有用性を述べた。また、PET イメージングの画質に与える因子と定量評価法に関して述べた。

第3章では、PET イメージングにおける SUV の精度について述べた。PET 診断では、一般的に体重で標準化した SUV が定量指標として用いられるが、体格の影響により、数値は変動し定量性に誤差を生じ、診断上問題となる。欧米では、近年、除脂肪体重を用いた補正法が治療効果判定に利用され報告はされているが、本邦での臨床的有用性に関しては少数であり、体格補正の効果に関する報告も不十分である。従って、体重で標準化した SUVbw と除脂肪体重で標準化を行った SUVlbm を健常者の臓器および臨床例で比較し、定量精度を検証した。

第4章では、ファントム評価および臨床評価によって、定量評価法および視覚評価法の2つの診断法に基づき MET が FDG に干渉する Positoron cross-talk (PCT)の影響を検証し、FDG と MET を用いた同日 PET イメージングを確立した。

第5章は、第2章から第4章までの結果を総括し、同日 PET イメージングの可能性について述べた。
第1章 序論

1.1 研究背景

病変の悪性度評価は、従来よりcomputed tomography (CT)やmagnetic resonance imaging (MRI)などの形態画像によって行われてきたが、形態による評価のみでは限界がある。現在は、「分子イメージング」による腫瘍個々の分子生物学的な情報を得ることが可能となり、米国では国家プロジェクトとして「分子イメージング」の研究を推進している。「分子イメージング」の中核であるpositron emission tomography (PET)は、個々の症例、病変に対して、非侵襲的に治療方針に還元しうる分子生物学的情報を提供可能なことから、PETの応用は“がんの個別化医療”を具現化する。

現在PET検査には、ブドウ糖代謝を反映する2-[18F] fluoro-2-deoxy-D-glucose (FDG)が主に用いられている。FDGの集積度は腫瘍の悪性度を比較的良く反映し、治療前診断、治療後評価などに関して臨床的に有用性が認められたことから、本邦では2002年に保険承認され、グルコース代謝を指標とする機能画像診断が実用化した。

FDGは様々な腫瘍に用いられ腫瘍診断に必須の薬剤であるが、FDG-PET検査の普及、成熟とともに、FDG集積のみでは炎症と腫瘍の区別が困難であることや、腫瘍増殖と関係のない糖代謝の亢進があるなど、大きな難題と限界を併せ持つこともあり、FDG診断のみでは限界があることが明らかになった。

その経緯から、アミノ酸代謝を指標とするL-[methyl-11C] methionine (MET)が研究等で使用されている。アミノ酸代謝は細胞の増殖や機能発現などの分子機構と密接にかかわっており、METによりタンパク合成やメチル基転移反応を反映した画像が得られる。METは、FDGで生理的集積の高い脳組織と炎症への取り込みが低い事から、特に脳腫瘍において、臨床的有用性が報告されている。
また、近年、日本核医学会では、PET 検査の質の向上を図るために PET 撮像施設認証が実施されており、臨床的エビデンスの豊富な「¹¹C-メチオニンを用いた脳腫瘍 PET 撮像」が設定されているのが現状である。

1.2 本研究の目的

現在、FDG と MET を使用する事で、2 つの異なる特性を評価する臨床的有用性は受け入れられた様々な報告がされている。また同日に 2 核種を用いた場合は、同じコンディションで臨床評価を得られる利点を有する。

PET で使用されるポジトロン核種の消滅γ線が 511 keV であるため Single photon Emission Computed Tomography (SPECT) の様に、Energy Window (EW) を設定しての判別は不可能である。しかし、ポジトロン核種の利点は短半減期核種であるため、投与時間を考慮することで複数のトレーサーを使用する可能性が考えられる。また、今までの臨床報告において FDG に干渉する MET が定量性および描出能へ与える影響については明らかにされていない。本研究において、FDG に干渉する MET を Positoron cross-talk (PCT) と定義した。

本研究の目的は、PCT の影響を明らかにし、MET および FDG を用いた同日 PET イメージングのための基盤を構築する事である。
1.3 PET とは

1.3.1 はじめに

PET (Positron Emission Tomography: 陽電子放出断層撮影装置) とは核医学診断法のひとつで、ポジトロン放出核種で標識した放射性薬剤を被検者に投与し、体内から放出される消滅放射線を体外計測して、薬剤の濃度分布を断層像として得るものである。生体内における放射性薬剤の分布およびその時間的変化から、臓器組織の局所的な機能情報が定量的に得られる。

1.3.2 PET の原理

ポジトロン核種は陽電子を放出し体内の陰電子と結合し、2 本の消滅放射線を 180 度方向に放出する。PET では消滅放射線を同時計数回路で計測し対向する 2 つの γ 線検出器によりこの一対の消滅放射線を同時に計数する(Fig 1.1)。同時計数回路のタイムウインドウ幅 (Coincidence Time Window) 以内の事であり、通常は 4.5～20 ns 程度である。投影データから断層面内の陽電子放出核種の分布像を構築し画像化する。しかし、実際には同時計数線、すなわち同時計数した検出器を結ぶ線上 (line of response: LOR) に陽電子放射性同位元素があるわけではない。陽電子飛程 (ポジトロンレンジ) および角度揺動が原因である。ポジトロンレンジとは陽電子が放射性同位元素から放出して、止まるまでの距離をいう。また、陽電子が静止した場で原子の軌道電子と結合し生み出される一対の消滅放射線は、軌道電子が持っていた運動エネルギーのために完全な対向方向とはならず 180 度よりずれを生じる。これを対消滅放射線の角度揺動という。PET 画像の解像度はこの陽電子の飛程と対消滅放射線の角度揺動のために 1 mm より小さくすることが難しく、特に検出器間距離の大きい角度揺動の影響はその距離に比例して大きくなる。
・ポジトロンレンジ

陽電子の最大エネルギー \(E_{\text{max}} \) は、\(\beta^+ \) 壊変前後における中性原子のエネルギーの差から 1.022 MeV だけ差し引いた分となる。陽電子の放出エネルギー分布は 0 より \(E_{\text{max}} \) まで連続に分布するが約 \(E_{\text{max}}/3 \) で最大頻度をもつ。物質中で陽電子は電離・励起によりエネルギーを失うとともに散乱され、ついには静止する。その飛程の分布は放出点を中心に鋭いピークを形成する。水中における飛程分布の半値幅は \(^{18}\text{F}: E_{\text{max}}=0.634 \text{ MeV} \) で 0.1 mm、\(^{15}\text{O}: E_{\text{max}}=1.73 \text{ MeV} \) で 0.5 mm。

・角度揺動

エネルギー保存則と運動量保存則により、1 対の消滅放射線はともに 0.511 MeV の光子であり、互いに反対方向へ飛び去る。ただし、実際には陽電子と衝突する電子が運動量をもっているため 2 光子の放出角度相関は 180 度よりわずかにずれる。この現象を角度揺動という。外殻電子と消滅した場合は数ミリラジアン (mrad)、内殻電子と消滅した場合は 15 mrad 程度までずれる。この角度相関を測定すれば物性情報が得られるという意味で利用価値が高いが、PET においては画像の解像度を劣化原因となる。対消滅放射線の同時計数を行う検出器間隔に比例して解像度が劣化する。水中では、ほぼ 5 mrad (0.3 度)の角度揺動があり、検出器間隔が 50 cm の場合で 1.5 mm、100 cm で 3 mm という解像度限界がある。
Fig 1.1 Detection of the annihilation radiation: (*) Positron range and (**) annihilation photon non-collinearity.
1.3.3 同時計測法の利点

被検体の深さ \(d \) にある線源から放出された \(\gamma \) 線は、その一部が生体内で（光電効果あるいはコンプトン散乱）され、残りが検出器に到達する。SPECT 装置で検出される \(\gamma \) 線の計数は \(\gamma \) 線が放出された生体内の深さ \(d \) に依存して吸収の影響を受けるため正確な補正は困難となる。一方で PET では消滅放射線が同時計測される確率は各々の \(\gamma \) 線が被検体を通過する確率の積となる。この確率は二つの消滅 \(\gamma \) 線が被写体を横切る全距離 \(L \) と線減弱係数 \(\mu \) のみで決定され \(\gamma \) 線の位置に依存しない。同様の関係式は線減弱係数が一様でない場合や線源が被検体の外部に有る場合にも適応される（Fig. 1.2）したがって PET で得られるデータは SPECT に比較して高い定量性を得られる。

Fig 1.2 Attenuation of the gamma rays: comparison between SPECT and PET.
1.3.4 同時計数の種類

同時計測によって得られた PET の投影データには実際の画像に寄与する真の同時計数に加えて、散乱同時計数、偶発同時計数が含まれる。また同時計測として取り扱われないがシングルスも含まれる。シングルスはデッドタイム補正に使用される。散乱同時計数とは被検体内で散乱し実際は違ったライン上で同時計測される計数であり、偶発同時計数とは被検体の別の部位から放射された二つの消滅 γ 線の片方が偶発的同時に一つの検出器で検出される計数である（Fig 1.3）。

散乱同時計数、偶発同時計数は実測された全同時計数（プロンプト）に含まれ定量性を悪化させる原因となるため定量評価の際には補正が必須となる。補正に関して、散乱同時計数補正はモンテカルロシュミレーション法、一回散乱を推定する Single Scatter Simulation (SSS) 法 が用いられる。偶発同時計数補正は遅延同時計数法 (delayed coincidence) と即発同時計数（prompt coincidence）法が用いられる。本研究で用いられた手法は SSS 法および遅延同時計数法である。

Fig 1.3 Coincidence types. a: True, b: scatter and c: random.
1.4 PET/CT とは

PET/CT とは PET 画像に加え、解剖学的位置情報に優れる CT (Computed Tomography) 画像を同一寝台上で同時に得る事が可能な装置 3)である。同一ベッド上で両方の検査が1回で行われる(Fig 1.4)。PET/CT による腫瘍診断の主な利点は異常集積と正常集積が区別しやすい、正確な部位診断によって臨床病期診断がより正確になる、X 線 CT を利用した高い S/N の減弱補正画像によって PET 画像の高画質化や検査時間の短縮が可能である。PET 画像に CT 画像を融合 (Fusion) することで、薬剤の集積や場所がより分かり易くなり診断精度が向上する。PET 画像の弱点である低分解能を補える利点等があり、現在では PET 装置から PET/CT 装置へシフトされ全国的に普及している。

PET の検出器では消失放射線である 0.511 MeV の γ 線を検出するために高い検出効率と同時計数に必要な高い時間分解能が要求される。PET で用いられている主要なシンチレータを Table 1.1 に示す。0.511 MeV の γ 線とシンチレータの相互作用は光電効果もしくはコンプトン散乱である。エネルギー弁別や分解能の点では γ 線が全エネルギーを失って吸収される光電効果が望ましいためできる限り実効原子番号が大きいシンチレータが求められる。また発光量が多いほどエネルギー分解能が高くなり発光減衰時間が短いほど時間分解能が良くなるため、これらの要素も重要になる。
BGO 検出器が主流であったが、BGO と同程度の実効原子番号、発光量が多く
発光減衰時間も短い LSO, GSO シンチレータが近年の主流となりつつある。LSO,
GSO を用いた装置では発光量の増加によってエネルギー分解能が改善され散乱同
時計数を減少させる事が可能である。また時間分解能が向上する事によって同時計
数のタイムウインドウ幅を短くする事が可能となり偶発同時計数が抑えられる。シ
ンチレータで生じた発光は受光素子で電気信号に変換される。

シンチレータの発光量は微弱であるため増幅作用の大きい光電子増倍管
(Photon Multiplier Tube: PMT)が一般的に使用される。

Table 1.1 Characteristics of the scintillators

<table>
<thead>
<tr>
<th></th>
<th>NaI (Tl)</th>
<th>BGO</th>
<th>LSO</th>
<th>GSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>密度 (g/cm³)</td>
<td>3.67</td>
<td>7.13</td>
<td>7.4</td>
<td>6.71</td>
</tr>
<tr>
<td>実効原子番号</td>
<td>51</td>
<td>75</td>
<td>65</td>
<td>59</td>
</tr>
<tr>
<td>線減弱係数 μ (cm⁻¹)</td>
<td>0.034</td>
<td>0.095</td>
<td>0.089</td>
<td>0.067</td>
</tr>
<tr>
<td>相対発光量 (%)</td>
<td>100</td>
<td>15</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>発光減衰時間 (ns)</td>
<td>230</td>
<td>300</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>エネルギー分解能 (%)</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>屈折率 (at λem)</td>
<td>1.85</td>
<td>2.15</td>
<td>1.82</td>
<td>1.85</td>
</tr>
<tr>
<td>潮解性</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
</tbody>
</table>
1.5 PET/CT イメージング

1.5.1 PET のデータ収集

被検体に放射性薬剤を投与し薬剤分布を得るために行うデータ収集をエミッション収集 (Emission scan) といい、減弱補正データを取得するために行うデータ収集をトランスミッション収集 (Transmission scan) という。トランスミッション収集は 68Ge / 68Ga や 137Cs を外部線源に用いた外部線源法と、CT を用いた方法に別けられる。PET のエミッション収集では 2 次元 (2D)収集、3 次元 (3D)収集が可能である(Fig 1.4)。2D 収集は field of view (FOV)内にセプタム（青色【素材：タングステン】）が設置されており体軸方向の限定された検出器間で同時計測を行う。体軸方向に構築されるスライスは、同一リング上の LOR で構築されるスライスと隣り合うリング間の同時計測線から構築されるスライスがあり、前者をダイレクトスライス（赤線）、後者をクロススライス（緑線）と言う。3D 収集ではセプタムは取り除かれより多くの検出器間で同時計測を行う。3D 収集は散乱同時計数が増加する一方、感度が 2D 収集より 3〜7 倍と高く、装置の性能向上に伴い 3D 専用装置が増加した。現在では 3D 収集が主流であり 2D 収集は厳密な定量評価を必要とする脳血流 PET 検査に利用される。
Fig 1.4 The comparison between a: 2D mode and b: 3D mode.
1.5.2 CT 減弱補正

PET/CT での減弱補正には CT 画像を利用して線減弱係数マップ (μマップ) を導出するアルゴリズムが用いられる。外部線源法と比較して短時間で統計ホイズの影響が少ないトランスミッションデータが得られる事から検査時間の短縮を可能とする。反面、CT による被ばく、CT で用いる X 線 (40-70 keV) と PET の消減放射線のエネルギー (511 keV) は異なる課題が生じる。つまりエネルギーが異なる事に関して、X 線エネルギーは高エネルギー消滅γ線に比べ低く、カルシウムのような比較的高い原子番号の物質を含んでいる骨組織では他の組織に比べ光電効果による減弱も多くなる (Fig 1.5)。したがって CT 画像から 511 keV の減弱マップ (μ-MAP) への変換が 6-7) 必要となる。

1.5.3 μ-MAP 算出法

○スケール法
すべてのエネルギーにおいて組織の線減弱係数の比率を一定であると仮定する。μ-MAP は、有効な CT と SPECT, PET エネルギーにおいて、水の μ 値の比率によって CT 画像に乗算することによって変換する 8-9)。

○セグメンテーション法
CT 画像を異なる臓器 (soft (0 ≤ HU < 300), lung (−800 ≤ HU < 0), bone (HU ≥ 300)) に分類しそれぞれに一定のμ値を与え、変換する。

○Bilinear 法
双一次式を用い HU = 0 を境に、その上下の HU に異なる変換式を用いて変換する。
○Hybrid法6)

スケーリング法とセグメンテーション法を併用したアルゴリズムでCT画像をHU=300の閾値で骨組織とその他の組織に区分し、スケーリングファクタを乗じ変換する（Fig 1.6）。以下に公式（1.1）を示す。

\[
\mu_{\text{PET}} = 0.096 \frac{\text{cm}^{-1}}{} \left[1 + \frac{\text{HU}}{1000} \right] \text{for HU < 300}
\]

\[
\mu_{\text{PET}} = 0.081 \frac{\text{cm}^{-1}}{} \left[1 + \frac{\text{HU}}{1000} \right] \text{for HU > 300}
\]

Fig 1.7にそれぞれのμ-MAPを示す。本研究におけるイメージングは、Hybrid法のアルゴリズムが使用された。

Fig 1.5 Mass attenuation coefficient different by energy.
Fig 1.6 Hybrid method6).

Fig 1.7 Illustration of attenuation maps generated using the different energy-mapping techniques: (a) Scaling, (b) Segmentation, (c) Hybrid and (d) Bilinear methods10).
1.5.4 画像再構成

データ収集によって得られた投影データは散乱補正、偶発同時計数補正、減弱補正、減衰補正等が施された後に画像再構成され PET 画像が得られる。また 3D 収集で得られた投影データはデータ量が多いため Fourier-Rebinning (FORE) 法により 2D 投影データに変換する事が多い。現在の装置では性能向上により 3D データで再構成する。画像再構成には、解析的手法であるフィルター逆投影法や統計学的手法である Ordered-subset expectation maximization algorithm (OSEM) 法が用いられる。

○ 解析的手法

・2 次元フーリエ変換法
・フィルター補正逆投影 (Filtered back projection: FBP)
・重畳積分 (Convolution)

○ 統計学的手法（逐次近似再構成法）

・ML-EM (Maximum likelihood – expectation maximization (EM))
・OS-EM (ordered subset - EM) (FORE-OSEM: 2D-OSEM, 3D-OSEM)
・MAP-EM (Maximum a posterior - EM)
・RAMLA (Row-action maximum likelihood algorithm)
・DRAMA (Dynamic RAMLA)
・ML-EM 法

生体中の radioisotope (RI) からの \(\gamma \) 線光子の発生がポアソン分布に従って揺らぐ特徴を用いた再構成法が ML-EM 法である。ML-EM 法は最尤推定(Maximum Likelihood)の解を求める代表的な手法である。検出確率 \((C_{ij})\)を画素 \(j\) が投影 \(i\) に寄与する確率とし、かつ順投影および逆投影について下記に定義した場合

・順投影 (FP)：ある画素 \(j\) の画素値 \(\lambda_j\) と、その画素 \(j\) が目的の投影 \(i\) に寄与する確率の積の総和であり以下の式 (1.2)で示される。

\[
FP_j = \sum_j C_{ij} \lambda_j
\]

(1.2)

・逆投影 (BP)：投影 \(i\) の計数値 \(y_i\) と、目的の画素 \(j\) が投影 \(i\)に関わっている確率の積の総和であり以下の式 (1.3)で示される。

\[
BP_j = \sum_j C_{ij} y_i
\]

(1.3)

MLEM の一般式は以下の式 (1.4)で示される。

\[
\lambda_j^{k+1} = \frac{\lambda_j^k}{\sum_j C_{ij}} \sum_i \frac{y_i C_{ij}}{\sum_m C_{im} \lambda_j^k}
\]

(1.4)

逐次近似再構成では、数式より、推定画像の順投影データと計測データの比較を行い逆投影し、正規化して推定画像を修正する。この作業を繰り返して更新する事で、“真の値”に収束させる方法である。PET 診断では、さらに散乱や減弱、そして分解能に関する因子などの項を組み込み利用されている。
OSEM 法

ML-EM (Maximum Likelihood Expectation Maximization)法が基となっておりサブセットと定義される部分集合を設定する事で ML-EM 法に比べてサブセット倍、再構成を高速に行うことが可能である。多方向からの投影から、平均値を求めるようにして更新画素値を決定していたため、極端に投影数が少な場合や、サブセットが多い場合には雑音等の影響により誤差を生じ、画像劣化が顕著にみられる。よって、繰り返し (iteration)とサブセット (subset)のパラメータの最適化は重要となる。FBP 法と OSEM 法の違いを Fig 1.8 に示す。

Fig 1.8 The comparison between FBP method and OSEM method: (a) FBP and (b) OSEM methods. (*) is coronal slice.
1.5.6 画質評価

PET の実際に反映される同時計数は真の同時計数であり偶発同時計数等は画像の雑音成分となる。雑音は統計雑音であるのでポワソン分布にしたがう仮定が成り立つ。ポワソン分布ではカウントが大きいほど標準偏差は小さくなる。しかし、偶発同時計数の影響によって必ずしも真の同時計数の標準偏差が小さくなるとは限らない。

画像の統計雑音を評価する際に使用される指標には装置の性能を評価する雑音等価同時係数 (Noise Equivalent Count：NEC式1.5)がある。

\[
NEC = \frac{T^2}{T+S+kR}
\] (1.5)

実際には NEC は視野全体の評価であり分解能やスライス数は考慮されていないため異なる機種間で直接比較することは難しく投与量決定の際に使用される12)。また、画質については SNR で表され、収集時間を \(\triangle t\) とした場合、以下の式 (1.6) が成り立ち、NECR と収集時間により画質は決定される13)。

\[
SNR^2 = NECR \times \triangle t
\] (1.6)

他の指標としては National Electrical Manufactures Association (NEMA) による IEC body phantom を用いた描出能評価14)や、臨床ベースではガイドライン15)からも提唱される肝臓を用いた肝 Signal to Noise ratio (SNR) 等がある。IEC ファントムでは画像コントラストおよび SNR が測定可能であり加えて吸収補正、散乱補正の評価も可能である。肝 SNR15)は画質の均一性評価に相当し、画質を評価する際に肝臓は薬剤分布が安定し評価しやすい事から使用される。
第2章 PET/CT 臨床

2.1 PET 製剤

PET 検査で使用される薬剤は半減期が短いため、病院内もしくは専用の施設で製造される (Fig 2.1)。サイクロトロン装置で放射能を持ったポジトロン核種を製造し後ポジトロン核種を種々の方法で薬剤の元となる化合物に標識し目的の薬剤を製造する。そして、純度試験や無菌試験などの厳しい検査を経て検定に合格した薬剤を PET 検査に使用する。PET 診断に使用される製剤を Table 2.1 と Fig 2.2 に示す。また、本研究で使用された FDG と MET について述べる。
Table 2.1 Characteristics of the PET tracer types

<table>
<thead>
<tr>
<th>核種</th>
<th>トレーサー</th>
<th>代謝</th>
<th>検査目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F</td>
<td>FDG</td>
<td>糖代謝</td>
<td>腫瘍、心筋、脳</td>
</tr>
<tr>
<td>11C</td>
<td>MET</td>
<td>アミノ酸</td>
<td>主に脳腫瘍</td>
</tr>
<tr>
<td>11C</td>
<td>Choline</td>
<td>コリン</td>
<td>主に脳腫瘍</td>
</tr>
<tr>
<td>11C</td>
<td>PIB</td>
<td>アミロイド</td>
<td>痴呆</td>
</tr>
<tr>
<td>11C</td>
<td>4DST</td>
<td>核酸</td>
<td>主に腫瘍</td>
</tr>
<tr>
<td>11C</td>
<td>アセテート</td>
<td>脂肪酸</td>
<td>心筋</td>
</tr>
<tr>
<td>13N</td>
<td>アンモニア</td>
<td>血流</td>
<td>心筋</td>
</tr>
<tr>
<td>15O</td>
<td>水</td>
<td>血流</td>
<td>心筋</td>
</tr>
<tr>
<td>18F</td>
<td>4-DST</td>
<td>核酸</td>
<td>腫瘍</td>
</tr>
<tr>
<td>18F</td>
<td>FMISO</td>
<td>低酸素細胞</td>
<td>腫瘍</td>
</tr>
<tr>
<td>18F</td>
<td>DOPA</td>
<td>ドーパミン</td>
<td>精神病</td>
</tr>
</tbody>
</table>

Fig 2.2 The figure show the different PET tracer images.
2.2 FDG-PET

2.2.1 2-[¹⁸F] fluoro-2-deoxy-D-glucose (FDG)

FDGの製造は、サイクロトロンで80〜90分間照射を行い放射性薬剤の元となるポジトロン核種¹⁸Fを作成する。これを FDG 自動合成装置に輸送し、化学的な方法で FDG へと合成する。その後、品質検定を経て、投与可能となる。FDG の製造は日本アイソトープ協会「サイクロトロン核医学利用専門委員会が成熟技術として認定した放射性薬剤の基準」及び日本核医学会「院内製造された FDG を用いて PET 検査をおこなうためのガイドライン」に準拠して作成される。

FDG は、glucose 同様に細胞内に入ったあと、Hexokinase によりリン酸化される。Glucose はこののち TCA 回路に入って代謝されるが、FDG は代謝されずリン酸化したまま細胞内にとどまる (Metabolic trapping)。FDG は糖の細胞膜輸送、リン酸化、そして、トラップされ細胞内にとどまることで細胞内の糖代謝を反映することとなる (Fig 2.3)。
2-fluoro18F-2-deoxy-d-glucose (FDG)

Fig 2.3 FDG constitutional formula and a metabolism model.
2.2.2 臨床の意義

FDG の保険適応は2010年4月改定において、がん診療における悪性腫瘍（早期胃がんを除く）の病気診断または転移・再発の診断を目的とする場合に適応となる。PET診断は薬剤の代謝機能を利用したもので、PETで使用される薬剤集積の意味はエネルギー代謝が亢進している事を指す。

FDG とはグルコースの一部に18Fが組み込まれており、構造上グルコースと類似している。そのため、グルコース代謝の盛んな組織へ薬剤は取り込まれる。癌細胞はグルコース代謝が盛んであるのでFDGは癌細胞のエネルギー代謝を反映する検査といえる。また悪性度に相関し薬剤を取り込む量が比例して多くなるため、悪性度の高い未分化癌は画像上強く集積し、逆に高分化癌は弱い集積となる傾向がある。薬剤の集積の度合を評価する事は、腫瘍の良悪性の鑑別、転移・再発巣の診断、原発巣の検索、予後予測、治療効果判定の経過観察評価等に大変有効である（Fig 2.4）。

Fig 2.4 The effect of treatment in the case of the malignant lymphoma.
2.3 MET-PET

2.3.1 L-[methyl-11C] methionine (MET)

MET18-19の製造は、サイクトロトンで30〜40分間照射を行い11C (炭素11)を生成し専用の合成装置を使いMETに合成する。METもFDGと同様に品質を検定し、合格したものをPET検査に使用する。

METは細胞内に入ると、タンパク合成を行う系、S-adenosyl methionineを経てDNA/RNAポリメラーゼへ行く系、そして代謝分解される系とに分かれていく（Fig 2.5）。

FDGおよびMETの比較をTable 2.2に示す。
Table 2.2 Comparison between FDG and MET

<table>
<thead>
<tr>
<th></th>
<th>L-[methyl-(^{11})C] methionine (MET)</th>
<th>2-[(^{18})F] fluoro-2-deoxy-D-glucose (FDG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>須アミノ酸メチオニンと同じ構造</td>
<td>グルコースの OH の替わりに (^{18})F</td>
<td>糖の細胞膜輸送、リン酸化を反映</td>
</tr>
<tr>
<td>メチオニンと同じ代謝</td>
<td>糖代謝を反映</td>
<td></td>
</tr>
<tr>
<td>アミノ酸代謝、蛋白合成を反映</td>
<td>糖代謝を反映</td>
<td></td>
</tr>
<tr>
<td>炭素 11 : 半減期 20 分，</td>
<td>フッ素 18：半減期 110 分</td>
<td></td>
</tr>
<tr>
<td>合成装置、薬事未承認</td>
<td>合成装置の薬事承認</td>
<td></td>
</tr>
<tr>
<td>院内製造のみ、臨床研究</td>
<td>→ 院内製造で保険承認</td>
<td></td>
</tr>
<tr>
<td>短半減期のためデリバリは不可能。</td>
<td>企業の治験 → 薬品販売 (デリバリ)</td>
<td></td>
</tr>
<tr>
<td>腫瘍診断（特に脳腫瘍）</td>
<td>腫瘍診断 心筋バイアピリティ診断</td>
<td></td>
</tr>
<tr>
<td>肺癌 乳癌 食道癌 多発性骨髄腫</td>
<td>てんかん病巣診断</td>
<td></td>
</tr>
<tr>
<td>サルコイドーシス 副甲状腺腺腫</td>
<td>脳機能（認知症）の鑑別診断</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 臨床的意義

MET はタンパク合成の亢進、メチル基転移・アミノ酸代謝の亢進、細胞増殖・分泌機能などを反映するトレーサーで、主に脳腫瘍に用いられている。FDG に比べ癌細胞特異性が高く、肉芽組織や免疫細胞など間質への集積は低いとされる。

MET は細胞増殖の指標となり放射線治療や術後の放射線壊死、再発の鑑別に有用である (Fig 2.6)。またメチオニンの集積は CT、MRI より正確な診断との報告もあり治療のモニタリングに適している。
Fig 2.6 Comparison between medicine accumulations: (a)FDG, (b) MET. A case of the diffuse large B-cell lymphoma (DLBCL).
2.4 定量評価

PET診断では放射性薬剤の集積量を定量する事で、腫瘍の良悪性の鑑别、転移・再発巣の診断、原発巣の検索が行われる。

定量評価の指標としてコンパートメントモデルを使用する方法23)、投与した薬剤の何％が組織1 g に集積を示す % injection dose / g、standardized uptake value (SUV)等が挙げられる。本研究で用いられ現在臨床で一般的に用いられる SUV8)について述べる。

2.4.1 SUV とは

PET では放射性薬剤の分布を定量化するため、一般的な臨床では SUV body weight (bw)が用いられる。SUV とは、腫瘍や臓器への薬剤集積の強さを表すための簡易的な指標であり、以下の式(2.1)で与えられる。

\[
SUV_{bw} (g/ml) = \frac{\text{組織放射能(Bq)}/\text{組織容量(ml)}}{\text{投与放射能(Bq)}/\text{体重(g)}}
\] \hspace{1cm} (2.1)

SUV の算出式は、放射性薬剤の排泄が無く、全身いたるところに均一に分布し、かつ人体の比重を 1 とすれば、全身いたるところ SUV=1 となる。SUV とは、このような均一な分布を想定した場合と比べて、腫瘍や臓器の放射能濃度が何倍高いかを表す。SUV は画像から得る半定量値であり部分容積効果、Uptake Time、体格差や生理的要因等、様々な因子により誤差を生じる。
2.4.2 PET イメージングにおける定量性に関して

PET における画質は、分解能で定義され、画質は定量化に直結する。総合分解能を FWHM_{tot}、ポジトロンレンジを FWHM_{p}、ポジトロンの角度揺動による非共線を FWHM_{N}、クリスタルの有限寸法を FWHM_{d}、検出器ブロックの影響(相互作用の深さなど)を FWHM_{B} とし α を画像再構成の因子とした場合以下の式 (2.2) で示される。

\[FWHM_{tot} = \alpha \times \sqrt{FWHM_{p}^2 + FWHM_{N}^2 + FWHM_{d}^2 + FWHM_{B}^2} \]

(2.2)

PET の空間分解能は一般的に 5 mm と有限なために、微小病変は部分容積効果による物理的要因から SUV 値は真の値よりも低く観測される。また、臨床においては、呼吸の影響による物理的要因によって定量性の劣化を招く。さらに、PET 装置および計測装置等における性能点検・日常点検が幾何学的な因子として影響を与える事になる。分解能劣化に関する対策としては、点広がり関数(Point spread function: PSF)を用いる事で、画像再構成アルゴリズムに、パラメータの一部として PSF を組み込む PSF 補正、同時計測の検出時間差で LOR の検出範囲を推定する Time of flight (TOF)、また、呼吸運動は呼吸同期撮像が行われ補正が行われる。
2.4.3 Uptake Time

放射性薬剤の集積は投与後の時間と共に変化する (Fig 2.7)。FDG-PET 検査は FDG 投与後 60 分から撮像するのが一般的である。正常組織の多くは 60 分で一定となるが、腫瘍に関しては 90 分、120 分と経過するにつれ薬剤集積が増加する傾向にある。そのため Delay Scan (後期相) の追加を施行し鑑別診断に用いた報告30) もあるが、治療効果判定の際には注意が必要となる。

Fig 2.7 Time activity curve in each organ30).
2.4.4 体格差

放射性薬剤は血液中を流れて臓器や腫瘍に到達するので、集積の強さを評価するときは血液中の濃度と比較するのが適当と考えられる。放射性薬剤は投与されるたまた循環血液中に分布し、循環血液量はほぼ体重に比例するため、上記に示した公式 (2.1)で「投与放射能量/体重」となっているところは、投与直後の血液中の放射性薬剤の濃度にほぼ比例するが、あまりに太っている患者ややせている患者など、標準体型からはずれると循環血液量が体重と比例しない。特に体格が大きい対象者では過脂肪の影響で臓器が相対的に過補正される傾向である(Fig 2.8)。そこで、上式の体重のかわりに、体重と身長から導いた体表面積、除脂肪体重を用いる SUV₄₂)も提案されている。治療効果判定法に The European Organization for Research and Treatment of Cancer (EORTC)₃¹)や SUV Ibm を用いる PET Response Criteria in Solid Tumors (PERCIST)₃²)も提唱される。
Fig 2.8 The relations between BMI and Liver SUV.

<table>
<thead>
<tr>
<th>BMI</th>
<th>Liver SUV mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.9</td>
<td>1.52</td>
</tr>
<tr>
<td>22.9</td>
<td>1.78</td>
</tr>
<tr>
<td>38.2</td>
<td>3.08</td>
</tr>
</tbody>
</table>
2.4.5 生理的要因

生理的な要因としては血糖値や、付随してインスリン値、運動等が挙げられる。食事摂取により血糖値が高い状態でFDG投与すると、血中から細胞への FDG 集積は血中グルコースと競合する。また血中インスリン値が高い状態(インスリン投与)も筋肉、脂肪への集積が亢進し、その結果バックグラウンドが高い画像となるため、腫瘍集積が相対的に低下する(Fig 2.9)。食事摂取およびインスリン投与は検査に適さないため、食事摂取やインスリン投与から5 時間以上あける必要がある。

Fig 2.9 Illustration of the accumulation distribution: (a) normal, (b) dietary intake, (d) exercise and (d) granulocyte-colony stimulating factor injections.
2.5 PET/CT撮像プロトコル

2.5.1 前処置

FDGは4〜6時間の禁食及び糖分の含まれる飲料の禁止、また前日〜検査まで過激な運動の禁止、投与後の安静（特に投与後30分が重要）および被ばく低減とクリアランス向上に伴う画質向上のため投与前後の飲水（500ml程度）を行う。METに関しては4〜6時間の禁食及びアミノ酸の摂取を禁止する。投与前に問診を行い患者の状態把握を行う。また高血糖の検査では画質および診断精度の低下を招くため、投与直前に血糖値の測定を行う。

2.5.2 ポジショニング

全身撮像を行う際に膀胱内に排泄された薬剤の集積および高集積体に起因するアーチファクトの除外のため撮影直前に排尿を行う。頭頸部領域や局所的部位を撮影の際には排尿は必要としない。金属類はCTアーチファクトの原因となるため撮像範囲から除外する。撮像体位は施設の特性に依存する。検診施設等では腕のアーチファクトによるトランスミッション収集の悪化を抑制するため両手挙上が理想であるが、四肢に疾患が多い施設では挙上せず腕を下げた状態で行う。体位の動きに伴い散乱補正のエラー等も引き起こされるため、検査時間を通して安定した姿勢を維持出来るように配慮することが重要である。
2.5.3 撮像の流れ

1 CT によるトポグラム (シーメンスの名称 *他のメーカーではスキャノグラム等といった名称)の撮影。トポグラムは単純X線に似た投影画像が得られ、撮影領域の範囲および被ばく低減のための菅電流自動制御機能 (Care Dose 4D)に利用される 33)。

2 CT のスキャン (トランスミッションスキャン)は PET のエミッション収集との位置ずれを最小とするために自由呼吸もしくは軽呼吸停止で行われる。自由呼吸と軽呼吸停止で位置ずれの精度に有意差は検出されなかったが、自由呼吸では極端なミスマッチは認められなかったという報告もある 34)。CT の撮影は約 15-30 s と短時間で撮影が行われる。

3 CT スキャン終了後に PET スキャンが行われる。標準的な全身撮像の場合は 1 ベッド 47 スライス (FOV: 16.2 cm)で Overlap (11 slice)させ 1 bed/position あたり 2-3 分で 8 ベッド収集を行う。検査時間は約 20 分である。疾患によっては足先までを撮像範囲となり検査時間は 30 分以上となる。心臓、脳では 1 ベッド (体軸方向 視野 16.2 cm)の撮像範囲で 10-20 分の撮像時間を設定し高画質な画像を得る。撮像中は患者の状態をモニタリングし患者の動きや状態把握に努める。また PET モニターによりカウントの状況等も確認する。PET の撮像時間は PET 装置の性能や 2D、3D の収集モードおよび被検者の体格に依存し画質 (均一性)およびデータの精度 (SUV等)に影響を与える。体格が大きい被検者程、画質は劣化するため体格によって収集時間を延長する事が望ましい。放射性薬剤の投与量に関して、日本では BGO シンチレータの場合 2D 収集で 185 - 444 MBq、3D 収集では 111 - 259 MBq が一般的である 35)。真の同時計数は投与量に比例し増加するの
に対して偶発同時計数は2乗に比例するため逆に画質劣化を招く場合もある。また画質改善には投与量の改善効果は認められず撮像時間によってのみ改善効果が期待できるという報告もされている。
第3章

PET/CTイメージングにおけるSUVに関する研究

3.1 研究目的

PET診断では放射性薬剤の集積量を定量するために、体重で補正したSUV body weight (SUVbw)が一般的に用いられている。SUVは、腫瘍の良悪鑑別、治療効果判定、転移再発診断と様々な目的で用いられる重要な指標である。しかしながら、SUVbwは、体格差に依存し、特に肥満者では過脂肪の影響により腫瘍および臓器のSUVbwは相対的に過補正され診断上問題となる。この問題を解決する手法として、体表面積を用いたSUV body surface area (SUVbsa)、理想体重を用いたSUV ideal body weight (SUVibw)36）、除脂肪体重を用いたSUVlbmの有用性が報告されている37）。また、近年では、PETによる腫瘍の治療効果判定基準 (PERCIST)がWahlらにより提唱された。PERCISTの評価指標では、SUVlbmが適用されており、新規化学療法の解釈や策定が行われているのが現状である。

ただし、先行研究に関しては、欧米人に関する評価であり、本邦に至っては、SUVlbmを用いた体格補正の効果および臨床的有用性については明らかにされていない。

従って、本研究の目的は、SUVbwとSUVlbmを比較する事で、SUVlbmに関する体格補正の効果と臨床的有用性について明らかにする事を目的とした。
3.2 方法

3.2.1 装置の性能

PET-CT 装置 (Biograph sensation 16 Siemens Medical Solutions, Knoxville, TN, US) は、9,216 の lutetium oxyorthosilicate (LSO) の結晶を実装し、47 スライスの平面と 16.2 cm の Z 軸方向視野およびシステム長軸断解像度 6.3 mm を供給する。

3.2.2 対象

研究にあたり、独立行政法人 国立国際医療研究センターの倫理委員会の承認を得て対象からは書面のインフォームド・コンセントを得た (承認番号: 840)。対象となったのは、FDG-PET を施行した健常者 75 名 (Male: 38, Female: 37; mean age, 61.6 ± 13.6 years, Body mass index (BMI) 22.6 ± 3.6 range 14.5 - 33.2) および病変が認められた 38 症例 66 病変 (Male: 38, Female: 37; mean age, 60.6± 14.2 years, BMI: 21.4 ± 5.0 range 15.6 - 42.2) を登録した。

3.2.3 FDG-PET プロトコル

FDG は、国立国際医療研究センターサイクロトロン棟ホットラボ室にて、薬事法の許可を受けた自動合成装置により製造され、既定の品質管理に合格し、院内製剤として保険診療が承認されているものを使用した。FDG の投与は、6 時間以上の絶食後、血糖値を測定したのち、FDG を経静脈的に 370 MBq 投与した。FDG 投与 1 時間後から 1 ベッドあたり 3 分の emission scan で頭頂から鼠顱部の範囲 (全身撮像) を 8～9 bed の撮像を行った。画像再構成は、FORE-OSEM 法を用いた (Iteration: 3 Subset: 8)。後処理フィルターは解像度 5 mm の Gaussian Filter を使用した。
3.2.4 SUV の算出

体重および除脂肪体重による正規化は、以下の公式 (3.1-3.2)によって算出した。

\[
SUV_{bw} = \frac{\text{Decay-corrected activity (kBq) / tissue volume (ml)}}{\text{Injected dose (kBq) / body weight (g)}} \tag{3.1}
\]

\[
SUV_{lbm} = \frac{\text{Decay-corrected activity (kBq) / tissue volume (ml)}}{\text{Injected dose (kBq) / lean body mass (g)}} \tag{3.2}
\]

※除脂肪体重 (Lean body mass: lbm) の推定式

\[
\text{Male} = 1.10 \times \text{(weight)} - 120(\text{weight/height})^2 \tag{3.3}
\]

\[
\text{Female} = 1.07 \times \text{(weight)} - 148(\text{weight/height})^2 \tag{3.4}
\]

3.2.5 SUV_{lbm} の体格補正に関する検証

初めに、SUV_{lbm} 関連は男女間における推定式が異なるため、Group 1: male and female, Group 2: male, Group 3: female の 3 つのグループ分けを行った。男女間において検診の際に体組成計で得られた除脂肪体重 (actual LBM) と推定式によって得られた除脂肪体重 (predicted LBM) の関連性を評価した。

次に、健常者の臓器において、関心部分 (ROI) を血液プール、下行大動脈、肺、肝臓、脾臓、骨髄、筋肉、脂肪組織へ設定し SUVbw および SUV_{lbm} を計測した。

Body mass index (BMI) と各 SUV 指標との関連性を評価した。

最後に、男女間における体格補正の違いに関して評価を行った。
3.2.6 SUVlbm の臨床的有用性に関する検証

腫瘍における体格補正の効果を検証するため、TN ratio を求め、SUV 指標との関連性を評価した。TN ratio は、以下の公式 (3.5) によって算出した。

\[
TN\ ratio = \frac{Tumor\ (SUV_{max})}{Liver\ (SUV_{mean})}
\]

(3.5)

SUVmax: ROI および VOI によって計測した薬剤集積の最大値
SUVmean: ROI および VOI によって計測した薬剤集積の平均値

3.2.7 画像解析

①健常者における ROI の設定

肺に関して、1 cm の ROI を用いて右肺野は、上部 (aortic arch level)、中部 (carinal level)、下部に各 3 ポイント、左肺野は右肺野と同スライスで各 3 ポイント設定し合計 18 ポイントで計測した。下行大動脈、脾臓、血液プール (左心房) 関しては、1 cm の ROI を前後 3 スライスで 3 ポイント設定、肝臓は、3 cm の ROI を前後 3 スライスで 3 ポイント設定した。骨髄に関しては、1 cm の ROI を用いて腰椎 (L) の L3 ~ L5 で 3 ポイントを設定した。筋肉に関しては、1 cm の ROI を大靭筋へ 6 ポイント設定し、脂肪に関しては 1 cm の ROI を背下部の皮下脂肪に 6 ポイント設定した。設定した ROI の合計は、42 ポイントであった。

②臨床例における ROI の設定

腫瘍に関しては、VOI を用いる事で、SUVmax を算出し、肝臓に関しては、健常者と同様の設定で行った。
3.2.8 統計解析

統計解析データには mean ± SD を使用した。統計解析は、SPSS (Version 20) を用いた。actual LBM と predicted LBM の関連性に関して、Pearson の積率相関分析を行い、また誤差を評価するため Bland-Altman 分析を行った。SUV (SUVbw および SUVlbm) と BMI の関連性についてスピアマンの順位相関分析を行った。男女間の違いに関しては Mann-Whitney の U 検定を行った。臨床データでは、SUV と TN ratio の関連性に関して Pearson の積率相関分析を行った。有意水準 5 %未満を統計学的に有意とした。
3.3 結果

除脂肪体重 (actual LBM) と推定式によって得られた除脂肪体重 (predicted LBM) の関連性の結果を Fig 3.1 および Fig 3.2 に示す。男性と女性における actual LBM と predicted LBM の相関係数は、0.866 と 0.959 であり、女性は男性と比較して有意な相関を示した。

また、Bland-Altman 分析においては、男性と女性において、-2.3797 (kg) と -0.21 (kg) となり、男性は固定的な加算誤差が認められた。

SUV (SUVbw および SUVlbm) と BMI の関連性について Table 3.1 から Table 3.4 に示す。SUVbw は、全ての臓器で有意な増加が認められた (P < 0.01)。SUVlbm に関しては、G1 で全ての臓器で有意な増加 (P < 0.05) であった。G2 は、骨髄・肝臓・肺においても有意な増加 (R= 0.5, 0.34 and 0.84, all P < 0.01) が認められた。G3 に関しては、肺の臓器 (R=0.59 P< 0.01) を除いて体格補正の効果が得られた。脂肪組織に関しては、女性において有意な減少 (R = 0.47 P< 0.01) が認められた。また、Group 2 と Group 3 を比較しては各々の臓器で SUVlbm は 13.57 ± 5.85 % (range: 4.04 - 21.43 % Mann-Whitney-U-test P <0.05) の増加が認められた。各臓器の変動係数 (CV) に関しては、SUVlbm は SUVbw と比較して減少した。

臨床例における TN ratio と SUV との関連性に関して Fig 3.3 に示す。また、SUVbw と SUVlbm の臨床例を Fig 3.4 に示す。TN ratio と SUV における決定係数 R² 値は、SUVbw および SUVlbm で、0.89 と 0.93 であり、SUVlbm は良好な相関が得られた。SUVlbm は、安定した定量性を提供し、より正確かつ詳細な評価が可能である事が示された。
Fig 3.1 Correlation coefficient and Bland Altman test. Upper scatter plots show the relationship between the patient’s actual lean body mass (LBM) and predicted LBM. Lower figure shows the Bland Altman plot in male.
Fig 3.2 Correlation coefficient and Bland Altman test. Upper scatter plots show the relationship between the patient’s actual lean body mass (LBM) and predicted LBM. Lower figure shows the Bland Altman plot in female.
Table 3.1 SUVbw level in male and female

<table>
<thead>
<tr>
<th>Organ</th>
<th>Level*</th>
<th>CV</th>
<th>r value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descending aorta</td>
<td>1.38±0.22</td>
<td>15.72</td>
<td>0.44</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.45±0.23</td>
<td>15.53</td>
<td>0.47</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>1.42±0.22</td>
<td>23.29</td>
<td>0.47</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.53±0.06</td>
<td>14.89</td>
<td>0.57</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Liver</td>
<td>1.98±0.31</td>
<td>15.57</td>
<td>0.58</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Lung</td>
<td>0.40±0.08</td>
<td>20.85</td>
<td>0.83</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Left atrium</td>
<td>1.44±0.17</td>
<td>11.94</td>
<td>0.65</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>0.25±0.05</td>
<td>21.19</td>
<td>-0.12</td>
<td>0.313</td>
</tr>
</tbody>
</table>

SUV, Standard uptake value. CV, Coefficient of variance.

*Level is SUV mean ± SD.

Table 3.2 SUVlbm level in male and female

<table>
<thead>
<tr>
<th>Organ</th>
<th>Level*</th>
<th>CV</th>
<th>r value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descending aorta</td>
<td>1.08±0.15</td>
<td>14.00</td>
<td>0.24</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.13±0.15</td>
<td>13.47</td>
<td>0.24</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>1.11±0.24</td>
<td>21.75</td>
<td>0.34</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.42±0.06</td>
<td>13.90</td>
<td>0.32</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Liver</td>
<td>1.55±0.22</td>
<td>14.44</td>
<td>0.39</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Lung</td>
<td>0.31±0.06</td>
<td>18.16</td>
<td>0.74</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Left atrium</td>
<td>1.12±0.13</td>
<td>11.80</td>
<td>0.36</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>0.19±0.05</td>
<td>23.81</td>
<td>-0.23</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>
Table 3.3 SUVlbm level in male

<table>
<thead>
<tr>
<th>Organ</th>
<th>Level*</th>
<th>CV</th>
<th>Range</th>
<th>r value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descending aorta</td>
<td>1.14±0.15</td>
<td>13.37</td>
<td>0.92-1.52</td>
<td>0.21</td>
<td>0.210</td>
</tr>
<tr>
<td>Spreen</td>
<td>1.17±0.15</td>
<td>13.25</td>
<td>0.82-1.50</td>
<td>0.17</td>
<td>0.294</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>1.17±0.24</td>
<td>20.85</td>
<td>0.73-1.63</td>
<td>0.50</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.45±0.05</td>
<td>11.17</td>
<td>0.34-0.56</td>
<td>0.24</td>
<td>0.140</td>
</tr>
<tr>
<td>Liver</td>
<td>1.67±0.21</td>
<td>12.54</td>
<td>1.28-2.09</td>
<td>0.34</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Lung</td>
<td>0.34±0.06</td>
<td>16.36</td>
<td>0.26-0.51</td>
<td>0.69</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Left atrium</td>
<td>1.22±0.11</td>
<td>9.17</td>
<td>1.07-1.45</td>
<td>0.30</td>
<td>0.064</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>0.20±0.04</td>
<td>19.27</td>
<td>0.13-0.30</td>
<td>-0.04</td>
<td>0.814</td>
</tr>
</tbody>
</table>

Table 3.4 SUVlbm level in female

<table>
<thead>
<tr>
<th>Organ</th>
<th>Level*</th>
<th>CV</th>
<th>Range</th>
<th>r value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descending aorta</td>
<td>1.01±0.12</td>
<td>11.54</td>
<td>0.76-1.30</td>
<td>0.06</td>
<td>0.712</td>
</tr>
<tr>
<td>Spreen</td>
<td>1.09±0.14</td>
<td>12.87</td>
<td>0.85-1.51</td>
<td>0.14</td>
<td>0.410</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>1.05±0.23</td>
<td>21.61</td>
<td>0.57-1.55</td>
<td>0.04</td>
<td>0.828</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.39±0.05</td>
<td>13.20</td>
<td>0.28-0.51</td>
<td>0.16</td>
<td>0.345</td>
</tr>
<tr>
<td>Liver</td>
<td>1.42±0.16</td>
<td>11.01</td>
<td>1.16-1.70</td>
<td>0.08</td>
<td>0.659</td>
</tr>
<tr>
<td>Lung</td>
<td>0.28±0.04</td>
<td>14.12</td>
<td>0.20-0.37</td>
<td>0.59</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Left atrium</td>
<td>1.03±0.07</td>
<td>6.66</td>
<td>0.90-1.18</td>
<td>0.02</td>
<td>0.905</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>0.19±0.05</td>
<td>28.11</td>
<td>0.11-0.33</td>
<td>-0.47</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
Fig 3.3 Relationship between Tumor/Liver ratio and SUV.
Fig 3.4 A case of weight 45kg and 95kg: (a) head and neck tumor and (b) malignant lymphoma. Fluoro-2-deoxy-D-glucose whole-body PET maximum intensity projection images. The liver SUVs levels were a: 1.92, b: 2.76 (SUV_{bw}) vs 1.82, 2.04 (SUV_{lbm}).
3.4 考察

本研究は、PET 診断に用いられる SUVbw および SUVlbm に関する定量精度について、健常人および臨床例を用いて検証を行った。SUV は、PET 薬剤の集積量を定量する事で、細胞活性を客観的に評価可能であり、腫瘍の良悪性鑑別、病期分類、治療効果判定等に用いられる。腫瘍の治療効果判定に関して、CT では「RECIST1.1」が用いられており、PET では SUVbw を用いた「EORTC」、SUVlbm を用いた「PERCIST」が挙げられる。RECIST では腫瘍径による効果判定であるため早期治療判定では困難であるが、PET は細胞の活動性をモニタリング可能であるため、早期治療効果判定で臨床的有効性が多数報告される。

しかし、SUV は画像から得る半定量値であり、画像再構成における物理学的要因、また呼吸運動や体格差等による人体的要因によって誤差を生じる。通常 SUV は、体重にて補正する SUVbw が用いられるが、体格が大きい対象者では過脂肪の影響によって腫瘍や臓器において SUVbw が相対的に過補正されるため、化学療法などに伴う治療後の大幅な体格変動によって、または治療効果判定が行えない場合が生じる。この事に関しては、SUV は、放射性薬剤の排泄が無く、全身に均一に分布し、かつ人体の比重を 1 とした場合を SUV=1 と定義する半定量指標であるが、脂肪組織の比重は、実際軽いために誤差が生じる、また PET 薬剤も分布しにくいため、脂肪組織の SUVbw は低くなり、結果的に脂肪以外の組織や臓器は、過補正になる。この問題から、近年では、除脂肪体重をはじめとし、定量性の安定化を目指し様々な補正法が考案されてきた。Wahl らによって 2009 年に提唱された PERCIST では、除脂肪体重を用いる事で SUV の正規化を行う事で体格誤差を軽減する。PERCIST を用いた、臨床的有用性は、主に欧米において悪性リンパ腫を代表的に多数報告される。また、体格の変動などが大きい小児における PET 診断でも、SUVlbm を用いる臨床的有効性は報告されている 41-42）。PERCIST は、欧米で行われ
ているが、本邦においても今後、使用される事が予想される。

本研究の結果では、SUVbw を用いた場合、全ての臓器において、BMI の増加に伴い、統計学的に有意な増加が観測された（P < 0.05）。一方で、SUVlbm は SUVbw と比較して変動誤差の低減が認められ、定量性の向上に貢献する指標である事が示唆された。SUVlbm を適用した場合、女性に関しては、相関係数は 0.959 と大きく、体格補正の効果は良好に得られたが、男性においては、固定的な加算誤差も認められ、且つ体格補正の効果関しても不十分であった。さらに、男性の SUVlbm は女性と比較して、統計学的に有意な増加が認められた（13.57 ± 5.85 %, range: 4.04 - 21.43 %, Mann-Whitney-U-test P < 0.05）

推定式的固定誤差に関しては、SUVlbm を算出する際に使用される男性の推定式が適合していない可能性が考えられ、人種間の違いによって誤差を生じた可能性が考えられる。一方で、男性の SUVlbm が女性と比較して高い特徴に関しては Yeung らの報告においても、相関は有意な増加が認められ、体格補正が不充分であったと述べている。Sugawara らの報告に関しても、女性の乳がん症例を対象に行われた研究であったため、男性の SUVlbm が高いことに関しては、男女間で筋肉量、内部臓器の量、骨構成など人体構造に起因し、男性特有の特徴である事が考えられる。

女性における良好な体格補正に関しては、過補正の因子となる脂肪組織での負の相関が観察され過補正の影響を抑制する事で男性と比較して女性は良好な体格補正が得られた可能性が考えられる。

約 15 %の男女間の誤差に関しては、腫瘍の評価において SUVlbm は SUVbw と比較し、相関係数は優れ良好な補正効果であったことから、活性化された疾患においては、診断上誤差範囲であった可能性も考えられる。
3.5 結論

除脂肪体重により正規化を行う SUVlbm は、男女間で体格補正の効果に違いが認められたが、定量性の誤差を軽減した。SUVlbm は、安定した定量性を提供し、より正確かつ詳細な評価が可能となり PET 診断の精度向上に貢献する指標である可能性が示唆された。

本研究は、公益財団法人がん研究振興財団 平成 23 年度がん研究助成金 の援助を受けて行われた。
第4章

11 C-Methionineおよび18F-FDGを用いた同日PETイメージングに関する研究

4.1 研究目的

現在、FDGを用いたPET検査は腫瘍検査のゴールドスタンダードとして様々な癌疾患に利用されている。しかし、FDGはグルコース代謝を反映した分布を示すため、生理的集積の高い腎臓や尿路系、また炎症への取り込み等が診断精度に影響を及ぼす課題があり、FDG単独での診断はある程度限界があることが明らかとなった。従って、脳の生理的蓄積が低いMETは脳腫瘍検査のために普及するようになった。

METはアミノ酸代謝を反映した分布を示し、局在が不明瞭な低悪性度の脳腫瘍の検出や腫瘍の進展範囲の診断、壊死と再発の鑑別に使用される。神経膠腫において、FDG集積は悪性度に良好な相関を示し、メチオニン集積は腫瘍浸潤の範囲に一致したと報告がある45-48。また一方でメチオニンは、FDGの課題を補うだけでなく、肺疾患、前立腺がん、甲状腺がん、心疾患と様々な疾患領域に使用され様々な報告がされている45-51。FDGとMETの2核種を併用することにより機能的な画像診断としてより良好な臨床情報を提供し診断能向上に繋がることが報告されてきた52-55。

核医学診断は機能画像診断であるため、2つのトレーサーを用いたイメージングは、可能な限り同じコンディションで施行されることが理想的であるが、PETで使用されるポジトロン核種の消滅γ線が511 keVであるためSPECTの様にEWを設定しての判別は不可能である。しかし、ポジトロン核種の利点は短半減期核種であるため、投与時間を考慮することで複数のトレーサーを使用する可能性が考えられる。
FDG と MET の同日 PET イメージングの際、課題となるのが FDG に干渉する MET が定量性および描出能へ与える影響である。本研究において、FDG に干渉する MET を Positoron cross-talk (PCT) と定義した。今まで 2 核種を同日に用いた先行研究は幾つか報告されるが、PCT について論じられた報告は知る限り存在せず、PCT の影響は明らかにされていない。35-38）

また、現状の PET で行われている診断法は、定量評価法と視覚評価法に大別されており定量評価法は、SUVbw (body weight) を指標とする“EORTC”および SUVlbm (lean body mass) を指標する PET Response Criteria in Solid Tumors (PERCIST) が挙げられる。視覚評価法に関しては、悪性リンパ腫に適用される International Workshop Criteria (IWC)、肝臓を指標とする診断等が報告される。従って、診断方法は、疾患や施設により異なる事が考えられる。

本研究の目的は、定量評価法および視覚評価法に基づき PCT の影響を明らかにする事で、MET および FDG を用いた同日 PET イメージングのための基盤を構築する
4.2 方法

4.2.1 本研究の仮説

Fig 4.1 に示される様に MET は肝臓で非常に高い生理的集積を示す 57-58。また過去の報告からも、肝臓の集積は、腫瘍の集積より高い特徴を有する。従って、MET の薬剤分布の特徴から、腫瘍の集積より高い肝臓を PCT を評価する指標として選択し、肝臓において PCT の影響が認められない場合、同日 PET イメージングを用いた診断が可能である事を仮定し、本研究は行われた。

4.2.2 装置の性能

PET および PET/CT 装置が、本研究で使用された。PET-CT 装置 (Biograph Sensation 16 Siemens Medical Solutions, Knoxville, TN, US) は、9,216 の lutetium oxyorthosilicate (LSO) の結晶を実装し、47 スライスの平面と 16.2 cm の Z 軸方向視野およびシステム長軸断解像度 6.3 mm を供給する。

PET 装置 (ECAT EXACT 47 Siemens Medical Solutions, Knoxville, TN, US) は、9,216 の結晶、Bismuth Germinate (BGO) を実装し、47 スライスの平面と 16.2 cm の Z 軸方向視野およびシステム長軸断解像度 6.0 mm を供給する。
Fig 4.1 Fluoro-2-deoxy- D-glucose (a) and methionine (b) uptake in a normal volunteer.
4.2.3 ファントム評価

①定量性に関する検証

腫瘍領域に MET 集積が存在する場合を仮定して、部分容積効果のない (内径 5 cm) 100 ml 容量の円筒状プラスチック容器を 3 つ使用した。各々の容器に 18F を 5 kBq/ml、11C を 25 kBq/ml と 18F+11C を混合させて 30 kBq/ml (18F: 5 kBq/ml, 11C: 25 kBq/ml) を封入したファントムを作成した。PET/CT 装置を使用して、180 分まで 20 分毎に 3 分間の収集を行った。PET 画像は、Gaussian Filter (解析度 5.0 mm の半値全幅 (FWHM)) を使用し Fore-OSEM (Subset 16, Iteration 3) に より再構成処理を施した。マトリックスサイズは 128×128 でありピクセルサイズは 5.14 mm である。減衰補正は、18F の条件で施行した。マトリックスサイズは 128×128 でありピクセルサイズは 5.14 mm であった。

ファントム評価では放射能減衰補正が 18F の条件下の元、11C 単独容器と 18F+11C を混合させた容器に関する物理学的評価および投与間隔のシミュレーションを行った。

②描出能に関する検証

腫瘍が肝臓にある場合を仮定して、national electrical manufacturers association (NEMA) body phantom を用いて描出能評価を行った。NEMA body phantom は下記に示す NEMA.1st, NEMA.2nd を作成し、NEMA.1st は、球体へ 18F を 20 kBq/ml、バックグラウンドへ 18F を 5 kBq/ml 封入した。NEMA.2nd に関しては、球体へ 18F を 20 kBq/ml、バックグラウンドへ 18F+11C を 30kBq/ml (18F: 5 kBq/ml, 11C: 25 kBq/ml) 封入した。PET/CT 装置を使用して、180 分まで 20 分毎に 1 ベッドあたり 5 分間の収集を行った。PET 画像は、上記条件と同様の再構成条件で行った。
③ファントム評価における画像解析

定量性に関しては、プラスチックファントムに region of interest (ROI) を設定して Counts Max を計測した。

描出能評価に関しては、NEMA body phantom に ROI を設定して以下の公式①によってコントラスト比を算出した。また、公式 (4.1-4.2) を用いてリカバリーを求めた。

\[
\text{Contrast ratio} = \frac{\text{Hotspot (maximum value)}}{\text{Background (average value)}} \quad (4.1)
\]

\[
\text{Recovery contrast ratio} = \frac{\text{NEMA.2nd (Contrast ratio)}}{\text{NEMA.1st (Contrast ratio)}} \quad (4.2)
\]

また、核医学専門医 2 名・診療放射線技師 3 名の計 5 名によって、10 mm Sphere に関して 5段階 (5: very easy to recognize 4: rather easy to recognize 3: undecided 2: rather difficult to recognize 1: very difficult to recognize) の視覚評価を行った。
4.2.4 対象

研究にあたり、独立行政法人 国立国際医療研究センターの倫理委員会の承認を得て対象からは書面のインフォームド・コンセントを得た（承認番号: 840）。対象となったのは、PET 検査を検診のために施行した健常者 60 名（Healthy group: HG）と頭頸部がん患者 115 名（男 62 名 女 53 名）での合計 175 名（平均年齢 61.7±11.2 歳）である。また、FDG と MET を同日に施行した対象者（Combination groups: CG）は 62 名であり、別の日に別けて施行した対象者（Separate group: SG）は 53 名である。2009 年 4 月から 2010 年 4 月の期間、放射線治療後の後頭蓋底で再発の可能性がある腫瘍のより良好な描出のため FDG と MET を用いた治験中のプロトコルにおいて施行した。本研究の臨床結果は、別に報告される。対象者の特徴を Table 4.1 に示す。BMI、血糖値、年齢の有意差は、BMI: P = 0.374, 血糖値: P = 0.142, 年齢 P = 0.192 (ANOVA) であり有意差は認められない。

Table 4.1 Characteristics of subjects

<table>
<thead>
<tr>
<th>Groups</th>
<th>Number of patients</th>
<th>Age (y)</th>
<th>BMI (kg/m²)</th>
<th>Blood glucose level (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>62</td>
<td>59.54 ± 11.84</td>
<td>20.09 ± 2.97</td>
<td>98.31 ± 11.28</td>
</tr>
<tr>
<td>SG</td>
<td>53</td>
<td>60.73 ± 11.17</td>
<td>19.51 ± 2.47</td>
<td>100.86 ± 10.22</td>
</tr>
<tr>
<td>HG</td>
<td>60</td>
<td>63.91 ± 14.41</td>
<td>20.04 ± 2.32</td>
<td>100.69 ± 11.11</td>
</tr>
</tbody>
</table>
4.2.5 臨床評価

①ボランティアによる動態解析

臨床評価の前に、3人のボランティアによるMET-PETを行い、薬物動態を評価した。PET装置を使用し肝臓のダイナミック撮像を2時間行った（20フレーム×1分、5フレーム×2分、18フレーム×5分）。評価値は半定量値であるSUVを用いた。肝臓と胸最長筋（筋肉）にROIを設定しSUVmeanを計測した。放射能減衰補正は、^{18}Fと^{11}Cの条件を2パターン施した。

②FDG-PETプロトコル

FDGは、国立国際医療研究センターサイクロトロン棟ホットラボ室にて、薬事法の許可を受けた自動合成装置により製造され、既定の品質管理に合格し、院内製剤として保険診療が承認されているものを使用した。FDGは6時間以上の絶食後、1時間後に血糖値を測定したのち、FDGを経静脈的に370MBq投与された。FDG投与1時間後から1ベッドあたり3分のemission scanで頭頂から鼠側部の範囲（全身撮像）を8～9bedの撮像を行った。PET画像は、解像度5mmのGaussian Filterを使用してOSEM法により再構成処理を施した（Iteration: 3, Subset: 8）。

③MET-PETプロトコル

METはFDGと同様に既定の品質管理に合格し、倫理委員会にて使用が許可されているものを使用した。6時間以上の絶食後、METを経静脈に370MBq投与。PET/CTを用いてMET投与20分後から頭頸部領域を1ベッドあたり5分の2bedemission scanで撮像を施行した。

PET画像は解像度4mmのGaussian Filterを使用してOSEM法により再構成処理を施した（Iteration: 4 Subset: 16）。

59
④FDG および MET 同日プロトコル

FDG-PET 検査は MET-PET 撮影後に行われた (Fig 4.2)。FDG-PET 全身撮像後、頭頸部領域の撮像を MET-PET と同様の条件で行った。本研究にあたり、全身撮像から 40 分後に肝臓 1 bed を追加撮像した。全身撮像および肝臓の画像は解像度 5 mm の Gaussian Filter を使用して OSEM 法により再構成処理を施した (Iteration: 3 Subset: 8)。FDG 画像に与える PCT の影響を評価するため、MET 投与から FDG 投与までの注射間隔のみを変化させた。

⑤画像解析

定量評価に関しては、KG、CG、SG の 3 群において肝臓の SUV mean を測定した。SUV に関しては、SUVbw および SUVibw を計測した。視覚評価に関しては、読影モニターの SUV を一定（SUV = 4）とし、肝臓のスコア化を KG の分布（Liver SUV: 1.87 ± 0.27）をリファレンスとし、核医学専門医によって 5 段階（5: Very high 4: high (mean + 2SD) 3: equal (mean) 2: low (mean - 2SD) 1: very low）で評価した。Fig 4.3 に視覚評価例を示す。CG および SG について Score を測定した。

⑥PCT の定量

全身画像の肝臓を早期イメージ (Early)、1 bed 追加撮像の肝臓を後期イメージ (Delay) として肝臓の右葉および MET の取り込みの低ない領域を評価するため筋肉に関心ボリューム領域 (VOI) を設定し解析を行った。対象の全てでは、肝臓において肝転移もしくは異常な FDG 集積を認めなかった。ポジトロン核種の物理学的半減期を考慮して、肝臓の後期相が PCT を含まないと仮定し下記の公式 (4.1) で PCT を定量した。SUV に関しては、一般的に使用される SUVbw を用いた。

\[
PCT \text{ value (SUVbw mean)} = (\text{Early SUVbw mean} - \text{Delay SUVbw mean}) \quad (4.1)
\]
4.2.6 統計解析

MET の半減期が 20 分のため、注射間隔を 20 分間隔で 4 群に分けて統計解析を行った。30 分以上から 50 分未満をグループ 1 (G1)、50 分以上から 70 分未満をグループ 2 (G2)、70 分以上から 90 分未満をグループ 3 (G3)、90 分以上をグループ 4 (G4) としてそれぞれの群に分けた。統計解析データには mean ± SD が使用された。SPSS (Version 20) を用いて 4 つの群で one-way ANOVA の分散分析を行った。その後 Tukey の多重比較を行った。P 値 < 0.05 を統計的に有意であるとした。注射間隔と PCT の関連性について解析を行った。
Image Protocol

![Image Protocol diagram]

Fig. 4.2 Protocol for two PET images using FDG and MET on the same day.

Grade

![Grade images]

Fig. 4.3 Figure shows the grade classification in visual evaluation.
4.3 結果

4.3.1 ボランティアによる動態解析

ボランティアによる動態解析結果を Table 4.2 と Fig.4.4 に示す。MET における肝臓の集積分布は 11C の放射能減衰補正の条件下では個々でバラつきはあるが上昇する傾向を示した。筋肉に関しては、薬剤集積は一定であった。

しかしながら、同じボランティアデータで 18F の放射能減衰補正の条件で再構成した場合、MET は 11C の 20 分の半減期特性で減衰したので、18F の補正では補正しきれずに放射能は減少した。筋肉に関しても同様に減少し、100 分でバックグラウンドレベルに減少した。

Table 4.2 TAC of the MET

Comparison between radioactivity decay corrections (11C, 18F).

<table>
<thead>
<tr>
<th>Phase (min)</th>
<th>Liver</th>
<th>Muscle</th>
<th>Liver</th>
<th>Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 - 20</td>
<td>6.913 ± 1.273</td>
<td>1.026 ± 0.322</td>
<td>3.975 ± 0.811</td>
<td>0.498 ± 0.121</td>
</tr>
<tr>
<td>35 - 40</td>
<td>7.923 ± 1.331</td>
<td>0.883 ± 0.175</td>
<td>2.415 ± 0.396</td>
<td>0.229 ± 0.073</td>
</tr>
<tr>
<td>55 - 60</td>
<td>8.318 ± 1.365</td>
<td>0.938 ± 0.151</td>
<td>1.437 ± 0.243</td>
<td>0.158 ± 0.062</td>
</tr>
<tr>
<td>75 - 80</td>
<td>8.313 ± 1.062</td>
<td>1.037 ± 0.146</td>
<td>0.828 ± 0.123</td>
<td>0.086 ± 0.028</td>
</tr>
<tr>
<td>95 - 100</td>
<td>8.593 ± 1.162</td>
<td>1.060 ± 0.123</td>
<td>0.481 ± 0.096</td>
<td>0.049 ± 0.011</td>
</tr>
<tr>
<td>115 - 120</td>
<td>8.411 ± 1.063</td>
<td>1.081 ± 0.076</td>
<td>0.259 ± 0.038</td>
<td>0.027 ± 0.006</td>
</tr>
</tbody>
</table>

*Data is SUV mean ± SD
Fig. 4.4 Dynamic methionine-PET study in volunteers. Time–activity curves for the liver and muscle with radioactivity decay correction for 11C [(a) complete correction] and 18F [(b) incomplete correction)].
4.3.2 ファントム評価

定量性における検証について、Fig 4.5 に結果を示す。放射能減衰補正が 18F の条件で設定されている事から、18F の容器に関しては適正な条件で補正され放射能は一定に保たれた。しかしながら、11C の容器に関しては補正しきれずに約 23 分の半減期で減少した。11C と 18F を混合させた容器に関しては各々の半減期の特性で減衰し 18F の容器に収束することが示された。また MET 投与から FDG を投与するまでをシミュレートした場合、投与間隔 80 分 (140 分) で 18F の容器に完全に収束し PCT の影響が無い事が確認された。

描出能に関する NEMA body phantom に関しては、Fig 4.6 に得られた画像と Recovery Contrast ratio を示す。視覚評価に関しては、Fig 4.7 に示す。撮像時間の経過と共に 11C の影響は、認められなり、Recovery Contrast ratio は、120 分で一定となり、視覚評価に関しては、100 分で収束した。
The phantom study was conducted to evaluate PET measurements of mixed 18F+11C isotopes and 11C isotopes with radioactivity decay correction for 18F and to simulate the injection interval between 11C and 18F. In the case of 11C+18F tracer coadministration, an injection interval of 140 min was required to converge with the phantom results for 18F, resulting in an injection interval of 80 min when we consider the fluoro-2-deoxy-D-glucose uptake time (60 min) of the study protocol.
Fig. 4.6 Upper figure shows the NEMA body phantom, and lower figure shows the relationship between Recovery contrast ratio and time.
Fig 4.7 Relationship between Visual score and time.
4.3.3 臨床評価

Table 4.2 に、注射間隔と診断指標（定量評価法: SUV および視覚評価法: Visual score）の関係を示す。

肝臓における SUVbw および SUVlbm はそれぞれの G1、G2、G3 と G4 で、2.37 ± 0.49、2.14 ± 0.23、1.88 ± 0.19 と 1.82 ± 0.26 および 1.99 ± 0.38、1.82 ± 0.17、1.57 ± 0.14 と 1.49 ± 0.18 であった (ANOVA P < 0.001)。Visual score に関しては、4.00 ± 0.87、3.90 ± 0.56、3.20 ± 0.41 と 3.08 ± 0.66 (ANOVA P < 0.001) であった。

G3 および G4 において、SUV および Visual score で有意差は検出されなかった。また、G3 の Visual score において、多重比較によって得られた有意差は 0.76 となり、SUV と比較して PCT の影響は低い事が示された。

Fig 4.8 は注射間隔と PCT の結果を表す。また、Table 4.3 に、患者の特徴と PCT の結果を示す。肝臓の PCT はそれぞれの G1、G2、G3 と G4 で、0.433 ± 0.151 (95 % 信頼区間 (CI) 0.349 - 0.517)、0.264 ± 0.075 (95 % CI 0.224 - 0.304)、0.135 ± 0.043 (95 % CI 0.113 - 0.158) と 0.137 ± 0.047 (95 % CI 0.110 - 0.164) であった (ANOVA P < 0.001)。その後の多重比較によって、G3 と G4 の間に有意差は検出されなかった (Tukey P = 0.99)。

PCT は G3 までは減少したが G4 で減少せず一定となった。筋肉の PCT はそれぞれの G1、G2、G3 と G4 で、0.028 ± 0.034、0.012 ± 0.045、0.021 ± 0.044 と 0.017 ± 0.032 であった。すべてのグループ間で有意差は検出されなかった (ANOVA P = 0.693)。

Fig 4.9 は実際の臨床における PCT の影響を表す。PCT の高い集積は、注射間隔が短い G1 と G2 の領域で多くみられたが、G3 と G4 に従って PCT の影響は減少している事が示された。
肝臓において PCT の影響は認められたが、筋肉について全てのグループで観測されなかった。注射間隔が短い場合、PCT の影響はより高くなる傾向であったが、注射間隔の延長に沿って PCT の影響は減少し 90 分以上で PCT の影響は認められなかった。

Table 4.2 Comparison between SUVbw and SUVlbm and Visual score

<table>
<thead>
<tr>
<th>Groups</th>
<th>SUVbw level</th>
<th>SUVbw P value*</th>
<th>SUVlbm level</th>
<th>SUVlbm P value</th>
<th>Visual score Level</th>
<th>Visual score P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (30-49 min)</td>
<td>1.72 ± 0.31</td>
<td>< 0.01</td>
<td>1.45 ± 0.25</td>
<td>< 0.01</td>
<td>2.98 ± 0.72</td>
<td>< 0.01</td>
</tr>
<tr>
<td>G2 (50-69 min)</td>
<td>2.37 ± 0.49</td>
<td>< 0.01</td>
<td>1.99 ± 0.38</td>
<td>< 0.01</td>
<td>4.00 ± 0.87</td>
<td>< 0.01</td>
</tr>
<tr>
<td>G3 (70-89 min)</td>
<td>1.88 ± 0.19</td>
<td>0.38</td>
<td>1.57 ± 0.14</td>
<td>0.43</td>
<td>3.20 ± 0.41</td>
<td>0.76</td>
</tr>
<tr>
<td>G4 (90 ≥ min)</td>
<td>1.82 ± 0.26</td>
<td>0.82</td>
<td>1.49 ± 0.18</td>
<td>0.98</td>
<td>3.08 ± 0.66</td>
<td>0.98</td>
</tr>
</tbody>
</table>
The results of the Tukey post-hoc test between the groups and the p value are as follows:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Body Mass Index (Kg/m²)</th>
<th>Blood Glucose Level (mg/dl)</th>
<th>No. of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 (60.3 min)</td>
<td>0.017 ± 0.032</td>
<td>0.137 ± 0.047</td>
<td>999</td>
</tr>
<tr>
<td>C3 (70.8 min) & C5 (90.0 min)</td>
<td>0.021 ± 0.044</td>
<td>0.135 ± 0.053</td>
<td>96.38 ± 13.69</td>
</tr>
<tr>
<td>C2 (50.8 min)</td>
<td>0.012 ± 0.045</td>
<td>0.20 ± 0.075</td>
<td>10.0 / 7.5 ± 0.87</td>
</tr>
<tr>
<td>C1 (40.49 min)</td>
<td>0.028 ± 0.034</td>
<td>0.43 ± 0.31</td>
<td>96.3 ± 9.81</td>
</tr>
</tbody>
</table>

Table 4.3 Characteristics of patients and p value: position cross-talk value.
Fig 4.8 Scatter diagram showing the association between the injection interval and positron cross-talk. The effect of positron cross-talk tended to increase when a shorter injection interval was used and to decrease as the injection interval was extended.
Fig 4.9 Fluoro-2-deoxy-D-glucose whole-body PET maximum intensity projection images and axial images of the liver. The upper section shows the early phase and the lower section shows the delayed phase. Representative images for the G1 (a), G2 (b), G3 (c), and G4 (d) groups are shown. The levels of liver positron cross-talk (standard uptake value mean variations) were 0.66 (2.91–2.25), 0.28 (2.09–1.81), 0.08 (2.09–2.01), and 0.14 (2.15–2.01) in (a), (b), (c), and (d), respectively. The injection intervals in (a), (b), (c), and (d) were 34, 63, 83, and 98 min, respectively.
4.4 考察

PET 検査において 2 核種を同日に行った報告はいくつかあるが、PCT の影響については報告がない。また、PET 診断は、定量評価法と視覚評価法で行われているため、本研究は、FDG および MET を同日にイメージングするための基盤を構築する事を目的に PCT の影響を定量評価および視覚評価に基づき評価した。

MET と FDG の 2 核種を一日で行ったという報告について、Nuñez らは MET 注射から FDG 注射まで 2 時間の間隔を開け検査を行った。つまり 11C 製剤である MET の物理学的半減期が短い事を利用し FDG 注射まで十分な間隔をあけ検査を行うという方法であった。一方、生駒らは局所的評価であるが脳においてコンパートメントモデルを設定し 2 核種の同時定量や複数のトレーサーを用いた定量を試みた報告を行った。しかしながら、その報告はシミュレーションによる研究であり、臨床画像に与える PCT の影響についての報告は皆無に等しい。

ファントム評価におけるプラスチック容器を用いた定量評価で 11C は、18F による放射能減衰補正を用いた場合、約 23 分の半減期で放射能は減衰する結果が得られた。この現象に関しては 11C の物理学的半減期や 18F による放射能減衰補正が起因したことが考えられる。

NEMA body phantom を用いた検証では、Recovery Contrast ratio および Visual score を用いた視覚評価において、定量評価と比べ PCT の影響は早期に収束する傾向であった。この事に関しては、僅かに残存する PCT の影響を、Recovery contrast ratio を用いた評価ではノイズと同程度であった可能性が考えられる。また視覚評価においては、その僅かな影響を観測出来なかった事が推測される。

従って、視覚評価法では、定量評価法と比較して注射間隔を短縮し、早期にイメージングを施行出来る可能性がファントム評価で示唆された。

一方で、臨床評価ではファントム評価と若干の違いが生じた。ファントム評価の様に各々の半減期による減衰のみでなく、臨床評価では SUV は異なり個人差を生
じた。さらに、たとえ注射間隔が等しかったとしても、個人差は本研究で観察された。この事に関してはたとえ注射間隔が短かったとしても、PCT の影響が必ずしも高いというわけではないことが示された。この結果より、個体差や各臓器における生物学的半減期が加味され薬剤の洗い出しが一様ではないことが示された。

本研究ではメチオニンの半減期が 20 分であるため 20 分毎に群を設定し、定量評価法は SUV (SUVbw および SUVlbm)、視覚評価法では、Visual score を用いる事で PCT の影響なく同日 PET イメージングが可能な最適な注射間隔を検証した。統計解析の結果、G3、G4 においてリファレンスに対して有意差が検出されなかった事は、時間経過に伴い、PCT の影響が減少した事が考えられる。また、Visual score は、SUV と比較して PCT の影響が低い結果に関しては、ファントム評価と同様に、僅かな PCT の影響は、視覚評価の際、認識する事が不可能であり臨床的には問題ない事が考えられる。従って、視覚評価法にて診断を行う場合、同日 PET イメージングを短縮出来る可能性が示唆された。

実際の PCT の算出に関しては、統計解析の結果、G3 と G4 の間で PCT は一定となり、有意差が検出されなかった。この事は PCT が限りなく減少したか、もしくはバックグラウンドレベルになったことが考えられる。つまり PCT の変動に有意差が検出されなかったことは投与間隔 G4 に関しては安全であることがいえる。

有意差が検出されなかった注射間隔G3の範囲について検証した場合に関しては、有意差が無い理由から G3 の範囲全てで許容されるわけではない。Fig 4.8 の散布図からも 70 分付近では PCT の影響が観測される可能性がある。ここで G3 の範囲内での許容可能な時間を求めるために信頼区間を用いた場合、G4 の信頼区間の上限が 0.1646 であったため、0.16 のポイントを安全であるとし、二次曲線をフィッティングさせ各時間での PCT の平均値の予測値、95 %信頼区間上限が 0.16 以下になる時間は、83 分であった。83 分の値は計算上導き出された数字であるがファントム評
価で得られた注射間隔 80 分 (140 分) とほぼ一致する。従って、83 分以上の範囲は PCT の影響が認められなかった 90 分以上の範囲に相当する可能性が考えられる。

この研究では MET の薬剤分布の特徴から、腫瘍の集積より高い肝臓に着目し、肝臓において PCT の影響が認められない場合、同日 PET イメージングを用いた診断が可能である事を仮定した。定量評価法では、MET から FDG の注射間隔は、90 分以上必要とすることが示されたが、視覚評価法では、MET の集積が筋肉と同様に低集積である頭頸部領域の場合、MET のイメージング終了直後に FDG 検査へ移行する事で検査時間を短縮する事が可能かもしれない。MET に限らず、FDG と併用し同日 PET イメージングを行う際、薬剤分布の把握が重要である。本研究における高集積臓器に着目し PCT を算出する方法論は、他のトレーサーにも応用できることを考えられる。また、PCT を算出する評価指標に SUVbw を使用した事に関しては、SUVbw と SUVlbm の結果が臨床評価において同程度であった事、また SUVbw が一般的に使用される指標であるため妥当であったと考える。

本研究にはいくつか課題がある。まず一つ目は、ファントム評価において FDG および MET における肝臓の放射能を模擬したが、臨床における肝臓の放射能は個人差を生じるためファントム評価にはある程度限界があった。

二つ目は、本プロトコルで後期像の肝臓は PCT の影響が無いと仮定しているが早期像から 40 分後の画像であるため、実際には投与間隔が短い G1、G2 の様な範囲ではボランティアによるダイナミックデータから予測できるように MET の成分を含んでいる可能性がある。それ故に投与間隔が短い対象ではさらに PCT の影響は高いことが考えられる。

三つ目は、本研究で用いた SUV は半定量値であるため、体格差や血糖値の影響を受ける 61)。したがって FDG の洗い出しについても個人差を生じるために正確な PCT の算出は難しい。しかしながら、FDG の洗い出しは急な変化ではなく 40 分の間
に穏やかに変化する \(^2\)ために、SUV が PCT の指標のために効果的であったと考える。さらに加えると本研究で算出した PCT は FDG の洗い出しを含んだ値であり、G3 と G4 の値は殆ど FDG の洗い出しであった可能性が考えられる。

最後に本研究は MET が腫瘍より集積の高い肝臓を用いる事で PCT の評価した研究であった。従って、仮に肝臓より取り込みが高いような高集積の腫瘍があった場合は、さらに注射間隔を必要とする事が考えられる。
4.5 結論

ファントム評価および臨床評価により PCT の影響を定量評価法と視覚評価法の 2 つの診断法に基づき検証した。注射間隔が 90 分以上である場合、定量評価法および視覚評価法ともに PCT の影響が無く FDG および MET を用いた同日 PET イメージングは可能である事が示された。同日 PET/CT イメージングは、同じコンディションで異なる特性もつ PET トレーサーの診断が可能であり、かつ患者の負担軽減へ繋がる。本研究で用いた、方法論は、他のトレーサーにも応用が可能であり、研究的な応用に繋がるものである。

本研究は、厚生労働省 国際医療研究開発費 22 指 119 保健医療の EBM に資する研究 4 の援助を受けて行われた。
第 5 章

まとめ

PET/CT イメージングは、個々の症例、病変に対して、非侵襲的に分子生物学的情報を提供する。腫瘍分野では、ブドウ糖代謝を反映する FDG が主に用いられている。FDG の集積度は腫瘍の悪性度を反映し、治療前診断、治療後評価などに関し
て臨床的に有用性が認められたことから、本邦では 2002 年に保険承認されている。

しかし、FDG-PET/CT イメージングの普及、成熟とともに、FDG 集積のみでは炎症と腫瘍の区別が困難であることや、腫瘍増殖と関係のない糖代謝の亢進があるなど、大きな難題と限界を併せ持つことも明らかとなった。その経緯から、現状の PET/CT イメージングでは、新規薬剤の開発や、糖代謝とは異なる薬剤を用いた臨
床および研究がされている。異なる特性を診断する同日 PET イメージングに関しては、同じコンディションで検査が可能であり、診断精度向上に貢献する事が報告されていますが、PET/CT イメージングで同日に異なる製剤を用いた場合、本研究のテ
ーマとなる PCT の影響が腫瘍の定量性および描出能への影響を与える可能性があり、治療効果判定や、それに伴う治療方針決定の際、極めて重要な問題となる。

従って、PCT の影響を検証し、明らかにする事は必要不可欠である。PET 診断は、定量評価法および視覚評価法に大別されるため、本研究では、FDG と臨床的有用性が報告されるアミノ酸代謝をモニタリングする MET に着目し、2 核種を用いた同日 PET イメージングの基盤を 2 つの診断法に基づき検証した。

第 2 章に関しては、PET イメージングで画質に与える影響と定量評価法に関して述べた。PET イメージングの画質は検出原理から様々な補正法による因子、また生
理学的な因子で変動する事を述べた。PCT の影響に関しては、MET 薬剤の集積量が
高い肝臓に着目する事で PCT を推定したが、肝臓の SUV は、体格の影響によって変動する事が報告されているため、続いて第 3 章で SUV の精度に関して検証した。

第 3 章の SUV の精度に関しては、一般的に適用される体重に基づき標準化を行った SUVbw と除脂肪体重に基づき標準化を行う SUVlbm を健常者の臓器および臨床例を用い検証した。その結果、SUVlbm は、男女間で体格補正の効果に違いが認められたが、SUVbw と比較して、定量性の誤差を軽減し PET 診断の精度向上に貢献する指標である可能性が示された。

第 4 章では、FDG と MET を用いた同日 PET イメージングに関してファントム評価および臨床評価にて 2 つの診断法に基づき検証した。MET から FDG への検査移行は、90 分以上の注射間隔で行われる際、定量評価法および視覚評価法とともに、PCT の影響が無く MET と FDG を用いた同日 PET イメージングが可能である事が示された。さらに、視覚評価法では、僅かな PCT の影響は診断に影響を与えない事が示され、定量評価法と比較して検査時間の短縮が可能である事が示された。

以上、本研究の結果より、同日 PET イメージングは一日で 2 つの異なる PET トレーサーの診断を可能とし、PET 診断の精度向上、患者の負担軽減にも有用である事が示された。さらに、本研究に用いた方法論は、MET に限らず、他の製剤にも適用する事が可能であり、同日 PET イメージングの基盤として、研究的な応用に繋がる事が考えられる。
引用文献

3. Townsend DW, Beyer T: A combined PET/CT scanner: the path to true image fusion. The British Journal of Radiology. 75: 24-30, 2002
5. 北村圭司,水田哲郎,田中和己: 大立体角 PET 装置における 3D 連続全身スキャンの重み付け Rebinning 法. MEDICAL IMAGING TECHNOLOGY, Vol21, 2003

12. 和田康弘, 福喜多博義, 織田圭一 : PET 装置,ポジトロン断層撮影技術マニュアル日本核医学技術学会.39-45, 2006

27. W. W. Moses, Senior Member: Time of Flight in PET Revisited. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 50(5) 2003

33. 村松禎久, 他: CT 用自動露出機構 (CT-AEC) の性能評価 最終報告書. 日本放射線技術学会, 5: 534-545, 2007

34. 大沢敦, 滝口 智洋, 田村 慎太郎, 他: CT-transmission の呼吸管理が PET/CT の融合精度に与える影響 - 600 人を対象とした標準呼気と自由呼気の比較. 日本放射線技術学会, 66: 743-757, 2010

35. 日本核医学会 PET 核医学委員会: 院内製造された FDG を用いた PET 検査を行うためのガイドライン (第 2 版). 核医学, 2005

85

謝辞

本研究をまとめるにあたり、数多くの御指導、御鞭撻を賜わりました首都大学東京大学院人間健康科学研究科教授 福士政広先生に深く感謝致します。

本研究をまとめるにあたり、ご指導とご助言を賜わりました首都大学東京大学院人間健康科学研究科准教授 大谷浩樹先生、乳井嘉之先生、首都大学東京大学院人間健康科学研究科助教 井上一雅先生、茨城県立医療大学 保健医療学部 放射線技術学科助教 津田啓介先生に深く感謝致します。

本研究の実施にあたり、研究の機会を与えて下さり御指導賜りました、国立国際医療研究センター 核医学診断科 科長 窪田和雄先生に深く感謝致します。

また本研究をまとめるにあたり、貴重な御教示を賜りました国際医療研究センター 日本医学診断科 医員 南本亮吾先生、諸岡都先生に心より感謝致します。

本研究で統計学について御教示を賜りました国際医療研究センター 国際臨床研究センター 部長 新保卓郎先生に心より感謝致します。

研究全般にわたり御助言、御指導頂いた国立国際医療研究センター 放射線診療部主任 佐藤敬氏を始めとする放射線診療部の皆様に深く感謝の意を表します。

本研究を実施するにあたり、御理解、御支援頂きました東京ベイ先端医療・幕張クリニック 院長 師野和男先生と医療技術部 部長 小山信久雄氏に心より感謝致します。

本研究にあたり、快くボランティアを承諾して頂いた皆様、また被験者として承諾して下さった患者の皆様に深く感謝致します。

最後に、終始、励まし支えてくれた妻をはじめとする家族に深く感謝の意を表します。
業績

本稿を構成する主な学会発表

論文

口述発表

3. 三本拓也、南本亮吾、伊藤公輝、岡崎百子、諸岡都、窪田和雄、佐々木徹、福士政広：11C-methionine と 18F-FDG を用いた同日 PET 検査法 Part 1: 定量値に基づく検証, 第 51 回日本核医学会, 2011 年 10 月, つくば

4. 三本拓也、窪田和雄、南本亮吾、岡崎百子、諸岡都、佐藤敬、佐々木徹、伊藤公輝、福士政広：11C-methionine と 18F-FDG を用いた同日 PET 検査法 Part 2: 視覚評価に基づく検証, 第 51 回日本核医学会, 2011 年 10 月, つくば

89
5. 三本拓也、田口好晃、南本亮吾、新保卓郎、伊藤公輝、窪田和雄、福士政広:

11C-methionine と 18F-FDG 同日 PET 検査における異なる診断法による検証, 日本放射線技術学会 第 68 回総会学術大会, 2012 年 4 月, 横浜

6. 三本拓也、佐藤敬、南本亮吾、伊藤公輝、岡崎百子、諸岡都、窪田和雄、佐々木徹、福士政広: NEMA/IEC ファントムに基づく同日中に 11C-Methionine と 18F-FDG PET を行うための検証, 第 31 回日本核医学会, 2011 年 10 月, つくば
業績一覧

論文
研究助成
1. 厚生労働省 国際医療研究開発費: 22 指 119 保健医療の EBM に資する研究 4, 平成 22 年～24 年
2. 政策医療振興財団：平成 23 年度研究助成金
3. 公益財団法人がん研究振興財団：平成 23 年度がん研究助成金

口述発表

6. 三本拓也: key-note Lecture 心臓核医学における虚血診断に影響を与える因子について, 第 43 回 心臓核医学談話会, 2013 年 7 月, 東京

7. 三本拓也: ランチョンセミナー 4D-PET/CT イメージングにおける Q.Freeze の可能性, 第 13 回 日本核医学会春季大会, 2013 年 4 月, 東京

8. 三本拓也、砂岡史生、南本亮吾、新保卓郎、窪田和雄、福士政広: 4D-PET/CT イメージングにおける呼吸精度向上に関する検証, 日本放射線技術学会 第 69 回総会学術大会, 2013 年 4 月, 横浜

9. 三本拓也、砂岡史生、佐藤敏、南本亮吾、新保卓郎、窪田和雄、福士政広: PSF 補正に基づく 3 次元 PET 画像の臨床的有効性, 日本放射線技術学会 第 69 回総会学術大会, 2013 年 4 月, 横浜

10. 三本拓也、南本亮吾、新保卓郎、窪田和雄、福士政広: 18F-FDG-PET/CT による正常肺における Total HU・SUV の定量化: 多変量解析に基づく検証, 第 52 回日本核医学会, 2012 年 10 月, 札幌

11. 三本拓也、田口好晃、南本亮吾、新保卓郎、佐々木徹、窪田和雄、福士政広: 18F-FDG-PET/CT による肺野全体 SUV・HU 定量化ソフトウェアの開発: 正常肺に関して, 日本放射線技術学会 第 68 回総会学術大会, 2012 年 4 月, 横浜

12. 三本拓也、田口好晃、川口晋吾、佐藤敏、佐々木徹、津田啓介、福士政広。“PSF 補正を組み込んだ 3D-OSEM アルゴリズム特性の検証, 日本放射線技術学会 第 68 回総会学術大会, 2012 年 4 月, 横浜
13. 三本拓也、諸岡都、窪田和雄、南本亮吾、岡崎百子、佐藤敬、佐々木徹、中西哲也、福士政広: \(^{18}\)F-FDG-PET/CTにおける肺野全体のSUV・HU定量化ソフトウェアの開発, 第51回日本核医学会, 2011年10月, つくば

14. 三本拓也、佐藤敬、南本亮吾、伊藤公輝、岡崎百子、諸岡都、窪田和雄、佐々木徹、福士政広: NEMA/IECファントムに基づくVUE Point HD-Sに関する検証, 第31回日本核医学会, 2011年10月, つくば

15. 三本拓也、佐藤敬、南本亮吾、伊藤公輝、岡崎百子、諸岡都、窪田和雄、佐々木徹、福士政広: 201Tl+123I-BMIPP同時収集におけるミスマッチ領域定量化ツールの研究, 第31回日本核医学会, 2011年10月, つくば