ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 07 システムデザイン
  2. 0701 情報科学 / 情報通信システム
  3. 0701a 学術雑誌論文

Efficient Orthogonalizing the Eigenvectors of the Laplacian Matrix to Estimate Social Network Structure

http://hdl.handle.net/10748/00010565
http://hdl.handle.net/10748/00010565
af9b3e17-d17b-4922-bc88-ddd9ae005e1f
名前 / ファイル ライセンス アクション
10979-001.pdf 10979-001.pdf (508.1 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-03-14
タイトル
タイトル Efficient Orthogonalizing the Eigenvectors of the Laplacian Matrix to Estimate Social Network Structure
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Hirakura, Naoki

× Hirakura, Naoki

Hirakura, Naoki

Search repository
Takano, Chisa

× Takano, Chisa

Takano, Chisa

Search repository
Aida, Masaki

× Aida, Masaki

Aida, Masaki

Search repository
抄録
内容記述タイプ Abstract
内容記述 It is inherent difficult to directly quantify the structure of the social networks that describe human relations. The network resonance method was proposed to elucidate the unknown Laplacian matrix representing social network structure. This method gives information on the eigenvalues and eigenvectors of the Laplacian matrix from observations of the dynamics of a social network. If all the eigenvalues and eigenvectors are known, the original Laplacian matrix can be determined. One problem with the network resonance method is that only limited information about eigenvectors can be acquired, and only the absolute values of the vector elements are available. Therefore, to determine the Laplacian matrix, it is necessary to determine the signs of each element of the eigenvectors; this task has order of O(2^n) given the combinations of n users for every eigenvector. This paper proposes a method that determines eigenvector element signs efficiently by running a sign determination algorithm in parallel and uses only those with fewer calculation amount. The proposal executes sign determination in polynomial time. We also reduce the calculation overhead by applying compressed sensing; the computational complexity of sign determination is reduced to almost O(n^2).
書誌情報 The 2018 International Symposium on Nonlinear Theory and its Applications (NOLTA 2018)

巻 2018, p. 180-183, 発行日 2018
権利
権利情報 IEICE
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 電子情報通信学会
資源タイプ
内容記述タイプ Other
内容記述 postprint
権利URI
https://www.ieice.org/jpn/copyright/index.html
https://www.ieice.org/jpn/copyright/index.html
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 16:19:40.924022
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3