
Tokyo Metropolitan University

Graduate School of System Design

Department of Aerospace Engineering

Efficient Global Optimization with
Multi-Fidelity Approach for Aeronautical

Applications

(ÞÞÞëëëÁÁÁÕÕÕ£££ÇÇÇêêêÆÆÆ£££ÕÕÕkkk������¹¹¹������'''ßßß���iii���ÕÕÕ
nnnËËËÉÉÉhhh***zzz___---���xxxnnnÜÜÜ((()

Atthaphon Ariyarit
(13991572)

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Aerospace Engineering, March 2018





Abstract

Developing a highly efficient optimization methodology is critical for the design process in

the aerospace arena because an aeronautical design is usually complicated and expensive. In

addition, design problems often have several objectives for simultaneous consideration. To

increase the performance of optimization methodology, the efficiency global optimization (EGO)

has been developed. The EGO needs to be further improved via an exploratory method, such

as genetic algorithm (GA) and surrogate methods.

This thesis begins with reviews and the development of GA using an exploratory method for

real-world design problems . Focusing on the distribution of the population, GA with a multi-

modal crossover method (MMDX) was proposed to consider the skewness of the distribution

of parent candidates. The proposed crossover method creates four segments from four selected

parents, of which two segments are bounded by selected parents and two are bounded by

one parent and another segment. After defining these segments, four offspring are generated.

This study considered the application of a proposed optimization method for the real-world

problem of creating a multi-objective airfoil design using a class-shape polynomial function

transformation parameterization (CST), which is of aerodynamic shape, to investigate the

effectiveness of the algorithm. The exploration results are compared with the results of blend

crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms, which are

widely used. According to the design results, the developed algorithm found solutions that

were superior to those found by the BLX and UNDX algorithms with regard to maintaining

diversity of solutions. This is a beneficial feature for real-world problems.

Next, a multi-fidelity optimization technique based on an efficient global optimization method

using a multi-fidelity approach was investigated for solving real-world design problems. In the

proposed approach, a multi-fidelity surrogate model was developed for evaluating local deviation

using Kriging method and for constructing a global model using a radial basis function. The

expected improvement (EI) was computed based on the uncertainty of the model, which was

evaluated using the Kriging method, to determine additional samples to improve the model

and EGO. The proposed multi-fidelity approach was investigated by solving mathematical

test problems whose results were compared with those of ordinary Kriging-based EGO using a

single-fidelity approach and the co-Kriging-method-based EGO. The proposed method obtained

better solutions than the other two. It was applied to the aerodynamic design optimization of
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helicopter blades for hovering to maximize blade efficiency. The shapes of the helicopter blades

were designed by changing their twist angle distributions. The performance of the optimal

shape obtained using the proposed method was almost equal to that obtained using high-

fidelity evaluation based on single-fidelity optimization by an ordinary Kriging. The results of

the proposed method were compared with that of a co-Kriging�based multi-fidelity approach.

The accuracy of the proposed method was the highest, while the total number of high-fidelity

evaluation runs required to obtain a converged solution was the lowest.

Finally, the method was expanded to solve multi-fidelity/multi-objective problems. An ex-

pected hypervolume improvement (EHVI) was used as an index to find additional samples for

the optimization process. EHVI is computed based on the model�s uncertainty to determine

additional samples as well as EI. First, the proposed approach was applied to two-objective

optimization test functions. Then, it was applied to airfoil design optimizations that have two-

and three-objective functions, namely, minimization of aerodynamic drag and maximization of

airfoil thickness at the trailing edge for the two-objective problem and minimization of aero-

dynamic drag at cruising speed, maximization of airfoil thickness at the trailing edge, and

maximization of lift at low speed assuming a landing attitude for the three-objective problem.

A panel method was used to apply the low-fidelity inviscid aerodynamic force and a Reynolds-

averaged Navier-Stokes simulation was applied for high-fidelity aerodynamics in conjunction

with a high-cost approach. For comparison, multi-objective optimization was applied using

only a Kriging model with a high-fidelity solver (single fidelity). The design results indicate

that the non-dominated solutions of the proposed method achieve greater data diversity than

the optimal solutions of the Kriging method. Moreover, the proposed method has a smaller

error than the Kriging method with the single-fidelity approach.
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Chapter 1

Introduction

1.1 Current Situation of Aeronautical Design

In recent years, optimized aeronautical design has been increasingly popular in commercial

aircraft design. Airbus designed the A380 while employing an optimization method to reduce

the weight of the aircraft wing [1, 2]. The Japan Aerospace Exploration Agency (JAXA) used a

shape optimization method to design the supersonic jet [3]. This method was used to increase

aerodynamic performance and reduce sonic boom [4-6]. Thus, it has been required to use high-

fidelity computation in aeronautical design. However aeronautical design commonly involves

complicated problems and high-fidelity computation is expensive. In addition, designers should

consider aeronautical design as a problem that involves several objectives. For example, it is

necessary for a designer to simultaneously reduce the aircraft weight [7-11] and improve the aero-

dynamic performance at all operating speeds, including during take-off, landing, and cruising

conditions [12-14]. For this reason, several researchers [9, 10] have created optimization methods

that consider the reduction of computational costs for multi- or many-objective optimization

problems. For example, Drozdik [15] has developed multi-objective differential evolution (DE)

algorithms to reduce the computation cost of multi-objective optimization problems. This

method has better performance than the original multi-objective DE [16] because it includes

domination rank and crowding distance in its process. The hybrid optimization algorithm [17],

1



2 Chapter 1. Introduction

which combines a genetic algorithm (GA) and neural network, has been developed to enhance

the performance of the optimization algorithm. However, these methods could not be used for

expensive funcions because they still require many computation evaluations.

In principle, optimization techniques find the best solution to a problem by searching for the

minimum or maximum values in a function. Unfortunately, traditional optimization methods,

such as gradient-based methods [18-20] or evolutionary algorithms [21, 22], require several com-

putation evaluations. Therefore, researchers have been trying to improve the efficiency of these

traditional optimization algorithms. However, the highly accurate evaluations are too expen-

sive if optimization algorithms are employed [23]. Consequently, a combination of surrogate

models, such as the radial basis (RBF) [24-26], response surface [27, 28], and Kriging model

[29, 30], are used to predict expensive functions and to find optimal shapes for aeronautical

designs.

Highly accurate surrogate models that result in an accurate optimal solution are required for

surrogate model-based optimizations. The efficient global optimization (EGO), which is based

on model uncertainty, has been proposed [31]. The EGO uses expected improvement (EI) [31,

32] or expected hypervolume improvement (EHVI) to find an additional optimum point in the

optimization process [33-35]. The advantage of the EGO is that it could increase the probability

of the optimization process locating the global optimum point because the EGO involves an

additional sampling process, which is based on model uncertainty.

To solve aeronautical design problems, aeronautic evaluations require many computation levels

(i.e., fidelities that are determined by governing equations). For example, aerodynamic forces

for airfoil design could be defined with a panel method for low-level computations [36, 47], as

well as with a Navier-Stokes computation for high-level computations [28, 39]. Because of this

feature of aerodynamic evaluations, the multi-fidelity approach can be considered for further

improvements in the efficiency of surrogate model-based optimization [40-42].

The goal of this thesis is to propose a multi-fidelity optimization, using a surrogate model-based

EHVI, that can improve efficiency and accuracy when using a high-fidelity function to find the

optimum point for a multi-objective design problem.
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1.2 Recent Researches on Optimization Techniques for

Real World Problems

Many optimization tools for engineering designs have been developed [8]. The traditional

design methods that use the function gradient are known as the Newton method or sequential

quadratic programming (SQP) [18-20]. While they have been widely used, the disadvantage of

the gradient-based methods is the requirement of function gradients, which cannot be easily

defined for real world problems. Consequently, the evolutionary computation methods have

increased in popularity because they do not require gradients. Examples of the evolutionary

computation [21, 22] method are genetic algorithms GAs [43, 44], particle swarm optimization

(PSO) [45-47], DE [17, 48], simulated annealing (SA) [49, 50], among others [51-55]. GAs are

a well-known method for aeronautical design because it has a high probability of locating the

global optimum point. In addition, the concept of the GAs are easy to understand, and it is

easily applied to various applications.

The GAs [43, 44] are a stochastic search method based upon the theory of natural selection. It

was developed by Holland at the University of Michigan in the 1960s and 1970s, and Goldberg

further extended its theoretical foundations and applications. The GAs are a popular algorithm

because it is easy to apply to optimization problems, and it can be considered a black box

method. The search procedure starts with an initial population whose individuals are randomly

created. By weighting the probability of a gene used for breeding in terms of its fitness, the

characteristics that give the best solutions are passed on from one generation to the next

generation. The genetic operators such as selection, crossover, and mutation are applied to

the parents to create the offspring. For example, the blend crossover method (BLX) [56] and

the unimodal normal distribution crossover (UNDX) [57] have been proposed and yield good

exploration performances. The GAs can be expanded to solve multi-objective optimization

problems via the Pareto ranking theory. A non-dominated sorting method that is called the

non-dominated sorting genetic algorithm (NSGA-II) [58] is widely used as a multi-objective

genetic algorithm. The performance metrics that have been considered for these multi-objective
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optimization problems are maximum spread [59, 60] and hypervolume [60, 61].

In aeronautical design, GAs are popular for finding the optimum design. For example, the panel

method [35, 36], blade element momentum theory (BEMT) [62, 63], and the NASA chemical

equilibrium with applications (NASA-CEA) code [64] are often used to design rocket engines.

However, they do not always yield the true optimum shape because the evaluation is low-fidelity,

which results in low accuracy. To include high-fidelity functions in the optimization process,

the surrogate model is widely used. This method was first studied by Schmit in 1974 [65] with

respect to wing structural optimization. This research demonstrated the concept of finding

the optimum size of the wing structure by approximation of the response variables via Taylor

series expansions to reduce the computational time of the optimization process. Response

surface [26 - 28] is another surrogate model that is often used, and the RBF [23-25] and the

Kriging [29, 30] are more flexible methods for predicting complicated functions. The RBF

method was originally developed by Broomhead et al. [21]. This approximation process can

be interpreted as a simple kind of neural network. The Kriging method, which was originally

developed by Matheron [29], constructs surrogate models based on Gaussian stochastic process

models. These methods are popular for real world applications because aeronautical design

always requires non-linear functions.

The design of experiments (DoEs) are an important technique for obtaining sampling designs

while including input-output relationships. The DoEs were originally studied by Fisher [66].

Traditional DoE techniques [67, 68] include central composite design, Box-Behnken design,

full-factorial designs, and the Taguchi method [69]. Because the number of samples is fixed,

this method is not commonly used for the optimization process. For the optimization process,

a popular DoE method is Latin hypercube sampling (LHS) [70], proposed by McKay; LHS can

maintain the space filling quality of the sampling points. Because of limitations in the number

of function calls, the EGO method was developed to find additional samples, increasing the

efficiency of the surrogate model. EIs locate additional samplings by using evaluations based on

the uncertainty of models, improving the accuracy of the models for single-objective functions.

EHVI was developed from a concept similar to that of EI for multi-objective optimization

problems. Note that iteration by EGO will locate the global optimum point with less additional
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sampling if the surrogate model has higher accuracy.

The multi-fidelity approach is a promising way to increase the efficiency of the surrogate model-

based optimization process, which requires time-consuming function evaluation to solve real-

world design problems. Several multi-fidelity approaches and their applications have been

studied using a co-Kriging model [41]. For example, Huang [71] used a co-Kriging method.

A multi-fidelity optimization method based on the error estimation of response surfaces using

low-fidelity and high-fidelity functions was used to design low-boom supersonic jets [72]. In

this study, exact values of additional samples by high-fidelity evaluation were not acquired.

Thus, the accuracy of high-fidelity functions could not be ensured, particularly around the

optimum points for complicated functions. Another multi-fidelity approach with a parameter

space reduction technique was proposed to reduce computational times for computational fluid

dynamics (CFD) design of helicopter rotor blades [73]. This technique reduced the degree of

the design parameter space (i.e., the number of design parameters) to define possible design

ranges using a low-fidelity function. Then, a high-fidelity function was used to determine the

optimum design in the primary defined design range. However, it is possible to obtain an

optimal solution outside the parameter space because design ranges defined using low-fidelity

functions are not always appropriate for high-fidelity functions. A multi-fidelity surrogate

model was also applied to maximize annual energy production in wind turbine design [74]. An

optimal point of a low-fidelity function was determined using GAs. Then, optimization was

performed using a high-fidelity function and a gradient-based method, for which the optimum

point obtained using the low-fidelity optimization, was used as the starting point. This method

could not obtain the optimum for the high-fidelity function if the error between the low-fidelity

and high-fidelity functions was large. Multi-fidelity optimization using the hybrid surrogate

model based on the response surface method and the RBF method was developed by Sun

[75]. This surrogate model could increase the efficiency when predicting a complex function.

However, this multi-fidelity optimization procedure cannot find additional sampling based on

uncertainty of data.

An alternative solution to the multi-fidelity multi-objective optimization problem is the model

reduction technique [76, 77]. A multi-fidelity/multi-objective optimization approach with a
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parameter space reduction technique was applied to the design of helicopter rotor blades and

airfoils. This technique reduced the design parameter space to define possible design ranges

with a low-fidelity function. Then, a high-fidelity function was used to find the optimum design

in the primary defined design range. The sampling for the high-fidelity function was chosen

by selecting interesting design points from non-dominated solutions in addition to the initial

point that was generated from the primary defined design range. However, this method has

the potential to obtain an unexpected optimal solution outside the parameter space because

the design ranges of the low-fidelity function are not always appropriate for the high-fidelity

function.

1.3 Objectives of this Thesis

The objective of this thesis is to develop the efficient optimization tool for engineering de-

sign problems. The final target of this research is increase the efficiency of the aeronautical

performance optimization via mixed-fidelity approach of low-fidelity/ low-cost evaluations and

high-fidelity/ high-cost evaluations. GA was employed to achieve the global design optimization

by proposing the modification of the crossover method for improvement of the diversity and

increase the convergence rate of the optimization process. The proposed multi-fidelity approach

and GA were used in the enhanced EGO by means of the hybrid surrogate model for single-

objective optimization problems. After the development of optimization method, it was tested

by applying to real world problems, airfoil design and helicopter blade design. Then, the pro-

posed multi-fidelity approach was expand to solve multi-objective design problems. The mehod

was tested by applying to airfoil design problems which has two/three objective functions.

1.4 Outline of this Thesis

This dissertation is organized as follows: In Chapter 2, a new crossover method for GA, the

multi-modal crossover, is developed to increase the diversity and the convergence rate of the
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optimization algorithm for EI and EHVI maximization. The applicability of the proposed

optimization to a real-world problem is considered by solving a multi-objective airfoil design

problem. In Chapter 3, a multi-fidelity hybrid surrogate model for EGO is developed. The

proposed multi-fidelity approach is investigated by solving mathematical test problems and is

applied to an aerodynamic design optimization problem involving helicopter blades (hovering

to obtain the maximum blade efficiency). In Chapter 4, the proposed multi-fidelity approach

from the previous chapter is extended to solve a multi-objective optimization problem. The

approach is investigated with multi-objective mathematical test problems and is applied to a

multi-objective unmanned aerial vehicle (UAV) aerodynamic airfoil design problem. In Chapter

5, the conclusions are presented.
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Chapter 2

Genetic Algorithm for Aeronautical

Application

2.1 Introduction

The meta-hulistic optimization method is widely used to improve aspects of aircraft perfor-

mance, such as aerodynamics and structural dynamics. In particular, optimizing airfoil design

is very effective in increasing the performance of aircraft. In this chapter, the design perfor-

mance improvement of real-coded genetic algorithms (GA) is carried�out through the modi-

fication of the crossover and investigated by optimizing an airfoil�s performance. Generally,

the main operators of GA are the selection, crossover, and mutation operators. In particular,

the crossover operator is effective for increasing efficiency. Several well-known crossover opera-

tors for real-coded GA are the blend crossover (BLX) [1], the simplex crossover (SPX) [2], the

unimodal normal distribution crossover (UNDX) [3] and the Parent-centric crossover method

[4].

One advantage of the BLX crossover is its simplicity; however, it is often hard to solve a

nonlinear/multimodal problem. On the other hand, while UNDX converges quickly, it often

results only in a local optimum, due to the lower diversity of potential solutions checked by

this algorithm.
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The SPX crossover method is the multi-parents crossover based on a uniform probability to

generate offspring. The advantage of SPX is it has simple scheme for multi-parent crossover

method but it has show converge compared with other multi-parent crossover method because

the crossover region of the SPX crossover method is too large [4]

The UNDX crossover is the multi-parents crossover which the offspring is close to the centroid

of their parents. On advantage of UNDX is it has high efficiency for the low population size.

However, it has slower convergence rate than the PCX method [4].

The PCX crossover method is the multi-parents crossover which the offspring is close to their

parents. It has fast converge compared to other multi-parent crossover method. However, this

method has low efficiency when the population size is low [4].

In this chapter, the multi-modal distribution crossover method (MMDX) is proposed. The

proposed crossover method is the multi-parents crossover which the offspring is close to the

centroid of their parents but the centroid of this crossover method is expanded by another one

parents. From this effect, the proposed crossover method could be has skewedness of the data,

which it can in crease the diversity of the offsping.

The Roulette Wheel selection method is used for operator selection operator and the uniform

mutation method is used for selecting the mutation operator. The advantage of the uniform

mutation method is it has a simple scheme, but it has slower convergence than the Gaussian

Mutation Operator [5]. The mutation rate is defined as 0.5.

The effect of this crossover for real-coded GA is investigated by test function. Then it applied

to an airfoil optimization problem to investigate the effectiveness of the proposed crossover

method for real-world problems, and is compared to the BLX and the UNDX operators.

This chapter is organized as follows. In Section 2.2, we provide an overview of the BLX and

UNDX operators, and the multi-modal distribution crossover (MMDX) operator in introduced.

In Section 2.3, we investigated the effect of the MMDX crossover method by solving test

function. In section 2.4, we discuss the theory of the CST airfoil model [6], the aerodynamic

evaluation, the cover rate and the parallel coordinate plot (PCP). The airfoil optimization
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problems are discussed in Section 2.5. The results of these optimization problems are discussed

in Section 2.6.

2.2 Overview of Crossover Method

2.2.1 Blended Crossover (BLX)

The BLX operator is a popular crossover for real-coded GA. This operator creates two off-

springs from two parents according to the following equations:

oc1 = (1− γi)o1 + γio2, (2.1a)

oc2 = (1− γi)o1 − γio2, (2.1b)

where oc1 is offspring 1, oc2 is offspring 2, o1 is parent 1, and o2 is parent 2. Moreover, γi =

(1 + 2ν)hi− ν, where hi is a random number between 0 and 1, and ν is set to 0.5 in accordance

with Eshelman and Schaffer [1].

2.2.2 Unimodal Normal Distribution Crossover (UNDX)

The UNDX operator is a multi-parent crossover operator for real-coded GA. The general UNDX

operator uses three parents to create one offspring. The offspring of the UNDX operator is

decided by the procedure shown in Fig.2.1.

The process begins by choosing parents o1, o2, and o3 by the selection process. After the parents

are selected, the midpoint op between parents o1 and o2 is located where

op =
1

2
(o1 + o2). (2.2)
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The differential vector is then calculated by

q = o2 − o1. (2.3)

The distance, Q, between the third parent, o3, and the line connecting o1 and o2 is calculated

using the following equation:

Q = |o3 − o1| ×

(
1−

(
(o3 − o1)T (o2 − o1)

|o3 − o1||o2 − o1|

))
. (2.4)

Finally, an offspring, oc, is created by the following equation:

oc = op + ξd+
n−1∑
i=1

ηieiQ, (2.5)

where ξ is a random number following the normal distribution N(0, σ2
ξ ). ηi are n − 1 random

number independently following a normal distributionN(0, σ2
η) and the vector ei, i = 1, . . . , n−1

is a normalized orthogonal vector. Recall that q is the differential vector, op is the midpoint,

and Q is given by (2.4). The recommend values [3] for the parameters of the UNDX operator

are based on numerical experiments where the variance of each normal distribution is σ2
ξ = 1

4

and σ2
η = (0.35)2

n
.

Figure 2.1: Schematic illustration and possible crossover region of UNDX (a) Selection parents
(b) Generate offsprings (c) The possible crossover regions of the UNDX.
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2.2.3 Proposed Crossover Method

Note that the number of offspring in the UNDX algorithm is less than the number of parents.

To increase the efficiency of the crossover, a new crossover operator is proposed as discussed in

following paragraphs.

The multi-modal distribution crossover (MMDX) algorithm starts by selecting four parents, o1,

o2, o3, and o4. The midpoint between parents o1 and o2, and and the midpoint between x3 and

x4 are calculated using the following equations:

op1 =
1

2
o1 + o2, (2.6)

op2 =
1

2
o3 + o4, (2.7)

where op1 is the midpoint between o1 and o2, and op2 is the midpoint between o3 and o4. The

differential vectors, q1 and q2, are given by:

q1 = o2 − o1, (2.8)

q2 = o4 − o3, (2.9)

After the set of parents is selected, The distance, Q1, between the third parent, o3, and line

connecting o1 and o2 and The distance, Q2, between the forth parent, o4, and line connecting

o1 and o2 are calculated by

Q1 = |o3 − o1| ×

(
1−

(
(o3 − o1)T (o2 − o1)

|o3 − o1||o2 − o1|

))
, (2.10)

Q2 = |o4 − o1| ×

(
1−

(
(o4 − o1)T (o2 − o1)

|o4 − o1||o2 − o1|

))
(2.11)

Likewise, The distance, Q3, between the first parent, o1, and the line connecting o3 and o4 and
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The distance, Q4, between the second parent, o2, and line connecting o3 and o4 are calculated:

Q3 = |o1 − o3| ×

(
1−

(
(o1 − o3)T (o1 − o3)

|o2 − o1||o4 − o3|

))
, (2.12)

Q4 = |o2 − o3| ×

(
1−

(
(o2 − o3)T (o4 − o3)

|o2 − o1||o4 − o3|

))
, (2.13)

Finally, four offspring oci where i = 1, . . . , 4 are generated by

oc1 = op1 + ξq1 +
n−1∑
i=1

η1ie1iQ1, (2.14)

oc2 = op1 − ξq1 +
n−1∑
i=1

η2ie2iQ2, (2.15)

oc3 = op2 + ξq2 +
n−1∑
i=1

η3ie3iQ3, (2.16)

oc4 = op2 − ξq2 +
n−1∑
i=1

η4ie4iQ4, (2.17)

where ξ is a random number following a normal distribution N(0, σ2
ξ ). ηi are n−1 random num-

bers independently following a normal distribution N(0, σ2
η), and the vector ei, i = 1, . . . , n− 1,

is a normalized orthogonal vector. The schematic illustration and possible crossover region of

the MMDX is shown in Fig.2.2. The possible region of the proposed crossover method com-

pared with the UNDX and the BLX with 2000 offspring is shown in Fig. 2.3. Figure 2.3 can

show the proposed crossover method have larger crossover region than the UNDX and BLX.

2.3 Investigation of Proposed Method by Solving Test

Functions

The efficiency of the GA with MMDX crossover is investigated by solving test function. The

results are compared with the GA with BLX and the UNDX crossover method. For the test

problem, the population number of GA is set to 300 and the generation is set to 500 with 20
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Figure 2.2: Schematic illustration and possible crossover region of the MMDX (a) Selection
parents (b) Generate offsprings (c) The possible crossover region of MMDX.

trials.

2.3.1 Formulation

The first problem is Rastrigin problem [5]. The feature of this function is this function is

multi-modal with low epistasis function. The definition of the Rastrigin problem is defined as

follows:

fRastrigin(x) = 200.0 +
20.0∑
i=1

[x2
i − 10.0cos(2πxi)]

− 5.12 ≤ xi ≤ 5.12, 1 ≤ i ≤ 20

(2.18)

The second problem is Rosenblock problem [5]. The feature of this function is this function is

multi-modal with high epistasis function. The definition of the Rosenblock problem is defined

as follows:

fRosenbrockFunction(x) =
20∑
i=2

[100(x1 − x2
i )

2 − (xi − 1)2]

− 2.048 ≤ xi ≤ 2.048, 1 ≤ i ≤ 20

(2.19)
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Figure 2.3: The comparison of distribution of individuals generated by the MMDX, UNDX and
BLX crossover method with 2000 offspring.

2.3.2 Results of Test Functions

The results are calculated by the average best of solution of these 20 trials. For the 20-

dimensional Rastrigin function, the proposed crossover method obtained the best average op-

timal solution of 0.051938 among all three crossover methods. The history of the best solution

for the 20-dimensional Rastrigin function is shown in Fig.2.4. The results could be show the

proposed crossover method could be used well for the multi-modal with low epistasis function.

The results of the 20-dimensional Rosenbrock function reveal that the proposed crossover

method obtains a best average optimal solution of 11.38014. The history of the best solu-

tion of the 20-dimensional Rosenbrock function is shown in Fig.2.5. However, the proposed

crossover method has slower converge than the UNDX. The results could be show the proposed

crossover method could be used well, but it has slow converge for the multi-modal with high

epistasis function.

The results from the test functions could be show the proposed crossover method could be used
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well for multi-modal function, but it has slow converge for strong epistasis function.
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2.4 Design Methods

2.4.1 Class-Shape Function Transformation Parameterization

The CST proposed by Kulfan and Bussoletti [7] represents a two-dimensional geometry con-

sisting of the product of a class function C(v/c), and a shape function, S(v/c), plus a term
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that characterizes the trailing edge thickness:

w

c
= C

(v
c

)
S
(v
c

)
+
v

c

∆zte
c
, (2.20)

where ∆zte is the trailing edge thickness, C(v/c) is given in generic form by

C
(v
c

)
≡
(v
c

)N1
[
1− v

c

]N2

for 0 ≤ v

c
≤ 1, (2.21)

and the shape function, S(v/c) is defined on the basis of the Bernstein binomials, by the

introduction of weight factor bi as follows:

S
(v
c

)
=

p∑
i=0

[
bi ·Ki,p ·

(v
c

)i
·
(

1− v

c

)p−i]
, (2.22)

where p is degree of the Bernstein binomials. And Ki,n is given as

Ki,p =
p!

i!(p− i)!
. (2.23)

Fig.2.6 shows the example of a CST airfoil using a second order polynomial, N1 = 1
2
, N2 = 1

with weight factors for the upper side of airfoil of .2 and 0.2, and for the lower side of airfoil of

-0.3 and -0.1.

2.4.2 Aerodynamics Evaluation

XFOIL [8, 9] was employed as the computational flow solver. In XFOIL, the inviscid pressure

distribution is modeled using a linear vortex strength distribution, while the viscous effects and

the development of the laminar-turbulent boundary layer are modeled using integral boundary

layer theory.
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Figure 2.6: Schematic illustration and possible crossover region of the MMDX (a) Selection
parents (b) Generate offsprings (c) The possible crossover region of MMDX.

2.4.3 Cover Rate

The cover rate (CR) [10] is the method to evaluate the distribution of the solutions in the

objective space. The value of CR is calculated by the following procedures. First, the width

of a set of non-dominated solutions of the archive is divided into K parts. Next, the number

ki of dominated domains that solutions exist in are counted. Finally, the CR is calculated by

iteration for all M objectives by following equation:

CR =
1

M

M∑
i=1

ki
K
. (2.24)

CR can be used to estimate the spread and diversity of a Pareto set in objective space and it

has valued between 0 and 1. When the valued of CR closed to 1, it means the Pareto set has

the highest diversity.

2.4.4 Parallel Coordinate Plot (PCP)

The parallel coordinate plot (PCP) is one of the statistical visualization techniques for dis-

playing high-dimensional data at a glance in a two-dimensional graph. To create the PCP, the



2.5. Formulation 27

attribute values in the design problem must be normalized to allow comparison in the same

axis. After the normalization, the axes are arranged in a parallel line. Generally, the distances

between one line and the next are equivalent. In this study, the normalization value pi from

the design variable dv is given below.

pi =
dvi − dvmini

dvmaxi − dvmini
, (2.25)

where dvmini represents the lower bound of the ith design variable and dvmaxi denotes the

upper bound of the ith design variable.

2.5 Formulation

The design problem considered in this study is the simultaneous minimization of drag (Cd)

and maximization of lift (Cl), with a search boundary of Cl from 0.6 to 1.8. The optimization

problem can be written as follows:

Maximize: Cl

Minimize: Cd

Subject to: 0.6 ≤ Cl ≤ 1.8

(2.26)

NSGA-II [11] was used to solve this multi-objective optimization problem. The BLX, the

UNDX, and the MMDX method are used to investigate the optimal design.

In this study, the Reynolds number is set to 106. The population number is set to 100 and the

generation number is set to 100 for NSGA-II execution.

The fifth order polynomial of the CST airfoil is used to generate the upper side and lower side

of the airfoil for this optimization problem. Thus, this case has ten parameters to define the

CST airfoil, and uses N1 = 1
2

and N2 = 1. The design space is defined by the weight factors

(bi) for the lower surface of the airfoil (dv1− dv5), and each factor is set from -0.3 to -0.1. For

the upper surface of the airfoil, bi (dv6− dv10) are also set from 0.1 to 0.3.
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Figure 2.7: Resulting non-dominated solutions of the CST problem.

2.6 Results and Discussion

Non-dominated solutions are compared with the initial design. This study chose NACA0012

for BLX, UNDX, and MMDX after the 100th generation, as shown in Fig. 2.7. The initial

design (NACA0012) obtained Cd = 0.0137 at Cl = 1.0. The solution showed that Cd was

reduced by 0.013 for MMDX and BLX, and 0.047 for UNDX compared with NACA0012.

Moreover, Cl improved by 0.433 for MMDX and BLX and 0.387 for UNDX compared with

NACA0012. This result suggested that MMDX can obtain solutions similar to the BLX method

and superior to that of the UNDX method, and all these solutions can obtain better solutions

than the initial point, which indicates that the algorithm can be used to design a high-efficiency

airfoil. The convergence of the MMDX method was faster than that of BLX, with crossover

occurring at approximately Cl = 1.6, as shown in Fig. 2.7. However, UNDX did not show

good non-dominated solution. Figs. 2.8(a)-(c) compare the history of the non-dominated

solutions obtained by BLX, UNDX, and MMDX. According to these figures, the solution that

was obtained by using the BLX and MMDX methods converged after the 80th generation. By

contrast, the solution obtained by using the UNDX method converged after the 40th generation,

and the non-dominated solutions did not advance. In addition, the solutions obtained by using

the BLX and MMDX methods showed better non-dominated solution than UNDX after the
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(a)

(b)

(c)

Figure 2.8: The history of non-dominated solutions after the 30th, 60th, 80th, 90th, and 100th

generation. (a) Solutions obtained by BLX, (b) Solutions obtained by UNDX, (c) Solutions
obtained by the MMDX method.
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(a)

(b)

(c)

Figure 2.9: Comparison of the history of metrics: (a) Hypervolume, (b) Maximum spread, (c)
Variance of Cover rate during the search.
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(a)

(b)

(c)

Figure 2.10: The PCP of the non-dominated solution at the 100th generation. (a) BLX (b)
UNDX (c) MMDX.
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30th generation. This result suggested that GA with BLX and MMDX could achieve better

exploration for the present airfoil design than UNDX. The history of metrics is shown in Figs.

2.9(a)-(c). Fig. 2.9(a) shows the hypervolume, and Fig. 2.9(b) shows the maximum spread

[11]. Fig. 2.9(c) shows the variance of CR during the search. According to Fig. 2.9(a), the

solutions that were obtained by using the MMDX and BLX methods converged after the 80th

generation, and the solutions obtained by using UNDX converged after the 40th generation. The

maximum spread also suggested that the MMDX method can maintain higher diversity than

the BLX and UNDX methods, as shown in Fig. 2.9(b). The variance of CR during the search

also suggested that the MMDX method can maintain higher diversity than others as shown in

Fig. 2.9(c). The figure also indicates that the MMDX method can obtain a higher maximum

CR value than the others. Most CR values that were obtained by using the MMDX method

were higher than those obtained by using the other methods, which indicates that the MMDX

method can obtain solutions with higher diversity than the UNDX and BLX methods. Thus,

the MMDX method, which demonstrates fast convergence while maintaining diversity, is more

suitable for real-world problems than the existing techniques, such as BLX and UNDX methods.

PCPs for the Pareto solution using the BLX, UNDX, and MMDX methods are shown in Figs.

2.10(a)-(c). The design space of the MMDX method was widely spread, as shown in Fig. 2.10.

Fig. 2.10 also suggests that the MMDX crossover can maintain higher diversity than the other

crossover methods, as shown in Figs. 2.9. Consequently, the MMDX method can maintain a

larger search space without early convergence, which allows a superior non-dominated solution

to be obtained.

2.7 Conclusion

This chapter investigated the effectiveness of the MMDX crossover method to solve a real-

world airfoil design problem. The fifth-order polynomial of CST airfoil representation was

employed. The MMDX method was developed for use with NSGA-II and combined with the

interactive program XFOIL. Results suggested that the MMDX method provided superior

solutions compared with the BLX and UNDX crossovers because the MMDX method can
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maintain higher diversity because of its larger search space. These results imply the possibility

of obtaining better solutions to real-world problems using the MMDX crossover method.
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Chapter 3

Multi-fidelity Efficient Global

Optimization using Hybrid Surrogate

Model

3.1 Introduction

In real-world design problems, computational costs such as those involved in high-fidelity com-

putational fluid dynamics (CFD) are high. The design of a helicopter rotor blade, shown in

Figure 1, is a complicated CFD problem that is computationally expensive. Dumont [1] used a

Reynolds-averaged Navier�Stokes simulation to design a helicopter blade for hovering, using

a gradient-based method. An optimum point was obtained; however, it was difficult to acquire

global design knowledge using metaheuristic approaches owing to their high computational

cost. Surrogate model-based optimization methods can overcome such problems in engineer-

ing design. Efficient global optimization (EGO), which is a kriging model-based method, was

proposed by Jones, Schonlau, and Welch [2]. EGO consists of an additional sampling-based

expected improvement (EI) that considers the uncertainty in models to improve their accuracy.

EIs evaluated based on kriging models were proposed as index values to obtain additional sam-

ples that could improve the accuracy of a surrogate model. However, the functions used to

36



3.1. Introduction 37

model real-world problems are often multi-modal. It is difficult to approximate these functions

accurately using a limited number of sample designs in cases of high-cost computation.

To construct accurate models for real-world design problems with computationally time con-

suming functions, multi-fidelity optimization [3-8] was investigated for improving their effi-

ciency. A multi-fidelity approach that combines high- and low-fidelity data can further improve

efficiency by significantly reducing the number of functions for high-fidelity evaluations, such as

those in CFD. Several multi-fidelity approaches and their applications were developed using a

co-kriging model [3, 4].A co-kriging model was employed to develop optimal airfoil designs [3].

Huang [4] used a co-kriging surrogate model, which could reduce the amount of high-fidelity data

used in the optimization process. In other words, it is difficult to approximate complex and ex-

pensive functions with few evaluations using a co-kriging method. A multi-fidelity optimization

method based on error estimation of the response surfaces using low- and high-fidelity functions

was used to design low-boom supersonic jets [5]. However, additional samples of high-fidelity

evaluations were not acquired. Thus, the global accuracy of high-fidelity functions could not

be ensured, particularly around the optimum points for complicated functions. A multi-fidelity

approach with a parameter-space reduction technique was applied for reducing the required

computational time for the CFD design of helicopter rotor blades[6]. This technique could re-

duce the design parameter space to define possible design ranges using a low-fidelity function.

Then, a high-fidelity function was used to determine the optimum design in the primary defined

design range. However, it is possible to obtain an optimal solution outside the parameter space

because the design ranges defined using the low-fidelity functions are not always appropriate

for high-fidelity functions. A multi-fidelity surrogate model was used to maximize the annual

energy production in a wind turbine design [7]. An optimal point for the low-fidelity function

was determined using a genetic algorithm (GA). Then, the optimization was performed using a

high-fidelity function and a gradient-based method, for which the optimum point obtained from

the low-fidelity optimization was used as the starting point. This method cannot obtain the

optimum for the high-fidelity function if the error between the low- and high-fidelity functions

is large. Multi-fidelity optimization, using the hybrid surrogate model-based response surface

method and the radial basis function (RBF) method, was developed by Sun in 2011 [8]. The
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authors successfully showed that this hybrid surrogate model improves the efficiency of the

surrogate model for the predicted complex function.However, this multi-fidelity optimization

procedure cannot perform additional sampling based on the uncertainty of data.

Figure 3.1: CFD example [9].

In this study, a hybrid surrogate model-based EGO, which could improve the efficiency and

accuracy in determining an optimum point using a high-fidelity function, is proposed and

investigated by applying it to a real-world problem. The proposed EGO uses a low-fidelity

function to construct a global model that can obtain the global landscape of a high-fidelity

function to evaluate local deviation. The global model is approximated by an RBF [10, 11]based

on a database of low-fidelity evaluations that can predict the multi-modal function. The RBF

can carry out highly accurate and smooth approximations to observe the landscape of a function

with large data sets. Because of this advantage, the RBF is used as the global model of the

hybrid surrogate model using local deviation evaluations by the kriging method. Local variances

are predicted using a correlation term obtained through the kriging method. The proposed EGO

is investigated by solving mathematical test problems and comparing the results with those of

the co-kriging-based and ordinary kriging-based EGOs. In addition, the proposed EGO is

applied to determine the optimal design of a primary helicopter rotor blade for hovering. The

optimization results are compared with those of the co-kriging-based and ordinary kriging-based
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EGOs.

3.2 Surrogate Model Methods for Multi-fidelity Opti-

mization

3.2.1 Kriging Method

An ordinary kriging model [12] can predict the unknown function ŷ(x) as

ŷ(x) = µ(x) + ε(x), (3.1)

where µ(x) is global model, and ε(x) denotes a local model. Sample points, x, are interpolated

using a Gaussian random function. The correlation between Z(xi) and Z(xj) is related to

the distance between the two corresponding points, xi and xj. The distance function between

points xi and xj is expressed as

d(xi,xj) =
n∑
k=1

θk|xki − xkj |2, (3.2)

where θk(0 ≤ θk ≤ ∞) is the kth element of the correlation vector parameter, n is the number

of high-fidelity samples. The correlation between the points xi and xj is defined as

Corr
[
Z(xi), Z(xj)

]
= exp

[
− d(xi,xj)

]
. (3.3)

Kriging prediction can be expressed as

ŷ(x) = µ+ rTR−1(F− µ̂), (3.4)

where Z(xi) represents a local deviation from the global model [13], F =
[
f(x1), f(x2), f(x3), ..., f(xn)

]T
is the value of the evaluated high-fidelity function at X = {x1,x2,x3, ...,xn}, R denotes the
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n× n matrix whose (i, j) entry is Corr
[
Z(xi), Z(xj)

]
, and r is the vector ith element is

ri(x) = Corr
[
Z(x), Z(xi)

]
. (3.5)

The unknown parameter, θ, for the kriging model can be estimated via maximum likelihood

estimation (MLE):

Ln(µ, σ2, θ) = −n
2

ln(σ2)− 1

2
ln(|R|). (3.6)

MLE is an m-dimensional unconstrained nonlinear optimization problem. In this article, a GA

[14] is used to solve this problem. For a given θ, σ2 can be defined as

σ2 =
(F− µ̂)TR−1(F− µ̂)

n
. (3.7)

µ(x) is assumed to be constant in the original Kriging model, and µ̂ is given by (3.8):

µ̂ = [µ(x), µ(x), µ(x), ..., µ(x)]T , (3.8)

µ(x) is defined as

µ(x) =
1TR−1F

1TR−11
. (3.9)

The mean square error s2(x) at a point x of this function can be calculated using the following

equation:

s2(x) = σ

[
1− rTR−1r +

1− 1TR−1F

1TR−11

]
, (3.10)

where 1 denotes an n-dimensional unit vector. Schematic illustration of the ordinary Kriging

model is shown in Fig. 3.2(a).

3.2.2 Hybrid Surrogate Model for a Multi-fidelity Approach

The proposed hybrid surrogate-model-based EGO for the multi-fidelity approach employs an

RBF to represent the global model, µ(x)+fr(x), based on a data set obtained from low-fidelity
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(a) (b)

Figure 3.2: Schematic illustration of a single-fidelity and multi-fidelity surrogate model. (a)
Ordinary Kriging model (b) Hybrid model.

evaluation. The hybrid surrogate model considered in this study can be expressed as

ŷ(x) = [µ(x) + fr(x)] + rTR−1(F− µ̂− FR). (3.11)

The local deviations rTR−1(F− µ̂− FR) are evaluated on the basis of a high-fidelity data set

using the kriging method, where F =
[
f(x1), f(x2), f(x3), ..., f(xn)

]T
is the value of the high-

fidelity function at X = {x1,x2,x3, ...,xn}; FR =
[
fr(x1), fr(x2), fr(x3), ..., fr(xn)

]T
. Note

that µ(x) is a mean value of the Gaussian process of the high-fidelity data, assumed to be

a constant value expressed by Equation (3.9), and the definition of µ̂ is given by Equation

(3.8). The RBF term of low-fidelity (fr(x)), predicted from the low-fidelity data, and can be

expressed as

fr(x) = a0 + a1fl(x), (3.12)

where fl(x) is a function predicted by an RBF using low-fidelity data, a0 and a1 are correlation

terms between the low-fidelity data and the high-fidelity data. Further, σ2 can be defined as

σ2 =
(F− µ̂− FR)TR−1(F− µ̂− FR)

n
. (3.13)

The unknown parameters (θ, a0, and a1) for the hybrid surrogate multi-fidelity model can be

estimated by MLE, as expressed by (3.6).
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Approximation of global model using RBF

An RBF [10, 11] can be used to approximate a function as follows:

fl(x) =
N∑
m=1

wmΦ(x− xm) (3.14)

where Φ(x) is a radial basis function, N is the number of low-fidelity sample points, and

wm(m = 1, 2, 3, ..., N) is a weighting function. A multi-quadratic function is applied as an

RBF in this study. The weighting function w = [w1, w2, w3, ..., wN ]T is determined from the

interpolation conditions

AW = FL (3.15)

where A =



a1,1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k

...
...

. . .
...

am,1 am,2 · · · am,k


, am,k = Φ(xm − xk), k = 1, 2, 3, ..., N,m = 1, 2, 3, ..., N

Here, FL =
[
f(x1), f(x2), f(x3), ..., f(xN)

]T
is the value of the low-fidelity function at X =

{x1,x2,x3, ...,xN}.

3.3 Efficient Global Optimization

3.3.1 Efficiency Global Optimization for single-fidelity optimization

The procedure of EGO [2] based on the ordinary Kriging method is illustrated in Figure 3.3(a)

that explained in the following paragraph.

• First, EGO is started with generated initial samples. In this study, Latin hypercube

sampling (LHS) [15] is employed.

• Second, sample data are evaluated and the model is predicted using the Kriging method.
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• Third, an arbitrary optimization method is used to find an additional point, x, by maxi-

mizing EI. The EI at point x can be expressed as

I(x) = max[fref − y(x), 0], (3.16)

E[I(x)] =

∫ fref

∞
(fref − y(x))φ(y(x))dy, (3.17)

where φ is the probability density function that represents uncertainty about y(x).

• Fourth, additional sampling based on EI, referred to as EGO, is repeated the optimization

process to second process until an objective function converges.

3.3.2 Efficiency Global Optimization for multi-fidelity optimization

Original EGO can be applied to the hybrid surrogate model given by Equation (11), because lo-

cal deviations are estimated using the Kriging method. The proposed EGO based on the hybrid

surrogate model is summarized in Figure 3.3(b) that explained in the following paragraph.

• First, the proposed EGO is started by acquiring initial samples for low-fidelity/inexpensive

functions. Low-fidelity sample data are used to predict a global model.

• Second, another set of samples, obtained using a high-fidelity function, are obtained. This

result is used to estimate local deviations using the Kriging method.

• Third, the multi-fidelity surrogate model, which can predict the value of an unknown

point (an approximation of the high-fidelity function), is generated. A GA with the

MMDX crossover method is used to find the maximum EI at point x by Eq.(3.16) and

(3.17).

• Fourth, additional sampling based on EI, referred to as EGO, is repeated the optimization

process to second process until an objective function converges.

In this work, the GA with the MMDX crossover method was used to search the maximize of EI

value because it design to find the optimum point of multi-modal function and the prediction
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function by surrogate model always multi-modal function. The GA with MMDX crossover

method has higher efficient than the GA with BLX and UNDX method. The search history

of maximize of EI value to find the first sampling of helicopter blade design problem with the

number of population is set to 100 and number of iteration is set to 100 is shown in Fig.3.4. It

can shown the GA with MMDX crossover method have higher converge compared to the GA

with BLX and UNDX method.

3.4 Investigation of Proposed Method by Solving Test

Functions

The efficiency of the proposed hybrid surrogate model�based EGO is investigated by solving

test functions. The results are compared with those of co-Kriging�based EGO and ordinary

Kriging-based EGO.

3.4.1 Formulation

In this study, four test functions are used. yh denotes a high-fidelity/expensive function and yl

denotes the low-fidelity/inexpensive function.

• Definition of the six-hump camel-back function (SC) is defined as follows:

minimize: yh(x1, x2) = sc(x1, x2)

yl(x1, x2) = sc(0.7x1, 0.7x1) + x1x2 − 65

sc(x1, x2) = 4x2
1 − 2.1x4

1 +
x6

1

3
+ x1x2 − 4x2

2 + 4x4
2

x1 ∈ [−2, 2], x2 ∈ [−2, 2]

(3.18)
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(a)

(b)

Figure 3.3: Flowchart of efficient global optimization. (a) Efficient global optimization (b)
Proposed EGO with multi-fidelity surrogate model.
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Figure 3.4: Search history of EI value for the first sampling of helicopter blade design problem.

• Definition of the Branin function (BR) is defined as follows:

minimize: yh(x1, x2) = br(x1, x2)− 22.5x2

yl(x1, x2) = br(0.7x1, 0.7x2)− 15.75x2 + 20(0.9 + x1)2 − 50

br(x1, x2) = 10 +

[
x2 −

5.1x2
1

4π2
+

5x1

π

]
+ 10cos(x1)

[
1− 1

8π

]
x1 ∈ [−5, 10], x2 ∈ [0, 15]

(3.19)

• Definition of the Himmelblau function (HIM) is defined as follows:

maximize: yh(x1, x2) = him(x1, x2)

yl(x1, x2) = him(0.5x1, 0.8x2) + x3
2 − (x1 + 1)2

him(x1, x2) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2

x1 ∈ [−3, 3], x2 ∈ [−3, 3]

(3.20)

• Definition of the Rosenbrock function (ROS) is defined as follows:
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minimize: yh(x1, x2, x3, x4) =
3∑
i=1

[
100(xi+1 − x2

i )
2 − (xi − 1)2

]
yl(x1, x2, x3, x4) =

3∑
i=1

[
100(0.5xi+1 − 0.6x2

i )
2 − (0.6xi − 0.5)2

]
x1 ∈ [0, 2], x2 ∈ [0, 2], x3 ∈ [0, 2], x4 ∈ [0, 2]

(3.21)

In each investigation, ten initial high-fidelity points, yh, and 200 low-fidelity points, yl, were

acquired using LHS. The number of iterations was set as ten for every test function.

3.4.2 Results of Test Functions

Figure 3.5 shows the comparison of additional sampling across the four methods. The proposed

hybrid surrogate-model-based EGO has the highest exploration performance; it obtained opti-

mal values with the fewest iterations in each case. As shown in Figure 3.5(a), a minimum value

of the SC minimization problem was obtained after the 7th iteration by the proposed hybrid

surrogate-model-based EGO, while minimum values were obtained after the 9th iterations using

the co-Kriging-based EGO, and the ordinary Kriging-based EGO could not obtain a minimum

value by the 10th iteration. Because this is a multimodal problem, this result suggests that the

proposed hybrid surrogate model-based EGO could increase diversity during the exploration

process to find the global optimum point for multimodal optimization problems. It is shown

that the proposed hybrid surrogate model could be more accurate than the surrogate model,

based on the optimum results which show that the proposed surrogate model can find the global

optimum point with the least number of iterations. Figure 3.5(b) shows that the proposed hy-

brid surrogate-model-based EGO obtained a minimum value for the BR minimization problem

after the 3rd iteration; this was faster than the ordinary Kriging-based EGO and the co-Kriging-

based EGO, which obtained minimum values after the 5th and 6th iteration, respectively. This

problem has a smooth landscape and is single modal. This result suggests that the proposed hy-

brid surrogate model-based EGO could maintain the performance of such functions via uniform

exploration. The result also shows that the co-Kriging method could converge later than other

methods because it is not good for smooth landscape functions. The proposed surrogate model
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could match the accuracy of the surrogate model for smooth landscape functions, unlike the

co-Kriging surrogate model, which could not maintain the accuracy of surrogate model for this

problem. According to Fig. 3.5(c), the proposed hybrid surrogate-model-based EGO obtained

a maximum value after the 3rd iteration; this was better than the ordinary Kriging-based EGO,

which could not obtain a maximum value after 10th iterations, and the co-Kriging-based EGO,

which obtained a maximum value after the 7th iteration. Since this problem has a compli-

cated landscape, the results of the proposed hybrid surrogate model-based EGO show that the

algorithm could obtain the optimum value while maintaining higher diversity. Figure 3.5(d)

shows that the proposed EGO found the minimum ROS value after the 4th iteration; this was

faster than the co-Kriging-based EGO and Kriging-based EGO methods, which obtained the

minimum value after the 5th and 6th iterations, respectively. Because this problem has a multi-

variable function, this result suggests that the proposed EGO could obtain the optimum point

with the least number of iterations for complicated shape function problems. It also shows that

the proposed hybrid surrogate model could be as accurate as the surrogate model compared

to other methods for multi-variable test functions. The hybrid surrogate model-based EGO

obtained the optimum value with the least iterations, as shown in Fig. 3.5, because it had the

highest accuracy among surrogate models for these test problems; the accuracy of surrogate

model could have helped the EGO process obtain the optimum solution earlier.

Figures 3.6�3.9 show the cross-validation [16, 17] results of the SC, BR, and HIM problems.

From Figure 3.6, the prediction by the proposed hybrid surrogate-model-based EGO is closest

to the exact values. This result suggests that not only the optimum points but also the global

trend could be represented more accurately by the proposed method than by the other methods.

According to Fig. 3.7, values predicted by the proposed hybrid surrogate model�based EGO

and the ordinary Kriging-based EGO show a smaller error. On the other hand, the result

obtained by the co-Kriging�based EGO shows the largest error. The function of the BR prob-

lem has a smoother landscape function than those of other problems; thus, a co-Kriging�based

method cannot predict the simple landscape function well. The result suggests that the mod-

elling with a co-Kriging method has possibility to achieve over-estimation, even if the exact

function is not multi-modal and peaky. One reason for this is that it predicts the global model
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and local deviations simultaneously by combining low-fidelity data and high-fidelity data. On

the other hand, a hybrid model predicts the global model, which shows the landscape of the

function with many low-fidelity samples, and local deviations, which show the detail variance

of the function by high-fidelity function separately. Thus, a hybrid method could represent

both multi-modal/complex functions and simple functions robustly. These results suggest that

the hybrid model may represent the unknown function in real world problem well, because the

global model is evaluated independently.

According to Fig. 3.8, the values predicted by the proposed hybrid surrogate model�based

EGO show smaller error than those predicted by the co-Kriging�based EGO and the ordinary

Kriging-based EGO globally. In particular, the results obtained by the ordinary Kriging-based

EGO did not qualify as an accurate prediction in this problem. These results suggest the

proposed hybrid surrogate model�based EGO is the most effective algorithm because it achieve

the fastest convergence and the least prediction error.

According to Figure 3.9, the predicted value of the proposed hybrid surrogate model-based

EGO show the fewest error than those of the co-Kriging based EGO and the ordinary Kriging-

based EGO globally. Results from the co-Kriging based EGO and Kriging based EGO could

not obtain an accurate prediction in this problem.

According to these results, the hybrid surrogate model-based EGO could be obtained the

optimum value with the fewest iteration that shown in Fig. 3.5 because the hybrid surrogate

model have highest accuracy of the surrogate model for these test problem and the accuracy

of surrogate model could be help the EGO process to obtained the optimum solution earlier.

These results suggest the proposed hybrid surrogate-model-based EGO is the most effective

algorithm because it achieved the fastest convergence and the fewest prediction errors.
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(a) (b)

(c) (d)

Figure 3.5: Additional sampling in each iteration. (a) SC problem (b) BR problem (c) HIM
problem (d) ROS problem.

3.5 Application of Proposed Method to Helicopter Blade

Design

The proposed hybrid surrogate model�based EGO was also applied to a complex real world

problem�helicopter rotor blade design. The co-Kriging�based EGO and the ordinary Kriging-

based EGO are also applied, and results are compared with that obtained by the proposed

hybrid surrogate model�based EGO. The aerodynamics of the helicopter blade is calculated

by the low-fidelity and high-fidelity method. Then, the efficiency of the helicopter blade can
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(a)

(b)

(c)

Figure 3.6: Cross validation of SC problem. (a) Hybrid surrogate-model-based EGO (b) Co-
Kriging-based EGO (c) Ordinary Kriging-based EGO.
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(a)

(b)

(c)

Figure 3.7: Cross validation of BR problem. (a) Hybrid surrogate-model-based EGO (b) Co-
Kriging-based EGO (c) Ordinary Kriging-based EGO.
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(a)

(b)

(c)

Figure 3.8: Cross validation of HIM problem. (a) Hybrid surrogate-model-based EGO (b)
Co-Kriging-based EGO (c) Ordinary Kriging-based EGO.
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(a)

(b)

(c)

Figure 3.9: Cross validation of ROS problem. (a) Hybrid surrogate-model-based EGO (b)
Co-Kriging-based EGO (c) Ordinary Kriging-based EGO.
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be evaluate by a metric called �figure of merit (FOM)� expressed as,

FOM =
C

3
2
T√

2CP
=
T
√
T/2ρπR2

P
, (3.22)

where CT is the thrust coefficient that given as CT = T
ρAΩ2R2 , CP is the power coefficient that

given as CP = P
ρAΩ3R3 , T is the thrust, ρ is the air density, R is the rotor radius, P is the actual

power required to hover, A is the rotor disk area, and Ω is the angular velocity.

3.5.1 Evaluation Methods

To calculate low-fidelity aerodynamics, the blade element momentum theory (BEMT) [18, 19]

is applied. To calculate high-fidelity aerodynamics, a Navier�Stokes solver is applied around

the blades.

High-fidelity/expensive Evaluation using CFD

Reynolds-averaged Navier�Stokes (RANS) equations are used as the governing equations with

the Spalart�Allmaras model [20]which is widely used as a turbulent model for CFD around

aircraft. The governing equations are shown in following equation:

∂

∂t

∫
V(t)

WdV +

∮
S

(t)
(
Gi −Gv

)
· ndS = 0 (3.23)

where W =


ρ

ρv

ρe

, Gi =


(v − ẋ) · nρ

(v − ẋ) · nρv + p · n

(v − ẋ) · nρe+ pv · n,

, Gv =


0

τ · n

(τ · v − q) · n

, ρ is the density,

v is velocity vector, ẋ is velocity of moving particle, n is unit vector, p is pressure, e is unit vector

of summation of energy, q is average Reynold of heat flow velocity and τ is deviatoric stress

tensor. Overlapped grid method [21], in which grids around the blades automatically deform

based on the shape design and their rotation, is employed. The computation grid for rotating

domain (grid around blade) and the computation grid for all domains are separately generated
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as shown in Fig. 3.10. In this study, �rFlow3D� [22, 23] developed in Japan Aerospace

Exploration Agency (JAXA) is employed. For time-accurate unsteady flow simulations, a dual-

time stepping method is applied to time integration of the domain for a blade, and the lower-

upper symmetric-Gauss-Seidel (LU-SGS) method [24] is selected for pseudo-time integration.

The fourth-order Runge�Kutta method is adopted for time integration on the background

mesh. For the numerical flux, the modified simple low-dissipation AUSM (mSLAU) scheme

[21], which is based on the SLAU scheme [25] is employed for application to the rotary wings.

The numerical flux for two-dimensional flow is given as:

F̃ =
ṁ+ |m|

2
Φ+ +

ṁ− |m|
2

Φ− + p̃N

Φ = (1, u, v, h)T

N = (0, xn, yn, 0)T

h = (e+ p)/ρ

(3.24)

where xn, yn are Cartesian components of a normal vector from the left to the right, u and

v are velocities in x, y directions, e is total energy of unit volume, and ṁ is mass flux. The

SLAU is used because it can used for wide speed range from low Mach number to high Mach

number. In the helicopter blade simulation, the flow velocity at the tip blade is always high

Mach number and the flow velocity at the root blade is always low Mach number. From the

problem of the helicopter blade simulation, the SLAU is one of a good numerical flux for CFD

simulation. The fourth-order compact monotonic upstream-centered scheme for conservation

laws (MUSCL) total validation diminishing (TVD) scheme [26] is used to reconstruct flow field

values to realize a fourth-order spatial accuracy. The example of the CFD flow-field is shown

in Fig. 3.10(c). The computational time to evaluate the FOM for each design by present CFD

is approximately 72 h.
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(a)

(b)

(c)

Figure 3.10: Helicopter computation grid. (a) Grid around blade (b) Grid in stationary domain
(c) Example of flow-field around rotor blades generated using CFD.
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Evaluation using Blade Element Momentum Theory as a Low-fidelity/cheap Func-

tion

In a past study, the blade element momentum theory (BEMT) [18, 19] was developed to estimate

the blade performance of a helicopter rotor blade in a short time. The blade is firstly divided

into several sections. Sections are assumed as airfoil to calculate the forces on each cross section

independently. To find the inflow distribution (λ) considering hovering, the momentum theory

is first used through the following equation:

λ =
sa

16

[√
1 +

32

sa
Θr − 1

]
(3.25)

where a is the two-dimensional lift-curve of the slope rotary wing section; Θ is the pitch angle;

r is the blade radial coordinate; s is called solidity, which can be obtained from

s =
Bc

πr
(3.26)

B is the number of rotary wings, c is chord length at each cross section; and R is the radius of

rotary wing. Then, the inflow angle (Φ) is calculated for each section as

Φ = tan−1

(
λ

Ωr

)
(3.27)

Figure 3.11 shows definitions of each parameter. Sectional forces, the lift, L, and drag, D, are

calculated as

L =
1

2
ρU2cCl, (3.28)

D =
1

2
ρU2cCd, (3.29)

where ρ is the air density, U is the resultant velocity magnitude, Cl is lift coefficient, and Cd

is drag coefficient. Cl and Cd could be defined by using the experiment data table of HART-II

model, U is also shown in Figure 3.11; it can be computed from

U =
√
u2
p + u2

t (3.30)
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where ut is the air velocity of a blade section tangential to the disk plane and up is the air

velocity of a blade section perpendicular to the disk plane. The normal force (Fz) and the

longitudinal force (Fx) can be calculated as

Fz = LcosΦ−DsinΦ (3.31)

Fx = LsinΦ +DcosΦ (3.32)

The elemental thrust, torque, and power on the rotor are

dT = BFzdr (3.33)

dQ = BFxrdr (3.34)

dP = ωdQ = BFxrωdr (3.35)

The FOM can be defined as in (3.22).

BEMT expressed by Eqs. (3.33)� (3.35) applied the lifting-line theory result, regardless of the

approximation of fact that the theory breaks down near the blade tips. Therefore, the tip-loss

effect is implemented using Prandtl�s tip loading (Fpl), which is given by

Fpl =
2

π
cos−1e(r−1)N/2λ (3.36)

To combine this with BEMT, the induced velocity in hover from (3.23) becomes

λ =
sa

16Fpl

[√
1 +

32Fpl
sa

Θr − 1

]
(3.37)

Prandtl’s tip loading is effective to estimate the reduction effect of the FOM. This study uses

Eq. (3.37) instead of Eq. (3.25).
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Figure 3.11: Blade section aerodynamics.

The Comparison of High-fidelity data and Low-fidelity Data

This chapter show the relationship between the high-fidelity by CFD and the low-fidelity data

by BEMT. The relationship was compared by the FOM value of the ten initial samples by

CFD and BEMT in Fig.3.12. This relationship shows the low-fidelity data and high-fidelity

data have the same trend. From this relationship can conclude the low-fidelity data by BEMT

is possible to predicted the trend of the high-fidelity data by CFD.

Figure 3.12: Comparison of the high-fidelity data by CFD and the low-fidelity data by BEMT.

3.5.2 Definition of Blade Geometry and Design variables

The standard helicopter model, HART-II [27, 28] is used in this investigation. The distribution

of twist angles is designed as shown in Fig. 3.13(a). Three control points are allocated on the
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1/4th chord line. The location in the spanwise direction and values of the control points are

used as design parameters. Values of the design parameter between each control points are

calculated with the cubic spline formulation [29] expressed as follows:

f(x) = b+ cx+ dx2 + ex3 (3.38)

For 0 ≤ h ≤ 0.5 (twist angle between 0.75 and 0.875 of chord length), the controlled parameter

(b, c, d and e) can be defined by the following equation:



1 0 0 0

1 h1 h2
1 h3

1

0 1 0 0

0 0 2 6h1





b

c

d

e


=



Θ1

Θ2

0

0


(3.39)

For 0.5 ≤ h ≤ 1.0 (twist angle between 0.875 and 1.0 of chord length), the controlled parameter

(b, c, d and e) can be defined by the following equation:



1 h1 h2
1 h3

1

1 1 1 1

0 1 2h1 3h2
1

0 0 2 6





b

c

d

e


=



Θ1

Θ2

dΘ1

dh

0


(3.40)

The cubic spline from Eq.(3.38) is used to control the twist distribution between the controlled

point. This chapter deals with the two-parameter design problem to controlled the twist angles

at the point that shown in Fig. 3.13(a), with Θ1 defined at 0.875R and Θ2 defined at 1.0R,

while Θ0, which is the twist 75% span, is fixed to zero. In addition h1 is given as 0.5. The

definitions of h1 and h are shown in Fig. 3.13(b). Thus, two parameters, Θ1 and Θ2, are

controlled to define the geometry of the blade. The ranges of the design parameters are defined

as
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−10.0◦ ≤ Θ1 ≤ 10.0◦,

−10.0◦ ≤ Θ2 ≤ 10.0◦.

(a)

(b)

Figure 3.13: Definition of glade geometry: (a) control points, (b) controlled parameters.
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Table 3.1: Blade properties.

Target thrust [N ] 5835.578
Rotation speed [rpm] 1041.0

Number of blades - 4
Rotor radius [m] 2.0
Chord length [m] 0.121

Airfoil - NACA23012

3.5.3 Objective Function and Calculation Condition

In this study, FOM maximization for hovering flight is considered.

Maximize: FOM

Subject to:− 10.0o ≤ Θ1 ≤ 10.0o

− 10.0o ≤ Θ2 ≤ 10.0o

(3.41)

Blade properties are shown in Table 3.1. For a multi-fidelity design using the hybrid surrogate

model and co-Kriging model, the number of initial samples for the high-fidelity/expensive

function is set to 10, and the number of initial samples for the low-fidelity/cheap function is 200.

The Reynolds number at the blade tip is 2×106. For single-fidelity using ordinary Kriging-based

EGO, the initial high-fidelity model is constructed with 10 samples. The additional sampling

of this problem is set to 6.

3.5.4 Results

Additional samples from the methods are compared as shown in Figure 3.14. Fig. 3.14 shows

that the proposed hybrid model�based EGO and the co-Kriging�based EGO can obtain

designs which have a higher FOM than that obtained by the ordinary Kriging-based EGO. In

particular, the proposed hybrid surrogate model�based EGO attained the design earlier than

the co-Kriging�based EGO. As seen in Fig. 3.15, the hybrid method found an optimal point

in the 4th iteration, with an FOM = 0.769, which is better than an optimal point found by the

co-Kriging�based EGO (found in 6th generation, FOM = 0.767) and an optimal point found
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Figure 3.14: Additional sampling in each iteration of the helicopter design problem.

by the ordinary Kriging-based EGO (found in 6th generation, FOM = 0.765). Figure 3.15

shows the history of design variables of additional samples. According to Fig. 3.15, exploration

by the proposed hybrid surrogate model�based EGO shows higher diversity than the others,

especially for the design variable Θ2. The average value of additional samples of the proposed

hybrid model-based EGO is obtained FOM = 0.765, better than the co-Kriging EGO that

obtained FOM = 0.763 and the ordinary Kriging-based EGO that obtained FOM = 0.763.

These results can show the proposed hybrid model-based EGO could be reduced the high-fidelity

computation time.

Figure 3.16 shows comparisons of contour plots that show the relationship between FOM and the

design parameters for the proposed hybrid surrogate-model-based EGO, the co-Kriging-based

EGO, and the ordinary Kriging-based EGO. According to Figure 3.16, the optimal designs

found by the proposed hybrid surrogate-model-based EGO, the co-Kriging-based EGO, and

the ordinary Kriging-based EGO appeared in the same range: Θ1 around −5.0◦ to 0.0◦ and Θ2

around −5.0◦ to −10.0◦.

Figure 3.17 shows the cross-validation results. It is found that a value predicted by the proposed

hybrid surrogate model�based EGO could be obtained the lowest error not only in high density

data due to the additional sampling. This result also shows that the cross-validation data by

the proposed hybrid surrogate model�based EGO has smaller error at low data density than

results by the co-Kriging�based EGO.
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(a)

(b)

Figure 3.15: The history of the additional samples discovery. (a) Θ1 (b) Θ2.
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(a)

(b)

(c)

Figure 3.16: The multi-fidelity relationship contour of the design parameters (Θ1 and Θ2 )
and FOM. (a) Hybrid surrogate-model-based EGO (b) Co-Kriging-based EGO (c) Ordinary
Kriging-based EGO.
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(a)

(b)

(c)

Figure 3.17: Cross validation of helicopter design problem. (a) Hybrid surrogate-model-based
EGO (b) Co-Kriging-based EGO (c) Ordinary Kriging-based EGO.
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(a)

(b)

Figure 3.18: Twist distribution of optimal designs. (a) Full length (b) r/R = 0.7´1.0.
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Figures 3.18 shows twist distribution of optimal shapes by the proposed hybrid surrogate

model�based EGO, the co-Kriging�based EGO, and the ordinary Kriging-based EGO. The

optimal result obtained by the proposed hybrid surrogate model�based EGO (FOM = 0.771

at Θ1 = -1.70 and Θ2 = -8.16) is better than the optimal result obtained by the ordinary

Kriging-based EGO method (FOM = 0.770 at Θ1 = -2.24 and Θ2 = -6.69) and the optimal

result obtained by the ordinary Kriging-based EGO (FOM = 0.768 at Θ1 = -1.36 and Theta2

= -9.68). Owing to this prediction accuracy, the optimal design can be obtained fastest by the

proposed hybrid surrogate model�based EGO.

3.6 Conclusion

This study investigated a hybrid surrogate model based on a multi-fidelity efficient global

optimization method. The proposed hybrid surrogate model�based EGO used a radial basis

function to predict a global model, and an ordinary Kriging-based EGO was used to predict

a local variance. For multi-fidelity optimization, a global model is constructed using a dataset

evaluated using a low-fidelity/cheap function, and a local variance is estimated using a dataset

evaluated using a high-fidelity expensive function.

To examine the proposed hybrid surrogate model�based EGO, four test functions are solved,

and the results obtained by the proposed hybrid surrogate model�based EGO are compared

with those obtained by the co-Kriging model�based EGO and ordinary Kriging-based EGO.

The optimization results for the test functions show that the proposed hybrid surrogate model-

based EGO achieved higher accuracy compared to the surrogate model, co-Kriging, and Kriging-

based EGO methods for each test function. In addition, the results from the proposed EGO

could obtain the optimum value with the least number of iterations for every test function.

For this reason, the proposed EGO can reduce the number of high-fidelity functions in the

optimization process. It is suggested that the proposed hybrid surrogate model�based EGO

can achieve robust exploration.

The proposed hybrid surrogate model�based EGO is also applied to aerodynamic optimiza-
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tion of a helicopter�s blade shape. To evaluate aerodynamic performance, the blade element

momentum theory is used to construct a low-fidelity/cheap dataset, and the Navier�Stokes

solver is used to construct a high-fidelity dataset. Results by the proposed hybrid surrogate

model�based EGO method are compared with those by the co-Kriging�based EGO and or-

dinary Kriging-based EGO. The results of the aerodynamic design problem also show that

the proposed hybrid surrogate model�based EGO could design a better blade shape from

the perspective of aerodynamic efficiency. The convergence of the proposed hybrid surro-

gate model�based EGO was the fastest compared with other methods. In addition, the er-

ror between the exact value and predicted value obtained by the hybrid surrogate model is

smaller than those by other methods. These results suggest that the proposed hybrid surrogate

model�based EGO is suitable for real-world design problems.
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Chapter 4

Multi-objective/multi-fidelity Efficient

Global Optimization

4.1 Introduction

To solve aerodynamic design problems is one of a very complicated problem because of it always

has high-cost computation function and always has many objective targets for design condition

[1, 2]. For example, when to design the aircraft, the computation cost is very expensive and the

designer must be thinking about the performance of aircraft for every operation speed, such as

the take-off condition, the cruising condition, or the landing condition. Due to these problems,

most of the researcher try to reduce the computation cost and the optimization algorithm must

be can find the optimum design for multi/many-objective optimization problem.

Fortunately for aerodynamic design problems, aerodynamic design problems have a lot of com-

putation level to solve in one design [3]. For example, aerodynamic forces for airfoil design

could be determined by a panel method for low level computation [4] or a Navier-Stokes com-

putation for high level computation [5]. From this advantage, most of researcher try to combine

the multi-fidelity to increase the efficiency of optimization process. A multi-fidelity approach

with multi-fidelity surrogate model is one of popular way to combine the multi-fidelity func-

tion. Multi-fidelity optimization methods based on the error estimation of response surfaces

74
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using low-fidelity and high-fidelity functions were successfully applied to design low-boom su-

personic jets [6]. A co-Kriging model [7, 8] have been widely studied to combine multi-fidelity

functions. A co-Kriging model was employed to solve optimal airfoil design. However, a co-

Kriging method isn�t good to predict the smooth landscape function. Another one technique

of multi-fidelity optimization process is proposed by Rethore for wind turbine designs [9, 10].

This optimization process start with found an optimal point of a low-fidelity function using a

genetic algorithm (GA). Then, they performed an optimization with a high-fidelity function

using a gradient-based method, using the optimum point of the low-fidelity optimization result

as a starting point. This method may fail to find the optimum high-fidelity function if the error

between the low-fidelity and high-fidelity function is large.

One of alternative way to solve the multi-fidelity multi-objective optimization problem is using

model reduction technique [11, 12]. A multi-fidelity multi-objective optimization approach

with a parameter space reduction technique was applied to design the helicopter rotor blade

and airfoil design. This technique reduced the design parameter space to define possible design

ranges with a low-fidelity function. Then, a high-fidelity function was used to find the optimum

design in the primary defined design range and the sampling of high-fidelity function was chose

by selected the interested design points of non-dominated solutions plus the initial point that

generated with primary defined design range. However, it has the potential to obtain an

unexpected optimal solution outside the parameter space because the design ranges of the

low-fidelity function are not always appropriate for the high-fidelity function.

The most popular way to solve the expensive function optimization problem are using effi-

ciency global optimization (EGO) [13], which uses Kriging model based exploration. EGO has

additional sampling-procedure-based expected improvement (EI) that consider the uncertainty

of models to improve the accuracy of the models. However, the Kriging model based EGO

with EI isn’t a good alternative way to solved the multi/many-objective optimization problem,

because the EI is design for single objective optimization. The expected hypervolume improve-

ment (EHVI) [14, 15] were successfully developed from the basic idea of EI that consider the

uncertainty of models to improvement the accuracy of the models for multi/many-objective op-

timization problem. However, there is no report for multi-fidelity many-objective optimization
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technique.

In this chapter, a multi-fidelity optimization by a hybrid surrogate-model-based EHVI that can

improve the efficiency and accuracy to finding the optimum point evaluated by a high-fidelity

function is proposed, and its applied to airfoil design problems. The hybrid surrogate-model-

based EHVI considered in this study uses a low-fidelity function to construct a global model that

can show the global landscape of the function and a high-fidelity function to evaluate a local

deviation. The global model is approximated by a radial basis function (RBF) [16, 17] based on

a database of low-fidelity evaluations that can predict the multi-modal function. Local variances

are predicted using a correlation term using a Kriging method [18]. The proposed hybrid-

surrogate-model-based EHVI is applied to find the multi/many objective airfoil optimization

problem. The objective of this studied is set to two to four objective airfoil design problems.

Results of the optimization are compared with an ordinary Kriging-based EHVI.

4.2 Efficient Global Optimization for Multi-objective Prob-

lem

The procedure of EGO with the ordinary kriging model is illustrated in Fig. 4.1(a). The EGO

process has been similar to the EGO for single-fidelity based single-objective problem that

explained in Section 3.3.1. However, an arbitrary optimization method can be used to find an

additional point by maximizing an EHVI [14, 15] instead of an EI.

The EHVI at a point can be expressed as

EHV I[f1(x), f2(x), ..., fM(x)] =∫ fref1

−∞

∫ fref2

−∞
...

∫ frefM

−∞
HV I[f1(x), f2(x), ..., fM(x)]× φ1(F1)φ2(F2)...φM(FM)dF1dF2...dFM ,

(4.1)

where Fi denotes the Gaussian random variable N [f̂i(x), ŝ2
i (x)]. φi(Fi) is the probability density
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function, and frefi is the reference value used for calculating the hypervolume. The maximiza-

tion of EHVI is considered as the updating criterion to determine the location of an additional

sample point. In this study, the hypervolume is calculated on the basis of HypE, a hypervolume

estimation algorithm for multi-objective optimization [19].

The basic idea of the original EGO, namely EHVI-based explanation, can also be applied to

the hybrid surrogate model expressed in (4.1), because local deviations are estimated using

the kriging method. The procedure of EGO with the hybrid surrogate model proposed in this

study is shown in Fig. 4.1(b). The EGO process has been similar to the EGO for multi-fidelity

based single-objective problem that explained in Section 3.3.2. A GA [20] is used to find the

maximum EHVI point, x. In this study, the roulette wheel method was used in the selection

process, blend crossover (BLX)-0.5 [21] was used in the crossover process, and uniform mutation

[22] with a mutation rate of 0.1 was used in the mutation process.

4.3 Investigation of Proposed Method by Solving Test

Functions

4.3.1 Formulation

The proposed multi-objective multi-fidelity EGO is investigated by solving two test functions;

one has two objective functions and the other has three objective functions. The results are

compared with those of a kriging-based multi-objective EGO. The high-fidelity function is

denoted by f and the low-fidelity function is denoted by fl.
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(a)

(b)

Figure 4.1: Flowchart of efficient global optimization. (a) Efficient global optimization (b)
Proposed EGO with multi-fidelity surrogate model.
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Definition of two-objective optimization problem from Van Valedhuizens test suite [23]:

Minimize: f1(x1, x2, ..., x5) = 1− exp
(
−

5∑
i=1

(xi − 1/
√

5)2
)

Minimize: f2(x1, x2, ..., x5) = 1− exp
(
−

5∑
i=1

(xi + 1/
√

5)2
)

fl1(x1, x2, ..., x5) = 1− exp
(
−

5∑
i=1

(0.5xi − 0.05− 1/
√

5)2
)

fl2(x1, x2, ..., x5) = 1− exp
(
−

5∑
i=1

(0.75xi + 0.2 + 1/
√

5)2
)
.

(4.2)

The design space of this problem is x1, x2, ..., x5 ∈ [−2.5, 2.5].

Definition of the DTLZ2 three-objective optimization problem [25]:

Minimize: f1(x1, x2, ..., x5) = (1 + g)cos(0.5xiπ)cos(0.5x2π)

Minimize: f2(x1, x2, ..., x5) = (1 + g)cos(0.5x1π)sin(0.5x2π)

Minimize: f3(x1, x2, ..., x5) = (1 + g)sin(0.5x1π)

g =
5∑
i=3

(xi − 0.5)2

fl1(x1, x2, ..., x5) = (0.5 + 1.5gc)cos(0.6xiπ)cos(0.4x2π)

fl2(x1, x2, ..., x5) = (0.3 + 1.2gc)cos(0.4x1π)sin(0.6x2π)

fl3(x1, x2, ..., x5) = (0.4 + 1.3gc)sin(0.5x1π)

gc =
5∑
i=3

(0.8xi − 0.3)2.

(4.3)

The design space of this problem is x1, x2, ..., x5 ∈ [0, 1].

In each investigation, 10 initial high-fidelity points, f , and 150 low-fidelity points, fl, were

acquired by LHS. The number of iterations was set to 30 for each test function.
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4.3.2 Two-objective Test Function Results

The solution space acquired by the proposed multi-fidelity/multi-objective EGO is compared

with that acquired by the single-fidelity/multi-objective EGO as shown in Fig. 4.2. Because

the single-fidelity/multi-objective EGO finds local optimum points at the beginning of the

optimization process, the solution for additional samples stalls earlier. On the other hands, the

developed multi-fidelity/multi-objective EGO can find a solution close to the global optimum

solution of this multi-objective optimization problem. The histories of the hypervolumes of the

two methods are compared in Fig. 4.3. These results also indicate that the proposed multi-

fidelity/multi-objective EGO provides better solutions which shows higher diversity because

its hypervolume is larger than that of the single-fidelity/multi-objective EGO. In addition,

comparisons of the hypervolumes show that the solution of additional samples by the single-

fidelity/multi-objective EGO continues to stall at earlier.

(a) (b)

Figure 4.2: Initial sampling data and additional sampling data: (a) multi-fidelity approach, (b)
single-fidelity approach.

Comparing non-dominated solutions of the proposed multi-fidelity/multi-objective EGO and

the single-fidelity/multi-objective EGO as shown in Fig. 4.4. it suggests that the proposed

multi-fidelity/multi-objective EGO obtains better solutions than the single-fidelity/multi-objective

EGO, because the non-dominated solutions of the former can dominate all the non-dominated

solutions of the latter.
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Figure 4.3: Hypervolume comparison of multi-fidelity approach and single-fidelity approach.

Figure 4.4: Non-dominated solution of two-objective optimization test problem.
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The developed approach The single-fidelity

(a)

The developed approach The single-fidelity

(b)

Figure 4.5: Cross-validation results: (a) result of f1, (b) result of f2.
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To investigate the reason of superiority of the proposed multi-fidelity/multi-objective EGO,

the cross-validation [24, 25] of f1 and f2 were compared, as shown in Figs. 4.5. It can be

seen that the linear regression line nearly coincides with the predicted line in the case of the

proposed multi-fidelity/multi-objective EGO. Thus, the multi-fidelity surrogate model achieves

higher accuracy than the single-fidelity surrogate model. More specifically, the proposed multi-

fidelity/multi-objective EGO achieves higher accuracy because the data set obtained by low-

fidelity evaluation enables the surrogate model to predict the solution in the uncertainty region.

4.3.3 Three-objective Test Function Results

Further, all the samples acquired by the two methods (the proposed multi-fidelity/multi-

objective EGO and the single-fidelity/multi-objective EGO) are compared as shown in Fig.

4.6. In addition, the non-dominated solutions of the two methods are compared in Fig. 4.7.

According to these results, the proposed multi-fidelity/multi-objective EGO and the single-

fidelity/multi-objective EGO have similar non-dominated solutions. However, the results of the

multi-fidelity/multi-objective EGO are better than those of the single-fidelity/multi-objective

EGO because some of the results of additional sampling by the single-fidelity/multi-objective

EGO stall at local optimum points. The hypervolumes of the two methods are compared in

Fig. 4.8. The hypervolume of the proposed multi-fidelity/multi-objective EGO gives better

solutions than that of the single-fidelity/multi-objective EGO. These results indicate that the

proposed multi-fidelity/multi-objective EGO has a higher convergence rate than the single-

fidelity/multi-objective EGO. The solution of the proposed multi-fidelity/multi-objective EGO

converges after 18 iterations with a larger hypervolume, whereas the solution of the single-

fidelity/multi-objective EGO converges after 23 iterations.

The cross-validation results for f1, f2, and f3, are shown in Fig. 4.9. The results indicate that

the multi-fidelity surrogate model can achieve higher accuracy than the single-fidelity surrogate

model for f1 and f2. Moreover, the results show that the non-dominated solution of the multi-

fidelity/multi-objective EGO has a higher convergence rate because of the higher accuracy of

the multi-fidelity surrogate model. With regard to f3, a comparison between the multi-fidelity
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f1 vs. f2 f1 vs. f3 f2 vs. f3

(a)

f1 vs. f2 f1 vs. f3 f2 vs. f3

(b)

Figure 4.6: Initial sampling data and additional sampling data: (a) multi-fidelity approach, (b)
single-fidelity approach.

f1 vs. f2 f1 vs. f3 f2 vs. f3

Figure 4.7: Comparison of non-dominated solutions of three-objective optimization test prob-
lem.
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Figure 4.8: Hypervolume comparison of multi-fidelity approach and single-fidelity approach.

and single-fidelity surrogate models shows that the two methods have similar accuracy because

f3 has a simpler shape than f1 and f2.

4.4 Airfoil Design Problem

The proposed multi-fidelity/multi-objective design method discussed in Section 3 was also in-

vestigated by solving two UAV airfoil design problems ,which have the chord length 1 meter

[1], as real-world design problems.

4.4.1 Formulation

Two-objective case

The first problem has two objectives: minimize the aerodynamic drag force (Cd) at cruise speed,

which requires a target lift of 0.5, and maximize the airfoil thickness at 75% of the chord length

(t75), which can be obtained directly by the real function because it can be calculated rapidly.

In this case, the airfoil thickness needs to be predicted by the surrogate model because the

EGO process must find the additional sampling point based on the uncertainty of the model.
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The developed approach The single-fidelity

(a)
The developed approach The single-fidelity

(b)
The developed approach The single-fidelity

(c)

Figure 4.9: Cross-validation of f3: (a) multi-fidelity approach, (b) single-fidelity approach.
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Thus, two surrogate models are constructed. The optimization problem can be expressed as

Minimize: Cd at Re = 4× 106,Ma = 0.3, Cl = 0.5

Maximize: t75

(4.4)

The number of initial samples for the high-fidelity/high-cost function is set to 10, and the

number of low-fidelity/low-cost functions for the multi-fidelity surrogate model is 150. Further,

the number of additional samples for this problem is set to 30. In this problem, the EHVI from

(4.1) is modified to

EHV I =

∫ Cd,max

−∞
HV I[Cd, t75]× φ1(Cd)dCd, (4.5)

where f1(x) is Cd and f2(x) is t75.

Three-objective case

The second problem has three objectives: minimize Cd at cruising speed, maximize t75, and

maximize the lift coefficient (Cl) in the landing condition at an angle of attack of 5.0o. In this

problem, the hybrid surrogate model is used to predict Cd and Cl. Further, t75 can be directly

obtained by the real function. The optimization problem is expressed as

Minimize: Cd at Re = 4× 106,Ma = 0.3, Cl = 0.5

Maximize: t75

Maximize: Cl at Re = 2× 106,Ma = 0.15

(4.6)

The number of initial samples for the high-fidelity/high-cost function is set to 10, and the

number of low-fidelity/low-cost functions for the multi-fidelity surrogate model is 150 (for Cd

and Cl prediction only). Further the number of additional samples for this problem is set to

30. In this problem, the EHVI from (4.1) is modified to

EHV I =

∫ Cd,max

−∞

∫ ∞
Cl,min

HV I[Cd, t75, Cl]× φ1(Cd)φ2(Cl)dCddCl. (4.7)
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4.4.2 Evaluation Methods

High-fidelity Evaluation using CFD as High-cost Function

The aerodynamic evaluation as a high-fidelity function was carried out using a Reynolds-

averaged Navier-Stokes (RANS) solver [26]. The governing equation is expressed as

∂

∂T

∫
Ω

ΨdV +

∮
∂Ω

Q · nds = 0, (4.8)

Ψ is a vector that consists of conservative quantities and Q is the summation of conservative

quantities entering and leaving the area. A lower-upper symmetric Gauss-Seidel (LU-SGS)

implicit method [27] was employed for time integration, and a third-order-accurate upwind

difference scheme with a monotone upstream-centered scheme for conservation laws (MUSCL)

method [28] was employed for the flux evaluation. Further, the Baldwin-Lomax model [29]

was used as a turbulent model. In addition, a structured grid was automatically created by an

algebraic method for each design (200×61 structured grid for the RANS solver, as shown in Fig.

4.15). The size of the structured grid based on the boundary layer theory. The non-dimensional

distance from the wall (y+) is defined by the recommend value for the Baldwin-Lomax model

[30]. The recommend value to simulation the pressure distributions is y+ ≤ 5.0. In this work,

y+ = 4.0 is used to defined the size of the structured grid.

(a) (b)

Figure 4.10: Computation structured grid: (a) full length, (b) grid around airfoil.
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Low-fidelity Solver as High-cost Function

XFOIL [31] was employed as the computational flow solver. In XFOIL, the inviscid pressure

distribution is modeled using a linear vortex strength distribution, while the viscous effects and

the development of the laminar-turbulent boundary layer are modeled using integral boundary

layer theory.

Airfoil Representation

In this study, the CST parameterization method [32] was used for airfoil shape parameterization.

The theory of the CST has been represent in Chapter 2. In this study, N1 was set to 0.5 and

N2 was set to 1.0. Further, third-degree Bernstein polynimials [33] were used to generate the

airfoil shape for the lower side b1 − b3 and the upper side b4 − b6. The ranges of the design

parameters are defined in Table 4.1.

Table 4.1: Design spaces for airfoil design problem.

Design parameter Design range
b1(dv1) (-)0.18 − (-)0.01
b2(dv2) (-)0.15 − (-)0.05
b3(dv3) (-)0.18 − (-)0.02
b4(dv4) (-)0.10 − (-)0.18
b5(dv5) (-)0.05 − (-)0.15
b6(dv6) (-)0.05 − (-)0.15

4.5 Results

Two-objective Airfoil Shape Optimization Results

All the samples obtained by the two methods (the proposed multi-fidelity/multi-objective EGO

and the single-fidelity/multi-objective EGO) are shown in Fig. 4.11. These results show that

the proposed multi-fidelity/multi-objective EGO can achieve greater diversity in the solution
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space than the single-fidelity/multi-objective EGO. The hypervolume of the proposed multi-

fidelity/multi-objective EGO showed faster convergence (after 20 iterations) than that of the

single-fidelity/multi-objective EGO (after 26 iterations). In addition, as shown in Fig. 4.12,

the non-dominated solutions of the proposed multi-fidelity/multi-objective EGO included Cd

ranging from 0.006 to 0.027 and t75 ranging from 0.034 to 0.064. On the other hand, the non-

dominated solutions of the single-fidelity/multi-objective EGO included Cd ranging from 0.009

to 0.016 and t75 ranging from 0.047 to 0.064. The histories of the hypervolumes of the two

methods are compared in Fig. 4.13. According to these results, the single-fidelity surrogate

model could find only local optimum points, whereas the proposed multi-fidelity approach could

find global optimum points.

(a) (b)

Figure 4.11: Initial sampling data and additional sampling data: (a) multi-fidelity approach,
(b) single-fidelity approach.

The cross-validation results for Cd are shown in Fig. 4.14. It can be confirmed that the

hybrid surrogate model achieves higher accuracy than the single-fidelity Kriging-based surrogate

model. This is because the low-fidelity data enables the surrogate model to predict the data in

the uncertainty region. Thus, the multi-fidelity/multi-objective EGO achieves faster solution

converge because the multi-fidelity surrogate model achieves higher accuracy than the single-

fidelity surrogate model. Because the proposed multi-fidelity surrogate model achieves higher

accuracy, the optimization process based on it is more likely to obtain global optimum points.

The parallel coordinated plots (PCPs) obtained by the two methods are shown in Fig. 4.15.
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Figure 4.12: Non-dominated solution of two-objective airfoil shape optimization problem.

Figure 4.13: Hypervolume comparison of multi-fidelity approach and single-fidelity approach.

The developed approach The single-fidelity

Figure 4.14: Cross validation of Cd.
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(a)

(b)

Figure 4.15: Parallel coordinated plots of non-dominated solutions: (a) multi-fidelity approach,
(b) single-fidelity approach.

(a) (b)

Figure 4.16: Comparison of design geometries: (a) multi-fidelity approach, (b) single-fidelity
approach.
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According to Fig. 4.15 (a), the PCP results show that the proposed multi-fidelity/multi-

objective EGO can achieve greater diversity in design space than the single-fidelity/multi-

objective EGO. The results indicate that the optimum design, i.e., the lowest Cd and highest

t75 values, can be obtained when dv4 − dv6 have large values. Further, if dv2 and dv3 have

large values, t75 has a low value; in this case, Cd also has a low value. The optimal shapes

of the non-dominated solutions of the two methods that minimize Cd and maximize t75 are

compared in Fig. 4.16. The optimal designs of the single-fidelity/multi-objective EGO have

similar shapes because the algorithm converges early at these optimum points. On the other

hand, the optimal designs of the proposed multi-fidelity/multi-objective EGO have different

shapes for each objective.

Three-objective Airfoil Shape Optimization Results

All the samples obtained by the two methods (the proposed multi-fidelity/multi-objective EGO

and the single-fidelity/multi-objective EGO) are compared in Fig. 4.17. In addition, the

histories of the hypervolumes of the two methods are compared in Fig. 4.18 , and the non-

dominated solutions of the two methods are compared in Fig. 4.19. These results show that the

proposed multi-fidelity/multi-objective EGO achieves greater diversity of the non-dominated

solutions because its hypervolume is larger than that of the single-fidelity/multi-objective EGO.

The non-dominated solutions of the proposed multi-fidelity/multi-objective EGO included Cd

ranging from 0.007 to 0.022, t75 ranging from 0.034 to 0.065, and Cl ranging from 0.0938 to

1.054. On the other hand, the non-dominated solutions of the single-fidelity/multi-objective

EGO included Cd ranging from 0.010 to 0.022, t75 ranging from 0.047 to 0.065, and Cl ranging

from 0.0938 to 1.039. Thus, the proposed multi-fidelity/multi-objective EGO achieved greater

diversity of the solutions than the single-fidelity/multi-objective EGO. The cross-validation

results for Cd and Cl are shown in Fig. 4.20. It can be seen that the proposed hybrid surrogate

model achieves higher accuracy than the single-fidelity Kriging-based surrogate model. Thus,

the proposed multi-fidelity/multi-objective EGO can achieve greater diversity of the solutions

because its surrogate model achieves higher accuracy.
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Cd vs. Cl Cd vs. t75 Cl vs. t75

(a)

Cd vs. Cl Cd vs. t75 Cl vs. t75

(b)

Figure 4.17: Initial sampling data and additional sampling data: (a) multi-fidelity approach,
(b) single-fidelity approach.

Figure 4.18: Hypervolume comparison of multi-fidelity approach and single-fidelity approach.
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Cd vs. Cl Cd vs. t75 Cl vs. t75

Figure 4.19: Comparison of non-dominated solutions of three-objective optimization test prob-
lem.

The developed approach The single-fidelity

(a)
The developed approach The single-fidelity

(b)

Figure 4.20: Cross-validation results: (a) results of Cd, (b) results of Cl.
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(a)

(b)

Figure 4.21: Parallel coordinated plots of non-dominated solutions: (a) multi-fidelity approach,
(b) single-fidelity approach.

(a) (b)

Figure 4.22: Comparison of design geometries: (a) multi-fidelity approach, (b) single-fidelity
approach.
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The design space visualizations based on the PCP results of the two methods are compared in

Fig. 4.21. The PCP results show that the proposed multi-fidelity/multi-objective EGO achieves

greater diversity in the design space than the single-fidelity/multi-objective EGO. Moreover,

the results indicate that large values of dv4− dv6 give low Cd, high t75, and high Cl values. If

dv1 is large, Cd and Cl will have high values. On the other hand, if dv2 and dv3 have large

values, Cd, Cl, and will have low values. Because the single-fidelity approach only performs

local exploration in the design space, the non-dominated solutions of the single-fidelity/multi-

objective EGO miss the global optimum and cannot maintain the diversity. The optimal

shapes of the non-dominated solutions of the two methods that minimize Cd, maximize t75 ,

and maximize Cl are compared in Fig. 4.22. The optimal designs of the single-fidelity/multi-

objective EGO have similar shapes for minimize Cd and maximize Cl because the algorithm

converges early at these optimum points. On the other hand, the optimal designs of the

proposed multi-fidelity/multi-objective EGO have different shapes for each objective.

4.6 Conclusions

In this chapter, a multi-fidelity/multi-objective EGO was proposed for efficient solutions of

multi-objective optimization problems. The proposed method constructed a hybrid model

based on an RBF that predicts a global model and an ordinary kriging method that predicts

the local variance. EHVI was used as an index to find additional samples for the optimization

process. For multi-fidelity optimization, the global model was constructed using a data set

evaluated by a low-fidelity function, and the local variance was estimated using a data set

evaluated by a high-fidelity function.

To examine the proposed multi-fidelity/multi-objective EGO, two-/three-objective test prob-

lems were solved and the results of the proposed multi-fidelity/multi-objective EGO were com-

pared with those of the single-fidelity/multi-objective EGO. The results for the test functions

showed that the proposed multi-fidelity/multi-objective EGO achieves faster convergence than

the single-fidelity/multi-objective EGO. Moreover, the results showed that the proposed multi-
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fidelity/multi-objective EGO has greater diversity of the non-dominated solutions than the

single-fidelity/multi-objective EGO. In addition, the results showed that the proposed multi-

fidelity/multi-objective EGO has fewer global errors. Thus, the proposed multi-fidelity/multi-

objective EGO can be widely applied to real-world problems.

Further, the proposed multi-fidelity/multi-objective EGO was applied to an aerodynamic airfoil

shape optimization problem with two objectives: minimize Cd at cruising speed and maximize

the thickness around the trialing edge. To evaluate the aerodynamic performance, XFOIL

was used to construct a low-fidelity/low-cost data set and a Navier-Stokes solver was used to

construct a high-fidelity/high-cost data set. The results of the proposed multi-fidelity/multi-

objective EGO were compared with those of the single-fidelity/multi-objective EGO. The opti-

mization results showed that the proposed multi-fidelity/multi-objective EGO achieves greater

diversity of the non-dominated solutions than the single-fidelity/multi-objective EGO. In addi-

tion, the cross-validation results showed that the proposed multi-fidelity/multi-objective EGO

has fewer global errors. Finally, the proposed multi-fidelity/multi-objective EGO was applied

to an aerodynamic airfoil shape optimization problem with three objectives: minimize Cd at

cruising speed, maximize the thickness around the trialing edge, and maximize Cl in the landing

condition. The results showed that the proposed multi-fidelity/multi-objective EGO achieves

greater diversity of the non-dominated solutions than the single-fidelity/multi-objective EGO.

In addition, the error between the exact value and the predicted value of the hybrid surrogate

model was smaller than that of the single-fidelity model. These results suggest that the multi-

fidelity/multi-objective EGO is suitable for real-world multi-objective design problems. In this

study, we limited the optimization to two/three objectives for simple aerodynamic design prob-

lems. In the future, we expect that our algorithm will be used to solve more complicated design

problems.
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Chapter 5

Conclusion

5.1 Conclusions

The work in this thesis deals with the devolvement of the high performance optimization tool for

aeronautical design. The final target of this research is increase the efficiency of the aeronautical

performance optimization via multi-fidelity approach of low-fidelity/low-cost evaluations and

high-fidelity/high-cost evaluations. To achieve this target, the efficiency global optimization

for multi-fidelity approach was developed.

This thesis started with reviews and development of genetic algorithm (GA) for low-fidelity

evaluations. The GA with multi-modal crossover method (MMDX) was developed to increase

the performance of the algorithm. This method used to solve a real-world airfoil design problem.

Results suggested that the MMDX method provided superior solutions compared with the

other crossover method, such as BLX and UNDX crossovers, because the MMDX method can

maintain higher diversity because of its larger search space. These results imply the possibility

of obtaining better solutions to real-world problems using the MMDX crossover method.

Next, multi-fidelity optimization technique by an efficient global optimization process using a

hybrid surrogate model is investigated for solving real-world design problems. The proposed

hybrid surrogate model�based EGO used a radial basis function to predict a global model,
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and an ordinary Kriging-based EGO was used to predict a local variance. Four test func-

tions are solved, and the results obtained by the proposed hybrid surrogate model�based

EGO are compared with those obtained by the co-Kriging model�based EGO and ordinary

Kriging-based EGO. The optimization results for the test functions show that the proposed hy-

brid surrogate model-based EGO achieved higher accuracy compared to the surrogate model,

co-Kriging, and Kriging-based EGO methods for each test function. The proposed hybrid sur-

rogate model�based EGO is also applied to aerodynamic optimization of a helicopter�s blade

shape. Results by the proposed hybrid surrogate model�based EGO method are compared

with those by the co-Kriging�based EGO and ordinary Kriging-based EGO. The results of

the aerodynamic helicopter blade design problem also show that the proposed hybrid surrogate

model�based EGO could design a better blade shape from the perspective of aerodynamic

efficiency.

Finally, a multi-fidelity/multi-objective EGO was proposed for efficient solutions of multi-

objective optimization problems. The proposed method constructed a hybrid model based on

an RBF an ordinary Kriging method. EHVI was used as an index to find additional samples for

the optimization process. To examine the proposed multi-fidelity/multi-objective EGO, two-

/three-objective test problems were solved and the results of the proposed multi-fidelity/multi-

objective EGO were compared with those of the single-fidelity/multi-objective EGO. The re-

sults showed that the proposed multi-fidelity/multi-objective EGO has fast convergence and has

greater diversity of the non-dominated solution than the single-fidelity/multi-objective EGO.

The proposed multi-fidelity/multi-objective EGO was applied to an aerodynamic airfoil shape

optimization problem with two objectives and three objectives. The results still showed that the

proposed multi-fidelity/multi-objective EGO has fast convergence and has greater diversity of

the non-dominated solution than the single-fidelity/multi-objective EGO for the aerodynamic

airfoil shape optimization problem. These results suggest that the multi-fidelity/multi-objective

EGO is suitable for real-world multi-objective design problems.


