WEKO3
アイテム
Efficient Orthogonalizing the Eigenvectors of the Laplacian Matrix to Estimate Social Network Structure
http://hdl.handle.net/10748/00010565
http://hdl.handle.net/10748/00010565af9b3e17-d17b-4922-bc88-ddd9ae005e1f
名前 / ファイル | ライセンス | アクション |
---|---|---|
10979-001.pdf (508.1 kB)
|
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2019-03-14 | |||||
タイトル | ||||||
タイトル | Efficient Orthogonalizing the Eigenvectors of the Laplacian Matrix to Estimate Social Network Structure | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Hirakura, Naoki
× Hirakura, Naoki× Takano, Chisa× Aida, Masaki |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | It is inherent difficult to directly quantify the structure of the social networks that describe human relations. The network resonance method was proposed to elucidate the unknown Laplacian matrix representing social network structure. This method gives information on the eigenvalues and eigenvectors of the Laplacian matrix from observations of the dynamics of a social network. If all the eigenvalues and eigenvectors are known, the original Laplacian matrix can be determined. One problem with the network resonance method is that only limited information about eigenvectors can be acquired, and only the absolute values of the vector elements are available. Therefore, to determine the Laplacian matrix, it is necessary to determine the signs of each element of the eigenvectors; this task has order of O(2^n) given the combinations of n users for every eigenvector. This paper proposes a method that determines eigenvector element signs efficiently by running a sign determination algorithm in parallel and uses only those with fewer calculation amount. The proposal executes sign determination in polynomial time. We also reduce the calculation overhead by applying compressed sensing; the computational complexity of sign determination is reduced to almost O(n^2). | |||||
書誌情報 |
The 2018 International Symposium on Nonlinear Theory and its Applications (NOLTA 2018) 巻 2018, p. 180-183, 発行日 2018 |
|||||
権利 | ||||||
権利情報 | IEICE | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
出版者 | ||||||
出版者 | 電子情報通信学会 | |||||
資源タイプ | ||||||
内容記述タイプ | Other | |||||
内容記述 | postprint | |||||
権利URI | ||||||
表示名 | https://www.ieice.org/jpn/copyright/index.html | |||||
URL | https://www.ieice.org/jpn/copyright/index.html |