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Chapter 1

Introduction

1.1 Overview

Recently, many geometric flows have been investigated energetically and they give us
some applications not only to differential geometry but also to other mathematical fields.
Especially, we would like to focus on the recent study on the Ricci flow. This flow suddenly
became famous after Perelman completed Hamilton’s program and proved Poincaré and
Thurston’s Geometrization conjecture. The biggest problem for completing Hamilton’s
program was the clarification of the structure of a neighborhood around a point where the
curvature is big just before showing up the singularity of the infinite curvature at finite
singular time for the Ricci flow. Perelman introduced the idea of the entropy WW-functional
and showed the local non-collapsing theorem, which implies that we can positively solve
the non-appearance of the cigar soliton as Hamilton conjectured.

The Ricci flow’s first appearance was in Hamilton’s paper on 3-manifolds with positive
Ricei curvature in 1982 [31]. In the paper, he introduced the Ricci flow and showed the
short-time existence and its uniqueness on closed Riemannian manifolds. Hamilton devel-
oped powerful techniques such as the maximum principle for tensors and applied it to the
evolution equation which the curvature tensors of the Ricci flow satisfies. And by applying
this fundamental method for the Ricci flow, he proved that a closed 3-manifold equipped
with a Riemannian metric whose Ricci curvature is strictly positive is diffeomorphic to
a smooth quatient of 3-sphere. Hamilton established the foundation of the study of the
Ricci flow and which became a breakthrough of the differentiable sphere theorem. In
2007, Brendle and Schoen finally proved the differentiable pointwise 1/4-pinching sphere
theorem with using the Ricci flow (cf. [2]).

On compact Kahler manifolds, the Ricci flow starting at a Kahler metric is called
the Kéahler-Ricci flow, which reduces to the parabolic complex Monge-Ampere equation.
The theory of the Kéhler-Ricci flow has been developed drastically and it is known that
the behavior of the Kahler-Ricci flow reflects the complex structure of manifolds. Cao
[15] gave an alternative aproach to prove the existence of Kéhler-Einstein metrics on
closed Kahler manifolds with negative or vanishing first Chern class by studying on the
convergence of the normalized Kahler-Ricci flow. On real 3-manifolds, Perelman and
Hamilton showed that we can use the Ricci flow with surgery to break up the manifold
into pieces. Since there exists a connection between Kahler manifolds and projective



algebraic varieties, then naturally the similar question comes up for the Kahler-Ricci flow
on a projective algebraic variety, which is the one that whether the Kahler-Ricci flow will
give a geometric classification of algebraic varieties or not.

A minimal surface is a compact complex surface which has no special holomorphic
sphere called (—1)-curve. When considering a projective surface, we remove irreducible
disjoint finitely many (—1)-curves by blowing down. After blowing down finite times, the
surface reaches a minimal surface. Otherwise, it is minimal from the first, or classified into
a ruled surface or a rational surafce, whose Kodaira dimensions are negative. This process
is understood along the Kahler-Ricci flow analytically. In the case when the singular time
is infinity, it is minimal. When the solution of the Kaler-Ricci flow is collapsing at the
finite singular time, it is classified into a ruled surface or a rational surface.

The Minimal Model Program (MMP) is known as a process of simplifying algebraic
varieties through algebraic surgeries in biratinal geometry. Before the appearance of
BCHM [7], Tsuji had advocated that MMP could be understood via Kéhler-Einstein
geometry. After BCHM, Tian and Song discovered a complex analogue of Perelman’s
approach to Thurston’s Geometrization conjecture (cf. [55]). For instance, algebraic
operations such as flips and divisorial contractions assume the role of Perelman’s idea
"Surgery” and the Kahler-Ricci flow is considered to be the one of the few tools could be
used for the analytification of MMP. BCHM introduced the idea of the MMP with Scaling.
This idea describes a particular sequence of algebraic operations and takes a variety with
a polarization to a minimal model or a Mori fiber space (cf. [55]). This process actually
closely related to the Kéhler-Ricci flow. The polarization corresponds to a choice of initial
Kéhler metric. Song and Tian showed that the Kéhler-Ricci flow starting at a Kéhler
current can be continued through singularities in the weak sense related to the MMP
with Scaling [55]. After that, Song and Weinkove [59] showed that in the case of complex
dimension two, the algebraic procedure of blowing down (—1)-curves is corresponding to
a geometric canonical surgical contraction for the Kahler-Ricci flow. Our one of main
interests is that whether this correspondence is true also in the non-Kahler case.

The Chern-Ricci flow is analogue of the Kahler Ricci flow and starting at a Hermitian
metric. If the initial metric is Kahler, the Chern-Ricci flow coincides with the Kahler-Ricci
flow. Its study was started by Gill [26] in the setting of compact Hermitian manifolds
with vanishing first Bott-Chern class. He showed that a solution of the Chern-Ricci flow
converges smoothly to a unique Chern-Ricci flat metric, which can be said that this is a
generalization of Cao’s results in 1985 for the case of vanishing first Chern class. Tosatti
and Weinkove investigated the Chern-Ricci flow in more general cases and studied the
behavior of the solution on some compact complex surfaces such as Hopf surfaces, Inoue
surfaces, non-Kéhler properly elliptic surfaces (cf. [70], [71], [72]). They showed that
for Hopf surfaces, there exists an explicit solution of the Chern-Ricci flow which collapse
to a circle in the Gromov-Hausdorff sense in finite time. For Inoue surfaces, they also
discovered that there exists an explicit solution of the Chern-Ricci flow and the solution
devided by t collapses in infinite time to a circle in the Gromov-Hausdorff sense and for
non-Kéahler properly elliptic surfaces, there also exists an explicit solution of the Chern-
Ricci flow and the solution devided by t collapses in infinite time to a compact Riemann
surface with the distance function induced by an orbifold Kahler-Einstein metric on the
surface in the Gromov-Hausdorff sense, and moreover, the solution devided by ¢ converges



smoothly to the pullback of the orbifold Kahler-Einstein metric. These investigations
tell us that the Chern-Ricci flow is a natural geometric low whose behavior reflects the
underlying geometry of manifolds. By investigating the behavior of the Chern-Ricci flow
on compact complex surfaces, we may expect that we can extract some fresh topological
or complex-geometric information.

Especially, the Class VII surfaces are interesting objects since their classification has
not yet completely done. Note that the Class V II surfaces are compact complex surfaces
with the Kodaira dimension —oo and the first Betti number one. Fang and Zheng analyzed
the behavior of the Chern-Ricci flow on Inoue surfaces [22], well-known Class V 11 surfaces,
which come in three families. Tricerri and Vaisman constructed an explicit homogeneous
Gauduchon metric wyy on each Inoue surfaces, which is strongly flat along the leaves.
Fang and Zheng proved that the solution of the Chern-Ricci flow starting the initial metric
in the d0-class of wpy converges in the C®-topology for every 0 < a < 1. We focus on
the convergence of a solution of the normalized Chern-Ricci flow on minimal non-Kahler
properly elliptic surfaces. In the case of the unnormalized Chern-Ricci flow on minimal
non-Kahler properly elliptic surfaces, a smooth solution of the flow divided by ¢ converges
to an orbifold Kéahler-Einstein metric smoothly as ¢ goes to infinity [67]. It also has been
shown that the solution of the normalized Chern-Ricci flow converges to a Kahler-Einstein
metric in C°-topology on minimal non-Kéhler properly elliptic surfaces [68].

1.2 Motivations

1.2.1 Canonical surgical contraction and blow-down of (—1)-curves

There are some investigations on the relationship between the Kahler-Ricci flow and
algebraic geometry, especially MMP with Scaling. The definition is stated formally as
follows:

Definition 1.2.1. (MMP with Scaling (cf. [55, Definition 5.2]))

(1) We start with a pair (X, H), where X is a normal Q-factorial projective variety X
with log terminal singularities and H is a big and semi-ample Q-divisor on X.

(2) Let A :=inf{\ > O|]AH + K is nef} be the nef threshold. If A\ = 0, then we stop
since the canonical divisor Ky is already nef.

(3) Otherwise, there is an extremal ray R of the cone of curves NE(X) on which Ky is
negative and \gH + K is zero. So there exists a contraction 7: X — Y of R:

(a) If 7 is a divisorial contraction, we replace X by Y and Hy be the strict trans-
formation of A\gH + Kx by m. Then we return to (1) with (Y, Hy).

(b) If 7 is a small contraction, we replace X by its flip X and let Hx+ be the strict
transformation of \gH + Kx by 7. Then we return to (1) with (X, Hx+).

(c¢) If dimY < dim X, then X is a Mori fibre space, i.e., the fibers of 7 are Fano.
Then we stop.



A variety X is called normal if a local ring Ox, is a normal ring for each x € X and
X is said Q-factorial if any Q-divisor on X is Q-Cartier. It is known that Q-factoriality is
preserved after divisorial contractions and flips. A normal Q-factorial projective variety
X is said to have log terminal singularities if a; > —1 for all i, where a; € Q is a unique
collection satisfying

p
KX = W*KX —+ Z CLZ'EI',
i=1
7 : X — X is a resolution and {E;}”_, is the irreducible components of the exceptional
locus Exc(w) of m, where 7 is not isomorphic.

Let X be a normal projective variety and H be a Cartier divisor on X. For m € Z-,,
if HO(X,mH) # 0, then there exists a rational map

Py 2 X — — = P(HY (X, mH))

associated to the linear system |mH|. We define the litaka-Kodaira dimension of (X, H)
in the following:
k(X, H) := max {dim Im(®},,,z)) }-
mEZ>o

A Cartier divisor H is called big when x(X, H) = dim X and H is said nef if the inter-
section number (H - C) > 0 for any curve C' on X. We say that X is of general type
if the canonical divisor Kx is big. When Kx is nef, X is called a minimal model. A
Cartier divisor H is called semi-ample if the associated invertible sheaf Ox(H) satisfies
that Ox(H)®™ is globally generated for some m € Z-,.

In Definition 1.2.1, NE(X) is the set of classes of effective 1-cycles in Ny (X )g, where
Ni(X)r = Ni(X)z ®z R and N;(X)z is the group of numerically equivalent 1-cycles,
NE(X) is the closure of NE(X) in the Euclidean topology. Two 1-cycles are said numeri-
cally equivalent if they have the same intersection number with every Cartier divisor (i.e.
the same intersection number with every invertible sheaf associated to Cartier divisor).
Let L be a nef Q-Cartier divisor but not ample, with L — aKx ample for some a € R,.
Then the divisor L is called a supporting divisor. We define an extremal face F' by

F ={[C] € NE(X)|(L - C) = 0},

where (L - C) = (Ox(L) - C) is the intersection number with the invertible sheaf Ox (L)
associated to the supporting divisor L. When [L] = 0 € N*(X)g, where N'(X)g is the
set of numerically equivalent classes of R-invertible sheves, then we have F' = NE(X).
Additionally when F'is a ray, which is called an extremal ray and written by R. By
applying the base point free theorem, we see that there exists a contraction morphism
¢r : X — Y associated to an extremal face F. Note that ¢r(C) = {1pt} for any curve C
if and only if we have [C] € F'. For the contraction ¢ associated to F', —Kx is ¢p-ample.
Especially, a contraction morphism associated to an extremal ray is called an elementary
contraction. Notice that a contraction morphism is determined by only an extremal face,
that is to say, it is independent of a suppoting divisor.

Note that projective varieties X, Y and X are bimeromorphic (equivalently we can
say ”birational” since they are projective) each other. When a morphism p : V3 — V5 is



bimeromorphic between analytic spaces V. V5, then there exist closed subsets Wy C Vi,
Wy C V, with codimWs > 2 such that

M‘Vl\wl : Vl\Wl i VZ\W2

is biholomorphic (cf. [3, p.89]).

Let D be a Cartier divisor on V5 and let u : Vi — V5 be a morphism between analytic
spaces. Since D is Cartier, there exist an open set U C V5 and a meromorphic function
fu on U such that DNU = (fy), where (fy) is a divisor of a meromorphic function.
On p~Y(U), we define p*D N p=Y(U) = (u*fy). Then we can define a Cartier divisor
w*D on Vi by varying U. The divisor p*D is called a total transform by p of D. On
the other hand, when g is bimeromorphic, there exist closed subsets Wy C Vi, Wy C V5
with codimWs; > 2 such that ply\w, @ Vi \ Wi — V2 \ Ws is biholomorphic. So then we
define a divisor (u~').(D) on V4 by the closure of (u|v\wy)*(D N (Vo \ Wa)) in Vi. The
divisor (u1).(D) is called a strict transform of D (cf. [3, p.75]). In this sense, the strict
transformations Hy, Hx+ in Definition 1.2.1 are given by

HY = 7T*()\0H—|— Kx), HX+ = ((7T+)_1 @) 7'(')*()\0[’[ + KX)

Note that the divisor Hy is ample, the divisor H x+ is semi-ample and big and H x++eK x+
is ample for sufficiently small ¢ > 0 since K x+ is 7T-ample, hence we can go back to the
first step (1) in MMP with Scaling. In the notations of Definition 1.2.1, we say that 7 is
a divisorial contraction in the case when the exceptional locus Fxc(n) is a divisor whose
image of m has codimension at least 2. In this case, Y is still Q-factorial and has at worst
log terminal singularities. We say that 7 is a small contraction in the case when Exc(w)
has codimension at least 2. In this case, Y have rather bad singularities and the canonical
divisor Ky is no longer a Q-Cartier divisor. Hence we need to repalce X by a birationally
equivalent variety which is called a flip, with singularities milder than those of Y. The
definition of a flip is as follows (cf. [55, Definition 5.4]):

Definition 1.2.2. Let X be a normal QQ-factorial projective variety with log terminal
singularities and let 7 : X — Y be a small contraction such that —Kx is m-ample. A
variety Xt together with a proper bimeromorphic morphism 7 : Xt — Y is called a flip
of 7 if 7T is also a small contraction and Kx+ is 7 -ample. The morphism (7 %)~ o7 :
X — X7 is bimeromorphic. The variety X is Q-factorial and has at worst log terminal

singularities.

Notice that since the small contraction © : X — Y is a contraction of the extremal
ray R in the case (3)-(b) in Definision 1.2.1, —Kx is then m-ample.
In 2006, there was a breakthrough in algebraic geometry:

Theorem 1.2.1. (cf. [7], [55, Theorem 5.1])If X is a normal Q-factorial projective variety
of general type with log terminal singularities, then the MMP with Scaling terminates in
finite steps.

Theorem 1.2.1 means that there exist some flips needed, and does not exist infinite
sequence of flips.



Let H be a big and semi-ample Q-divisor on X and §2 be a smooth volume form on
X. Then we define

PSH, (X, wy, Q) := {p € PSH(X, wp) N LZ(X)] LP(X,Q)}

(wo + v/—190¢p)"
Q S

and
Krp(X) = {wo + V—10d¢|p € PSH,(X, wo, 2)}

for p € (0,00], wy € c1([H]) a smooth closed (1,1)-form, where [H] is the associated
holomorphic line bundle, ¢;([H]) is the first Chern class and PSH(X, wy) denotes the set
of all upper semi-continuous functions ¢ : X — [—00,00) such that wo+ +/—199p > 0 as
a current.

We introduce the definition of the weak Kahler-Ricci low on projective varieties with
singularities:

Definition 1.2.3. (Weak Kéhler-Ricci flow (cf. [55, Definition 4.3]))Let X be a normal
Q-factorial projective variety with log terminal singularities and wy € ¢;([H]) be a smooth
closed (1,1)-form on X associated to a big and semi-ample Q-divisor H on X. Suppose
that

Ty = sup{t > 0|H + tKx is nef}.

A family of closed positive (1, 1)-current w(t,-) on X for ¢t € [0,7}) is called a solution of
the unnormalized weak Kéahler-Ricci flow if the following conditions hold.

(1) we C=((0,Tp) x (X \ D)), where D is a subvariety of X. Let &; € ¢1([H + tKx])
be a smooth family of smooth closed (1, 1)-forms on X for ¢ € [0, 7)) such that

(1)0 = Wy < Cl<[H])

Then -
w=w+V—190p
for o € C°([0,Ty) x (X \D))NC>=((0, Ty)x (X \ D)) and ¢(t, ) € PSH(X, & )NL>®(X)
for all t € [0, Tp) with ©(0,-) = po(-) € PSH(X,wp) N L>®(X). Especially,
wp = w(0) = wy + v/ —199¢g

is a closed positive (1,1)-current on X.

2u(t) = —Ric((t), on (0,Ty) x (X \ D),

wW(t)|t=o = wj, on X.

In the case when the Q-divisor H is ample, T} is always positive and X \ D = X,e,.

Since the contraction of the extremal ray and the contraction induced by the semi-
ample divisor \g H+ K x might be different, we need to choose a special ample divisor called
a good 1nitial divisor, so that at each step, there is only one extremal ray contracted by
the morphism induced by \gH + Kx. The definition of a good initial divisor is as follows:
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Definition 1.2.4. ([55, Definition 5.3])Let X be a normal Q-factorial projective variety
with log terminal singularities. An ample Q-divisor H on X is called a good initial divisor
H if the following conditions are satisfied.

(1) Let Xo = X and Hy = H. The MMP with scaling terminates in finite steps by
replacing (Xo, Ho) by (X1, H1), ..., (X, Hy) until X, is a minimal model or X,
is a Mori fiber space.

(2) Let A; be the nef threshold for each pair (X;, H;) for ¢ = 1,...,m. Then the
contraction induced by the semi-ample divisor \;H; + K, contracts exactly one
extremal ray.

Note that a good initial divisor always exists if dim X = 2 and Kod(X) > 0, and then
the normalized Kéahler-Ricci flow with a good initial divisor converges to the canonical
model or the minimal model of X coupled with a generalized Kahler-Einstein metric.

From the important result in Theorem 1.2.1, Song and Tian established the follow-
ing analytification of MMP as a Kéhler analogue of Perelman’s approach to Thurston’s
Geometrization Conjecture.

Theorem 1.2.2. ([55, Theorem 5.7]) Let X be a normal Q-factorial projective variety
with log terminal singularities. If there exists a good initial divisor H on X, then either X
does not admit a minimal model or the unnormalized weak Kéhler-Ricci flow has long time
solution for any Kahler current wy € Kp,(X) with p > 1, after finitely many surgeries
through divisorial contractions and flips.

Importantly, Song and Tian showed the smoothing property of the Kahler-Ricci flow
with rough initial data away from singularities. That is, the associated parabolic Monge-
Ampere flow is starting at a bounded plurisubharmonic function. Since the flow goes to a
degenerate positive (1, 1)-current as time goes to a finite singular time through such as flips
and divisorial contractions, so it is inevitable to start with a Kéhler current. But thanks
to this smoothing effect, the flow becomes smooth all at once away from singularities and
if a given variety has a minimal model, in this sense we see that the flow has a long time
solution through finitely many flips and divisorial contractions.

It is conjectured in [55] that the Kéhler-Ricci flow will either deform a projective
variety X to its minimal model via finitely many divisorial contractions and flips in
the Gromov-Hausdorff sense, and then converge to a generalized Kahler-Einstein metric
on the canonical model of X, or collapse in finite time. This process is the analytic
analogue of Mori’s minimal model program. Although the existence and uniqueness was
proven for the weak Kéhler-Ricci flow through divisorial contractions and flips in [55], the
convergence in the Gromov-Hausdorff sense at the finite singular time was still largely
open. After that, Song and Weinkove [59] showed that on a smooth projective algebraic
surface X with a Kéhler metric wy satisfying [wo] € H"(X,Q), which indicates that
there exists an ample holomorphic line bundle such that ¢;(L) = [wp], there exists a
unique maximal Kéhler-Ricci flow w(t) with canonical surgical contractions starting at
(X,wp) on Xg = X, Xq,..., X} on maximal intervals [0,T = Ty), (To,T1), -, (Tk_1,Tk)
such that w(t) performs a canonical surgical contraction at Ty, 7} ..., Tx_1 but not at T}
(possibly Ty = 00), and each canonical surgical contraction corresponds to a blow-down
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map 7; : X; — X, of a finite number of disjoint exceptional curves on X;. Then, along
the flow we see that either 7}, < oo and then X} is CP? or a ruled surface, or T}, = oo and
X has no exceptional curves. We state this formally in the following:

Theorem 1.2.3. ([59, Theorem 1.2])Let X be a projective algebraic surface and wy a
Kéhler metric with [wy] € H'(X, Q). Then there exists a unique maximal Kahler-Ricci
flow w(t) on Xg, Xy, ..., X} contraction corresponds to a blow-down 7 : X; — X;.; of a
finite number of disjoint exceptional curves on X;. In addition we have:

(1) Either T} < oo and the Kahler-Ricci flow w(t) collapses X, in the sense that the
volume of X, with respect to w(t) tends to zero as t — T} :

Volw(t)Xk —0, ast—T, .
in this case X}, is a Fano surface or a ruled surface.

(2) Or T}, = oo and Xy has no exceptional curves of the first kind.

We expect that this process can be proceeded along also the Chern-Ricci flow, that is,
if the Chern-Ricci flow is non-collapsing in finite time, then it blows down finitely many
(—1)-curves and continues in a unique way on a new complex surface. Then we need
global Gromov-Hausdorff convergence of the metrics and smooth convergence away from
the (—1)-curves. With the terminology of the Kéhler case, we say the solution g(¢) of the
Chern-Ricci flow performs a canonical surgical contraction if the following occurs:

Definition 1.2.5. (Canonical surgical contraction (cf. [59, Definition 1.1])) Let M be
a compact complex surface, and let gy be a Gauduchon metric on M. Suppose that the
Chern-Ricci flow is non-collapsing at time T < oo, that is, the volume of M with respect
to the smooth solution of the Chern-Ricci flow w(t) = g(t) starting at the metric gy stays
positive as t — T~. Then there exist finitely many disjoint (—1)-curves Ei, ..., F} on a
compact complex surface M giving rise to a surjective holomorhic map 7= : M — N on
to a compact complex surface N blowing down each E; to a point 7(E;) = y; € N and
sk g, & biholomorphic onto N':= N\ {y1,...,yx} such that

(1) Ast — T, on M' := M\ UL, F;, the metrics g(¢) converge to a smooth Gauduchon

metric gr in CL2(M’). Using 7, we may regard gr as a Gauduchon metric on N’.

(2) Let d,, be the distance function on N’ given by g7. Then there exists a unique metric
dr on N extending d,, such that (N, dr) is a compact metric space homeomorphic
to N.

(3) (M, g(t)) converges to (N,dr) in the Gromov-Hausdorff sense as t — T~

(4) There exists a smooth maximal solution g(¢) of the Chern-Ricci flow on N for
t € (T, Ty) with T' < Ty < oo such that g(t) converges to gr ast — T in CL2(N').

loc

(5) (N, g(t)) converges to (N, dr) in the Gromov-Hausdorff sense as ¢t — T'.

11



We extend gr to a nonnegative (1, 1)-tensor gr on the whole space Y by setting
rly: () =0 fori=1,... k.

Notice that gr may be discontinuous at yi,...,yx. Then we define the distance function
dr appeared in the definition above with using gr:

Definition 1.2.6. ([59, Definition 3.1])Define a distance function dr : Y x Y — R by

drlonoae) = int | Vi) A

where the infimum is taken over all piecewise smooth paths «y : [0, 1] — Y with 7(0) = v,
(1) = yo for y1, 2 €Y.

In the Kahler case, a smooth solution of the Kéahler-Ricci flow performs a canonical
surgical contraction.

Theorem 1.2.4. ([57, Theorem 1.1])Let w(t) be a smooth solution of the Kéhler-Ricci
flow starting at an arbitrary fixed Kahler metric wy on a compact Kahler manifold for
t € [0,T) and assume T < oo. Suppose there exists a blow-down map 7 : X — Y
contracting disjoint irreducible exceptional divisors E1, ..., B, on X with n(E;) = y; € Y,
for a smooth compact Kéhler manifold (Y, wy) such that the limiting Kéhler class satisfies

[wo] + T'er (Kx) = [T wy].

Then the Kéhler-Ricci flow w(t) performs a canonical surgical contarction with respect to
the data Eq, ..., Ey, Y and 7.

This holds also for a map = : X — Y blowing down the (—k)-exceptional divisors
of the Zj-orbifold points under the same cohomology condition for some smooth orbifold
Kéhler metric wy on Y [60].

Recently, Guo, Song and Weinkove [30] established the global geometric convergence
for the normalized Kéhler-Ricci flow on all minimal surfaces of general type, not only the
ones include only distinct irreducible (—2)-curves, starting with any initial K&hler metric.
By definition, a minimal surface of general type is a smooth complex surface X whose
canonical bundle Kx is nef and big, and then X is projective. So by the base point free
theorem, Kx is actually semi-ample and then K is globally generated for sufficiently
large positive integer m, so given an ordered basis (s, . . ., sy ) of the holomorphic sections
of K induce a well-defined holomorphic map ® : X — PV by ®(x) = [so(z), ..., sn ()]
for z € X with image X, the canonical model of X, which is an algebraic surface with
at worst finitely many orbifold A-D-FE-singularities and which admits a unique orbifold
Kahler-Einstein metric since Kx,,, is ample. The map ® contracts (—2)-curves on X to
orbifold points on X.,,. A surface of general type is a complex surface whose minimal
model is a minimal surface of general type, which means that a surface of general type can
be obtaind by finitely many blow-ups of a minimal model of general type. By putting all
together, Theorem 1.2.3 and the contraction of (—2)-curves along the normalized Kéhler-
Ricci flow in the Gromov-Hausdorff sense, we obtain the following convergence result:
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Theorem 1.2.5. ([30, Corollary 1.1])Let X be a compact complex surface of general
type. Then the normalized Kahler-Ricci flow on X starting with any initial Kahler metric
go is continuous through finitely many contraction surgeries in the Gromov-Hausdorff
topology for t € [0,00) and converges in the Gromov-Hausdorff topology to (Xcan, gkEg)-
The convergence is smooth away from the (—2)-curves, where gkg is the unique orbifold
Kahler-Einstein metric on X ...

The condition (1) in the conditions of the canonical surgical contraction in Definition
1.2.5 has proven by Tosatti and Weinkove in the non-Kahler case:

Theorem 1.2.6. ([70, Theorem 1.1])Let M be a compact complex surface and let wy be
a Gauduchon metric on M. Suppose that the Chern-Ricci flow w(t) starting at wy is non-
collapsing at time 7' < oo. Then there exist finitely many disjoint (—1)-curve Ey, ..., Fy
on M giving rise to a map 7 : M — N onto a complex surface N blowing down each F; to
apoint y; € N fori=1,... k Write M’ = M\, B; and N’ = N\ {y1, ..., 9} Then
the map 7 gives an isomorphism from M’ to N'. As t — T, the metrics w(t) converge

to a smooth Gauduchon metric wr on M’ in C2.(M").

Notice that the finite time non-collapsing for the Chern-Ricci flow occurs commonly.
For instance, whenever M is a non-minimal compact complex surface with the Kodaira
dimension Kod(M) # —oo, there will be the finite time non-collapsing for any initial
Gauduchon metric wy. Remark that before that Theorem 1.2.6 was proved by applying
the Buchdahl’s Nakai-Moishezon criterion, this result in general dimensions above had
been proved under the condition (1.5) in [72, Theorem 1.6].

If we impose the condition (%) in Theorem 1.3 in [70]: (*) there exist a smooth function
f and a smooth real (1, 1)-form § with

wo — T Ric(wy) + vV —190f = 7*B,

we have already known that we have (2) and (3) in the definition of the canonical surgical
contraction. Note that after replacing f by another smooth function, we may assume
that § is a Gauduchon metric by applying Buchdahl’s Nakai-Moishezon criterion (cf.
[70, Lemma 3.2]). We will observe that (4) and (5) in Definition 1.2.5 hold under the
assumption (k) in Chapter 4. When it comes to the Kéhler case, as considering the
contraction of (—1)-curves on a Kéhler surfaces, such a surface has the Kodaira dimension
Kod = 2 and then its algebraic dimension is equal to 2, which is equivalent to that the
surface is projective. Since we see that for a projective Kéahler surface by choosing a initial
Kéhler metric, the condition (%) holds automatically. For this reason, we can repeatedly
observe that the contraction of (—1)-curves can be understood by the canonical surgical
contraction for the Kéhler-Ricci flow analytically. Although we can construct an initial
Gauduchon metric satisfying the condition (x) artificially for the Chern-Ricci flow, it is
not enough to interpret the contraction of (—1)-curves repeatedly as in the Kéhler case.
For these reason, removing the assumption (k) is essential for improving the results in the
case of the Chern-Ricci flow as in the Kéahler case. We will observe that even a compact
complex surface is non-Kéahler, the condition (%) can be actually removed and we can
show the convergence in the Gromov-Hausdorff sense alonf the Chern-Ricci flow without
any special assumptions in Chapter 3.
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1.2.2 Holder convergence of the Chern-Ricci flow
on elliptic surfaces

Gill [28] showed that a suitably normalized solution of the parabolic Monge-Ampere flow
converges to Hermitian metrics with vanishing Chern -Ricci form in the C'*°-topology on
a compact Hermitian manifold with its first Bott-Chern class is equal to zero. It was the
beginning of the investigation of the Chern-Ricci flow. After that, Tosatti and Weinkove
(cf. [70], [71], [72]) started to study on the Chern-Ricci flow on some complex surfaces
such as properly elliptic surfaces, Hopf surfaces and Inoue surfaces. We would like to
especially focus on the convergence of a solution of the normalized Chern-Ricci flow on
minimal non-Kahler properly elliptic surfaces.

In the Kéhler case, Song and Tian [56] investigated the Kahler-Ricci flow on a general
minimal Kahler elliptic surface, and they showed that the flow converges at the level of
potentials to a generalized Kahler-Einstein metric on the base Riemannian surface. Since
generally, the fibration structure on a Kéhler elliptic surface is not locally trivial and may
have singular fibers, the generalized Kahler-Einstein equation involves the Weil-Petersson
metric and singular currents. It has been studied on the behavior of the Kéahler-Ricci
flow in the case of a product elliptic surface M = E x S, where F is an elliptic curve and
S is a compact Riemann surface of genus at least 2 by Song and Weinkove [61]. In this
case, the solution of the normalized Kéhler-Ricci flow on £ x S conveges to a Kahler-
Einstein metric on S in C'*-topology for any 0 < a < 1 and Gill developed this result
into the C'*-convergence [27]. Fong and Zhang [23] showed the C'*° convergence result
for the Kéahler-Ricci flow on more general elliptic bundles with using the idea established
by Gross, Tosatti and Zhang.

In the case of (unnormalized) Chern-Ricci flow on a minimal non-Kéahler properly
elliptic surface 7 : M — S, there exists an explicit solution w(t) of the Chern-Ricci flow
on M for t € [0.00) and the solution w(t) divided by ¢ converges smoothly to m™*wg g on
M as t — oo, where (ELZ)KE is an orbifold Kéahler-Einstein metric on S. And also, with the

normalized metrics ==, we have that

(M, @) A (S,dkg), ast— oo

in the Gromov-Hausdorff sense, where dkg is the distance function induced by wgpg (cf.
[70]). And also for an elliptic bundle over a compact Riemann surface S of genus at least
2 with fiber an elliptic curve, it has shown that the solution of the normalized Chern-
Ricci flow converges to a pull-backed Kahler-Einstein metric on S exponentially fast in
C%-topology [71]. By essentially using the fact that any minimal non-Kéhler properly
elliptic surface is covered by an elliptic fiber bundle, this convergence result for an elliptic
fiber bundle can be applied to the case considering a minimal non-Kahler properly elliptic
surface. Formally, which is stated as follows: Let 7 : M — S be firstly an elliptic bundle
over a compact Riemann surface S of genus at least 2, with fiber an elliptic curve E. And
let wpat, be the unique flat metric on the fiber 71 (y) for each point y € S in the Kahler
classs [wo|r-1(y)]. Let wg be the unique Kahler-Einstein metric on S with Ric(ws) = —wg
and wy be a Gauduchon metric on M.

14



Then we investigate the normalized Chern-Ricci flow

0 .
aw(t) = —Ric(w(t)) — w(t), w(t)|i=o0 = wo.

With this flow above, we can observe that elliptic fibers collapse along the flow, on the
other hand, the volume of the base surface S remains positive and bounded. Under the

setting above, the convergence result as ¢ — oo can be shown:

Theorem 1.2.7. ([71, Theorem 1.1])Let w(t) be a solution of the normalized Chern-Ricci
flow on M starting at wy. Then as ¢t — oo, w(t) converges to m*wg exponentially fast in
the C°(M, go) topology. In particular, the diameter of each elliptic fiber tends to zero
uniformly exponentially fast and (M, w(t)) converges to (S, wgs) in the Gromov-Hausdorff
topology. Furthermore, e'w(t)|,-1(,) converges to the flat metric waag, exponentially fast
in the C*(77!(y), go) topology, uniformly in y € S.

Then we apply the key fact that for any minimal non-Kéahler properly elliptic surface
M, there always exists a finite unramified covering p : M’ — M, which is also a minimal
properly elliptic surface, #’ : M’ — S’ is an elliptic fiber bundle with S’ a compact
Riemann surface of genus at least 2, and obtain the following convergence result:

Theorem 1.2.8. ([71, Corollary 1.2]) Let 7 : M — S be any minimal non-K&hler properly
elliptic surface. Then given any initial Gauduchon metric wy on M we have that (M, w(t))
converges to (5, dg) in the Gromov-Hausdorff topology. Here dg is the distance function
induced by an orbifold Kahler-Einstein metric wg on .S, whose set Z of orbifold points is
precisely the image of the multiple fibers of 7. Furthermore, w(t) converges to m*wg in the
C°(M, go) topology, and for any y € S\ Z the metrics e'w(t)|-1(,) converge exponentially
fast in the C*(77!(y), go) topology and uniformly as y varies in a compact set of S\ Z to
the flat Kéhler metric 77! (y) cohomologous to [w],—1(y)].

Our aim is to show that the smooth solution the normalized Chern-Ricci flow w(t)
converges to m*wg as t — oo for some orbifold Kahler-Einstein metric wg is possible in C'“-
topology for any 0 < a < 1. We will observe that this C*-convergence can be realized by
choosing an initial Gauduchon metric from the d9-class of the Vaisman metric in Chapter
5. If we let z € H be the variable in the upper half plane H in C, w € C* := C\ {0}, and

y = Imz, then we observe that the form 7m*wg is induced from the form ‘éy_?dz A dz on

C* x H. This study is the one which was stimulated by the investigation of the normalized
Chern-Ricci flow on Inoue surfaces (cf. [22]).
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1.3 Summary of new results

In Chapter 3, we will show that we can remove the condition (}) with using some tools in
pluripotential theory. We consider a map 7 : M — N blows down the only one (—1)-curve
E on M to the point yg € N for simplicity.

Theorem 1.3.1. ([35, Theorem 1.1])Let M be a non-Kéhler compact complex surface
and m : M — N be a blow-down map of the (—1)-curve £ on M to the point yo € N,
where N is a compact complex surface. Let wy be a Gauduchon metric on M. Suppose
that we have

/M(wo — T Ric(wp))? >0, and /D(wo — T Ric(wp)) > 0

for all irreducible curves D on M with D? = (D - D) < 0 different from E, where T is a
finite singular time of the Chern-Ricci flow w(t) starting at wy for ¢t € [0,7"), 0 < T < 0.
Then there exist a smooth real function u( on M and a Gauduchon metric wy on N such
that

wo — T Ric(wp) + V—100ujy = m*&y.

From the result of Theorem 1.3.1, we can show that the convergence in the Gromov-
Hausdorff sense holds without the cohomology condition (7):

Theorem 1.3.2. ([35, Theorem 1.2])Let M be a non-Kéhler compact complex surface
and 7 : M — N be a blow-down map of finitely many disjoint (—1)-curves on M onto a
complex surface N. Let wg be a Gauduchon metric on M. We assume that the Chern-Ricci
flow w(t) starting at wy is non-collapsing at a singular time 7" < oo. Then there exists
a distance function dp on N such that (N, dr) is a compact metric space and (M, dy))
converges in the Gromov-Hausdorff sense to (N, dr) as t — T, where d,) are distance
functions induced from the metrics w(t).

Under the assumption that the theorem above holds, we will prove the solution of the
Chern-Ricci flow peforms a canonical surgical contraction (Definition 1.2.5) in Chapter 4.

Theorem 1.3.3. ([36, Theorem 1.1])Let M be a non-Kéhler compact complex surface
and 7 : M — N be a blow-down map of the (—1)-curve E on M to the point yy € N,
where N is a compact complex surface. Let wy be a Gauduchon metric on M. Suppose
that we have

/M(wo — T Ric(wp))? >0, and /D(wo — T Ric(wp)) >0

for all irreducible curves D on M with D* = (D - D) < 0 different from E, where T is a
finite singular time of the Chern-Ricci flow w(t) starting at wy for t € [0,7), 0 < T < oc.
Then the Chern-Ricci flow w(t) performs a canonical surgical contraction with respect to
the data £, N and .

In Chapter 5, we will observe C*-convergence of the solution of the normalized Chern-
Ricci flow starting at the initial metric in the 00-class of the Vaisman metric wy [74] on
a minimal non-Kahler properly elliptic surface.
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Theorem 1.3.4. ([37, Theorem 1.1])Let M be a minimal non-Kéahler properly elliptic
surface and let w(t) be the solution of the normalized Chern-Ricci flow starting at a
Hermitian metric of the form

wo = wy +V—190¢y > 0,

where wy is the Vaisman metric and 1) is a smooth function on M. Then the metrics w(t)
are uniformly bounded in the C*-topology, and as t — oo,

w(t) — Twg,

in the C“-topology, for every 0 < o < 1, where wg is the orbifold Kéhler-Einstein metric
on S with Ric(wg) = —wg away from finitely many orbifold points induced by the form

‘é;dz Adz on C* x H, H is the upper half palne in C, z € H is the variable, y = Imz.
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Chapter 2

Background

2.1 Notations

Let M be a differentiable manifold and g be a Riemannian metric on M. Let J €
['(End(TM)) be the endomorphism J satisfies J> = —idpys, where I'(End(T'M)) is the
space of all sections of End(T'M) = T*M ® TM. Then J is called the almost complex
structure and (M, J) is called an almost complex manifold. Additionally, if J is integrable,
J is called the complex structure and then (M, J) is a complex manifold. That the almost
complex structure J is integrable is equivalent to that the Nijenhuis tensor = 0.

Let (M, J) be an almost complex manifold. A Riemannian metric g on M is called
J-invariant if J is compatible with g, i.e., for any X, Y € I'(T'M),

9g(X,Y)=g(JX,JY).

The fundamental 2-form w associated to a J-invariant Riemannian metric g is determined
by, for X, Y € I'(T'M),
w(X,Y)=g(JX,Y).

Indeed we have, for any X,Y € I'(T'M),
w(Y,X) = g(JY,X) = g(J?Y, JX) = —g(JX,Y) = —w(X,Y)

and w € T(A*T*M). A J-invariant Riemannian metric ¢ on a complex manifold (M, .J)
is called Kahler if the fundamental 2-form w associated to ¢ is d-closed and then w is
called a Kahler form.
We write T®M for the real tangent space of M. Then its complexifieid tangent space
is given by
T°M = T*M g C.

By extending J linearly in C and ¢, w bilinearly in C to TCM, they are also defined on
TCM and we observe that the complexified tangent space TCM can be decomposed as

T°M =T'M & T"M,

where T'M and T"M are the eigenspaces of J corresponding to eigenvalues /—1 and
—+/—1 respectively. Extending J to forms, we can uniquely decompose m-forms into
(p, q)-forms for each p, q with p + ¢ = m.
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Now, let (M, J) be a complex manifold of dimension n and let g be a J-invariant
Riemannian metric on M. Then we define a Hermitian metric h by

h(X,Y)=g(X,Y)

for X, Y € I'(TM). The decomposition TCM = T'M & T"M is orthogonal with respect
to h. Indeed, for X e I'(T"M), Y € I'(T"M), we have Y € I'(T"M) and

WX, Y)=g(X,Y)=g(JX,JY) = —h(X,Y).

It follows that we have h(X,Y) =0 for any X € I'(T"M), Y € I'(T"M).
Let V be the Chern connection of h, which satisfies for any X,Y, Z € I'(T"M),

Vx (MY, 2)) =hVxY,Z)+h(Y,VxZ).
The torsion T and curvature R of V are defined by, for X,Y, Z € I'(T*M),
T(X,Y)=VyY —=VyX — [X,Y], R(X,Y)Z=VyVyZ—VyVxZ-VixyZ
Since V.J = 0, we obtain for X,Y, Z, W € I'(T*M),
T(JX,JY) = JT(X,Y), R(X,Y)JZ=JR(X,Y)Z
and it follows that
g(T(JX,JY),JZ) = g(T(X,Y),Z) = T(X,Y, Z)

and
g R(X,Y)JZ, JW)=g(R(X,Y)Z, W)= R(X,Y, Z,W).

Hence we have R(X,Y,Z, W) = 0 unless Z, W are of different type. In local coordinates
(z1,...,2n), we have

0o 0 0o 0

9(8—%78—%) =0, Q(a—zya—%) =0

since we have

J( a) - \/__1382/ J(aaz) - _\/__1(9@

and we write
o ( g 0 )
gz] - g azia 82]‘ )

(95)~" = ("), which denotes its inverse matrix, i.e., we have g g;; = ;.. The Christoffel

symbols Ffj, torsion tensor 7" and Chern curvature tensor R of g are defined by
0 0
Vo—="IF"
%0z U0z,
r(991  Oga
TF =Tk Tk — kl( it _ ”)
J i Jt g azl 82’]' ;
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0 0 9 0 > O P q99kq 991
“Imoz T T onoz Y 9n 0z
- gmi( aZJZ 82] + qurgk - F]qF;]k’>

ore m
Rz‘jk[ - Rkaz Imil a_k = 9mi Vil

and the traces of the curvature tensor
2

8zi02j

are called the first and second Ricci tensors, respectively. The second Ricci tensor Ric;;
is often called the Chern-Ricci tensor. We also define the scalar curvature

R = gzjgklRuk

Rk‘[ = gl‘;R'LEkL RlC 7 = klRZ]k ]-Og det gk[

The covariant derivatives of a = a;dz? and X = X 3 -2 are defined in components as
Vi(lj = 8iaj — Fijak, VZX] = GZXJ -+ ngXk

Then the Chern connection V can be extended naturally to any tensors.

We can choose the following special local coordinates (cf. [29]):
Lemma 2.1.1. Around a point p € M, there exist local coordinates such that, for any
i ],

0g:z
i7(p) = 0ij, —=—(p) =0.
g J <p> J azj (p)

Lemma 2.1.2. Around a point p € M, there exist local coordinates such that, for any
i? j? k?

095 (p) + 015 ()

aZk 6Zi =0

Gij (p) = 51’;‘7

Especially we have

99
a2, “(p).

Remark 2.1.1. It is impossible to choose local coordinates satisfying both in Lemma 2.1
and Lemma 2.2 simultaneously in general.

Let AP denote differential (p, ¢)-forms on M. The exterior differential d has a decom-
position d = d + 0 where

O NP9 — APTLG 5 AP AP
Note that we have 9 = 3% = 99 + 00 = 0 and by the Stokes theorem,

/ Ja = / a
M oM
for any o € A"1m,

In local coordinates, ddu for a function u € C%(M) is locally given by

_ 92u
= ——dz Ndz
00u = 9507, 2 N dZ;.

Th(p) =2
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2.2 Holomorphic line bundles and divisors

Let X be a compact complex manifold. A holomorphic line bundle L over X is given by an
open cover {U,} of X with collection of transition functions {t,s} which are holomorphic
maps tos : Uy N Ug — C* satisfying

(T)  taplpa =1, taplsy = tay.

If there exist holomorphic functions f, : Uy — C* such that ¢, = fc—;ta/g, we identify
collections of transition functions {t,s} and {t,5}. Given two holomorphic line bundles
L and L' with transition functions {t.s} and {t,,} respectively, we write LL’ for the
new holomorphic line bundle with transition functions {t,st,5}. We define holomorphic
line bundles L™ = mL by {ty}s} for m € Z. Let L be a holomorphic line bundle over
X. A holomorphic section s of L is a collection {s,} of holomorphic maps s, : U, — C

satisfying the transformation rule
Sq = tagsg on U, NUpg.

A Hermitian metric h on L is a collection {h,} of smooth positive functions h,, : U, = R
satisfying the transformation rule

ha = tﬁafgahﬁ on Ua N Uﬂ.

We define the curvature Ry, of a Hermitian metric h on L to be the closed (1, 1)-form on
X locally given by

Ry, = —V/—1001log h,

on U,, which is well-defined. Note that we omit a factor of 27. We also define the first
Chern class ¢;(L) of L to be the cohomology class ¢;(L) = [Ry]. Since any two Hermitian
metrics h, h' on L are related by h' = e~ ¢h for some smooth function ¢, we have

Ry =R, + v —185@

and hence c¢;(L) is well-defined. If h is a Hermitian metric on L, then h™ is a Hermitian
metric on L™ and we have ¢;(L™) = mci(L).

We say that L is positive if ¢;(L) > 0. We write H°(X, L) for the vector space of
holomorphic sections of L, whose dimension is finite if it is not empty. We say that L is
very ample if for any ordered basis (s, ..., sy) of H°(X, L), the map ¢ : X — PV given
by

1(x) = [so(x),...,sn(z)],

well-defined and an embedding. We say that L is ample if there exists a positive integer
mg such that L™ is very ample for all integer m > mg. The Kodaira Embedding Theorem
states as follows:

Theorem 2.2.1. Let X be a compact complex manifold and let L be a positive holomor-
phic line bundle over X. Then there exists a positive integer m, such that for all integer
m > mg, L™ is very ample.
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A holomorphic line bundle L is called globally generated if for each x € X, there exists
a holomorphic section s of L such that s(z) # 0. We say that L is semi-ample if there
exists a positive integer mg such that L™ is globally generated.

A subset D C X is called an analytic hypersurface if D is locally given as the zero
set {f = 0} of a locally defined one holomorphic function vanishing of order 1. Denote
D, the set of points p € D for which D is a submanifold of X near p. An analytic
hypersurface D is called irreducible if D, is connected. A divisor D on X is a formal
finite sum ), d;D; where d; € Z and each D; is an irreducible analytic hypersurface of
X. Suppose that a given divisor D = Zle d; D;, each irreducible analytic hypersurface
D; NU, is given by a holomorphic function f;, = 0 vanishing on D to order 1 over a
sufficiently small open cover U,. The support of D Supp(D) is the union of the D; for
each ¢ with d; # 0. Then the divisor D is given by a meromorphic function

k
fo=]1rE inU..
=1

Define transition functions t,5 = % on U, N Ug, which are holomorphic functions and
nonvanishing on U, N Uz and satisfy the conditions (7"). We write [D] for the associated
holomorphic line bundle, which is independent of choice of local defining functions. Sup-
pose that f/, is another locally defined holomorphic function which gives D; N U,. Then
there exists a holomorphic function h;, which does not have any zero in U, such that

io = fiahia. By defining

k
fo=11fe Po=]]hi inUa,
i=1

i=1
we have f! = f,h, and the transition function t’aﬁ = % on U, N Uz is related to t,3
by ths = halaghy', which means that two transition functions {t.s}, {t,5} define an
equivalent holomorphic line bundle, so the associated holomorphic line bundle [D] is well-
defined independent of choice of local defining functions.

Let f be a meromorphic function on a complex manifold X. Write Zero(f) as the set
of zeros of f, where zeros of f means zeros of g locally given by f = £ for relatively prime
holomorphic functions g, h. And we define Pole(f) = Zero(%). For an irreducible analytic
hypersurface D in a complex manifold X, we choose local coordinate chart (U, (z1, ..., 2z,))
around a non-singular point p € D with DNU = {z, = 0}. In the case of DNU C Zero(f),
we define an integer vp(f) by choosing maximum of a positive integer m satisfying

921, zn) = 200G (21,00 20),

where g is the holomorphic function appeared in f = 7 above and g’ is another holo-

morphic function. Here, note that the definition of vp(f) is independent of choice of a

point p since vp(f) is constant in a neighborhood of p and the set of non-singular points

is connected. In the case of D NU C Pole(f), we define vp(f) = —I/D(%).
Define the following two effective divisors

(o= D wHD, (Ne= D (—vn(f)D,

DCZero(f) DcCPole(f)
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and then we define a principal divisor (f) of f by

(f) = (o= (f)eo-

A divisor D is called a Cartier divisor if there exists for any x € Supp(D), a open
neighborhood U of z and a meromorphic function f such that

Dl = (f).

Two divisors D, D’ € Div(X), Div(X) is an Abelian group called a divisor group, are
called linearly equivalent if there exists a meromorphic function f # 0 such that

D-D'=(f)

The set of all principal divisors is subgroup of Div(X) and we write it Div;(X). All
equivalence classes of holomorphic line bundles on a complex manifold X is an Abelian
group with tensor product as an operation. We write it Pic(X) and call a Picard group.
By applying Theorem 2.1.1, we have the following result:

Theorem 2.2.2. Let X be a compact complex manifold. If there exists a positive holo-
morphic line bundle L over X, we have the isomorphism

[

Div(X)/Divi(X) 5 Pic(X).

Let C' be a curve on X, which means that it is an analytic subvariety of dimension 1.
If C' is smooth, then we define the intersection number

(L'C):/CRm

where h is any Hermitian metric on L. By Stokes’ Theorem, (L - C') is independent of
choice of h. Since Stokes” Theorem still holds for analytic subvarieties (cf. [28, p.33]),
even if C' is not smooth, we integrate over C,e, and we can define (L - C) as well. We say
that a holomorphic line bundle L is nef if (L -C) > 0 for all curves C' on X. For a divisor
D, we define the intersection number by (D - C) = ([D] - C).
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2.3 Minimal non-Kahler compact complex surfaces

The Kodaira-Enriques classification (cf. [3, p.244]) tells us that minimal non-Kéhler
compact complex surfaces fall into one of the followings: When the Kodaira dimension
Kod = 1, they are minimal non-Kahler properly elliptic surfaces. If the Kodaira dimension
Kod = 0, then they are primary or secondary Kodaira surfaces. Compact complex surfaces
with Kod = —oo and the first Betti number b; = 1, they are called class VI surfces.
Minimal surfaces in this class are called class VI, surfaces. In the case of Kod = —o0,
then they are of class VII,. Class VI surfaces are classified into three cases by the
second Betti number by as follows.

(1) by = 0 : Hopf surfaces or Inoue surfaces (cf. [10], [32], [62]).
(2) by =1 : These are classified into Kato surfaces (cf. [63]).
(3) by > 1 : Still unclassified (cf. [20]).

A properly elliptic surface is an elliptic surface with its Kodaira dimension 1. A simple
example is the product of two curves, one elliptic and the other of genus at least 2. A
primary Kodaira surface is a surface with b; = 3, admitting a holomorphic locally trivial
fibration over an elliptic curve with an elliptic curve as typical fibre. A secondary Kodaira
surface is a surface admitting a primary Kodaira surface as unramified covering. They
are elliptic fibre spaces over rational curves with b; = 1.

Speaking of the classification of class V' I, surfaces, the only compact complex surfaces
known with Kod = —o0, b; = 1 were the Hopf surface for ages. In 1972, Inoue introduced
the example which now called Inoue surfaces [32], whose second Betti number vanish. In
1976, Bogomolov claimed that class VI, surfaces with by = 0 are completely classified
under the additional condition that they do not contain curves [10]. After that, finally
Teleman completed the classification in the case by = 0 [62]. In 1974, Inoue constructed
examples with by > 0 in [33], which are called the Inoue-Hirzebruch surfaces.

Hopf surfaces are defined by H = C*\ {0}/ ~, where (21, 23) ~ (az1, B22) for o, 3 € C*
with |a] = || # 1. The Hopf surface H is diffeomorphic to S! x S3. The diffeomorphism
H 5 S' x $® is realized by sending a representative z = (21, 2) € C2\ {0} to (r, z),
where 7 = \/|21|? + |22]? and note that S* 2 R /(r ~ |a|r).

Inoue surfaces were firstly introduced by Inoue in [32]. They form three families, Sy,
SN pant and Sy First of all, we construct the Inoue surface Sys. Let M € SL(3,Z) be
a matrix with one real eigenvalue A > 1 and two complex conjugate eigenvalues p # fi. Let
(I1,1s,13) be a real eigenvector for M with eigenvalue A and (my, ms, m3) be an eigenvector
with eigenvalue p. Let G be the group of automorphisms of C x H, where H is the
upper half plane in C generated by

Jo(z1, 22) = (121, A22),  [fi(21,22) = (21 +my, 20 + 1)

for (z1,20) € C x H, 1 <17 < 3. We define Sy; to be the quatient surafce (C x H)/Gyy,
which is a T3-torus bundle over a circle. We consider the subgroup Gy C G generated
by fi, f2 and fs, which is isomorphic to Z?* and acts on C x H properly discontinuous and
freely, with quotient the product 7% x R<o. The projection 7 : T x R~g — R+ is induced
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by (21, 29) — Imz, for (21, 25) € Cx H. Since fy descends to a map 7% x Ry — T3 x Ry,
we obtain that

Sv = (T3 x R0)/(fo),

and since o € Rsy, fo maps T, = 7 (y) to T, = 7 '(ay). Especially, we have a
diffeomorphism Fy : Ty — T, induced by fo. Then we have that S, is diffeomorphic to
the quotient space (T2 x [1,a])/ ~, where (p,1) ~ (Fo(p), ).

We next construct Sy, . . Let N = (ny;) € SL(2,Z) with two real eigenvalues o > 1
and I. Let (a1, as) and (b, bs) be two real eigenvectors for N with eigenvalues a and <,

respectively. Fix integers p, q,r € Z with r # 0 and a complex number t € C. Define

1
€; 1= 57%1(”1'1 —1)aiby + 57%2(7%2 — 1)agbs 4+ njnpbias
for i = 1,2. Using N, a;, b;, p, q, r, one gets two real numbers (¢, ¢y) as solutions of the
linear equation

bias — baay

(c1,¢2) = (c1,02) - N' + (€1, €2) + (p,q).

r

Let G be the group of automorphism of C x H generated by
fo(z1,22) = (21 + t,az0),  fiz1, 22) = (21 + biza + ¢, 22 + a;)

fori=1,2 and
b1a2 — b2a1

f3(21,22) = (21 + . ,22)

for (21,2) € Cx H. We define Sy, . to be the quatient surface (C x H)/G7, which is
diffeomorphic to a bundle over a circle with fiber a compact 3-manifold X. We consider
the subgroup G, C G} generated by f1, fo and fs. Write 2; = x; + /—1y; for i = 1,2.
For fixed g, = Imz,, the group Gy acts on { (23,12, 21)|z2 € R, 2, € C} = R? properly
discontinuous and freely, with quotient a compact 3-manifold X,,. Compact 3-manifolds
X, for different values of y are all diffeomorphic to a fixed compact 3-manifold X. We
may consider that the group G;Q acts on C x H with the quotient diffeomorphic to the
product X x R.o with the projection 7 : X x R.g — R induced by (21, 22) + y2 and
with X, = 7 *(y2). Since fy descends to a map X x R.g — X x Ry, we have that

Sﬁpqut = (X X Rx0)/(fo)-

Since o € R+1, fo maps X; to X, and then induces a diffeomorphism Fjy of X such that
SN pqrs 18 diffecomorphic to the quotient space (X x [1,a])/ ~, where (p, 1) ~ (Fo(p), @).
We finally construct S Let N = (n;;) € GL(2,Z) with det N = —1 and with

N.p,g,r-
two real eigenvalues @ > 1 and —X. Let (a1, az) and (by, bs) be two real eigenvectors for

N with eigenvalues a and —i, respectively. Fix integers p,q,r € Z with r # 0. One gets
two real numbers (cq, ¢y) as solutions of the following linear equation

bias — bya
—(c1,02) = (1, ¢2) - N*+ (e1,€2) + M(R q),

r
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where e; for each i = 1,2 is defined as in the case Sy, .-

automorphism of C x H generated by

Let Gy be the group of

fo(z1, 22) = (=21, a22),  fi(z1, 22) = (21 + biza + ¢4, 20 + ;)

fori=1,2 and
blCLQ — bgal

f3(21,22) = (21 +

for (z1, 22) € C x H. We define Sy,
every surface Sy

r 722)

. b0 be the quatient surface (Cx H)/GY. Note that

has as an unramified double cover an Inoue surface S;Q for

Psq,T P50
suitable integers p’, ¢’. In fact, we have the involution of S]—i\_fz,p’,q’,r;o: (21, 22) = (—21,a22)
satisfies 12 = Id and

N,p,qﬂ’ = S;Q,p’,q’,r;o/b‘

A Kato surface is a minimal compact complex surface S with b3(S) > 0 containing a
global spherical shell. Kato showed that Kato surfaces have small analytic deformations
that the blow-ups of primary Hopf surfaces at a finite number of points. Note that
a compact complex surface S is said to be a primary Hopf surface if and only if its
fundamental group m(S) = Z and by(S) = 0 (cf. [3, (18.4) Theorem.]). In particular,
they have an infinite cyclic fundamental group, and are non-Kéhler [34]. Note that they
are not always a modification of a Hopf surface. Indeed, none of compact complex sufaces
constructed by Inoue in [33], which are class V11 surfaces with by > 0 containing global
spherical shells is a modification of a Hopf surface. Cosequently, we have that all compact
complex surfaces constructed by Inoue in [33] are deformations of modification of primary
Hopf surfaces. Examples of Kato surfaces include Inoue-Hirzebruch surfaces and Enoki
surfaces. Kato surfaces always admit exactly bs-rational curves.

A spherical shell in a compact complex surface .S is an open subset V' C S biholomor-
phic to a neighborhood U of 3-sphere S® C C2. A spherical shell V in S is said to be global
if S\ V is connected. Otherwise, V is said to be local. Any complex manifolds contain
local spherical shells. But global spherical shells can be contained in only special types
of manifolds. A class VI, surface S with by(S) > 0 has at most by(S)-rational curves.
All compact complex surface containing a global spherical shell may be constructed by a
procedure due to Kato [34]. As a result, if a class V11, surface S with by(S) > 0 admits
a global spherical shell exactly by(S)-rational curves. In the classification of class V11
surfaces with by = 1 above (2), they are classified into Kato surfaces since the global
spherical shell conjecture was proven by Teleman in the case by = 1 [63, Corollary 1.3].
The global spherical shell conjecture claims that all class V11, surfaces with b, > 0 have
a global spherical shell. Kato surfaces are reasonably well understood, therefore a proof
of this conjecture lead to a classification of the class V11 surfaces.

Since all known examples of class VI I surfaces with by > 0 have global spherical shells,
Kato conjectured that any class V11, surface with by > 0 which has by-rational curves,
contains a global spherical shell. By Doloussky-Oeljeklaus-Toma, the proof of Kato’s
conjecture was given in [20]. It follows that it is classified into Kato surfaces. Hence the
classification problem for class VI, surfaces reduces to the existence of sufficiently many
rational curves.
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2.4 The Chern-Ricci flow

Let M be a compact complex surface. We introduce the definition of the Gauduchon
metric in the following.

Definition 2.4.1. A metric gy is called a Gauduchon metric on a compact complex
manifold of complex dimension n if gy is a Hermitian metric whose associated (1, 1)-form

wo = vV —1(g0)i5d2 N dZ; satisfies

00(wy™) = 0.
We will also refer to the associated (1, 1)-form wy as a Gauduchon metric. The following

states that there are lot of Gauduchon metrics on any compact complex manifold X of
complex dimension n.

Proposition 2.4.1. (cf. [24], [62, Proposition 1.1])Any Hermitian metric on X is confor-
mally equivalent to a Gauduchon metric. If n > 2, then this Gauduchon metric is unique
up to a positive factor.

Now let wy be a Gauduchon metric on M. The Chern-Ricci flow w(t) starting at wy is
the flow of Gauduchon metrics

2(t) = — Ric(w(t)),

w(t)]e=0 = wo,
for t € [0,T) where T' = T'(wp) is a finite singular time with 0 < 7" < oo stated by
T = sup{t > 0|Fp € C>(M,R) with wy — t Ric(wg) + v =190y > 0}
and Ric(wp) is the Chern-Ricci curvature of wy, given locally by
Ric(wy) = —v/—190log w?,

which determines the Bott-Chern cohomology class denoted by cP¢(M) € Hpyh(M,R),

where
_ {d-closed real (1,1)-forms}

 {V-100ylw € C=(M,R)}

. We call the cohomology class ¢P“ (M) the first Bott-Chern class of M. It is independent
of the choice of Hermitian metrics. Here we have omitted a factor of 2.

Note that a compact complex manifold is said be in Fujiki’s class C if it is bimero-
morphic to a Kahler manifold. Class C includes all Moishezon manifolds since they are
bimeromorphic to projective manifolds. If a compact complex manifold M is in C, then
the first Bott-Chern class ¢P¢(M) = 0 if and only if the first Chern class ¢;(M) = 0 in
H?(M,R) (cf. [66]).

According to [72, Theorem 1.2], there exists a unique maximal solution to the Chern-
Ricci flow w(t) for t € [0,T). Note that if wy is Kéhler, this flow is exactly a Kahler Ricci
flow. Since the Kahler-Ricci flow preserves the Kahler condition, a solution of the Kahler
Ricci flow starting at a Kahler metric is a family of Kahler metrics. If the volume of M

Hpo(M,R)
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with respect to w(t) tends to zero as t — T, we say that the Chern-Ricci flow w(t) is
collapsing at T'. Otherwise, we say that the Chern-Ricci flow w(t) is non-collapsing at
T. And [72, Theorem 1.3] tells us that on compact complex surface M equipped with a
Gauduchon metric wy, T can be rewritten as

T:sup{TOZO ‘ VtG[O,TO]y/

M

(wo — # Ric(wo))2 > 0, / (wo — # Ric(wp)) > 0,
D
for all irreducible effective divisors D with D? < 0}.

Notice that for t € [0,T'), the quantity [, ( wo — ¢ Ric( wo = [, w(t)? is the volume of
M with respect to w(t) and fD wo — t Ric(wy)) fD is the Volume of D. Note that
since a curve (' is an analytic subset with its codlmensmn is 1, C' is given locally by the
set of zero points of one holomorphic function. So there is a natural 1 : 1 correspondence
between curves and effective divisors and which tells us that saying that ”irreducible
effective divisor D with D? < 07 is the same as that ”irreducible curves C' with C? < 0”.

The behavior of the Chern-Ricci flow on Hopf surfaces, Inoue surfaces and properly
elliptic surfaces that Weinkove and Tosatti found is similar to the behavior of the Ricci
flow on geometric 3-manifolds. We introduce thier discovery in the following:

Theorem 2.4.1. ([70, Theorem 1.6])We have

(1) Let H be the Hopf surface. Then there exists an explicit solution w(t) of the Chern-
Ricci flow on H for ¢ € [0, 1) with

(H,w(®) & (SY,d), ast— %

where d is the standard distance function on the unit circle S C R.

(2) Let S be any Inoue surface. Then there exists an explicit solution w(t) of the
Chern-Ricci flow on S for ¢ € [0, 0c0) with

(S, —) Ead (SY,d), ast— oo,

where d is the standard distance function on the unit circle S C R.

(3) Let m : S — C be any non-Kéhler minimal properly elliptic surface. Then there
exists an explicit solution w(t) of the Chern-Ricci flow on S for t € [0, 00) with

(S, @) i (C,dkg), ast— oo,

where dk g is the distance function on the Riemann surface C' induced by an orbifold

Kéhler-Einstein metric wx g on C' which satisfies Ric(wgg) = —wip away from the
1mages of the multiple fibers of 7. We also have that 7*wg g is a smooth form on §
and &8 s o wxE smoothly on S.
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Remark that it is not difficult to write down explicit solutions of the Chern-Ricci
flow on also the Kodaira surfaces. In fact, there are explicit Chern-Ricci flat Gauduchon
metrics on all these manifolds [74, (1.3)] and these give trivial solutions to the Chern-Ricci
flow. Generally, Gill showed that on a compact Hermitian manifold M, whenever the first
Bott-Chern class ¢P¢(M) = 0 (if M is in Fujiki’s class C, equivalently ¢;(M) = 0 in
H?(M,R)), the Chern-Ricci flow converges to a Chern-Ricci flat metric in any dimension

(cf. [26)).

2.5 Pluripotential theory

Recent years, by mainly Kolodziej, the Pluripotential theory has been developed on Her-
mitian manifolds. The important tool in this theory, so called modified comparison principle,
is a generalized version of the comparison principle of Bedford and Taylor. Let (X,w) be
a compact Hermitian manifold of complex dimension n. We set d° = %(5 —0), dd° =

Q@é. We consider the ”curvature” constant of the metric w denoted by B = B(w) > 0
and it satisfies

—Bw? < 2ndd‘w < Bw?, = Bw? < 4n’dw A d°w < Bw?.

Definition 2.5.1. A function u : X — [—00,400) is w-plurisubharmonic (w-psh for
short) if it is upper semi-continuous, u € L'(X,w") and w + dd°u > 0 on X as a current.
The set of all w-psh functions on X is denoted by PSH(w).

With using partition of unity, we can define the Monge-Ampere operators w; for
u € PSH(w) N L*>*(X) by applying the local argument in C". We start with a local
argument in a open set ) C C".

Definition 2.5.2. Let w be a Hermitian metric in C" and u : Q — [—00, +00) be a upper
semi-continuous function. Then wu is called w-psh if u € L] (Q,w") and w + dd°u > 0 in

2 as a current. We denote the set of these functions on © by PSH(2, w).

According to Bedford and Taylor, we can define w,, A --- A w,, for vy,...,v, €
PSH(Q,w) N L*(Q), 1 < k < n — 1. This is shown by proceeding induction over k.
When k& = 1, the definition is given by classical distribution theory. Suppose that for
1 <k <n-—1, the current T := w,, A -+ A w,, is well defined. We fix a small ball
B C 2 and a strictly psh function p such that ddp > 2w in B. Set v := ddp — w and
w = p—+ v € PSH(B) N L>®(B), then T" can be written in B as a linear combination of
positive currents

(W) dduj, A--- Addouj, Ay

for 1 <j; <--- <5 <k, 1 <1<k By Demailly’s regularization theorem for quasi-psh
functions (cf. [11, Theorem 2.3), there are sequences of smooth w-psh function {vlj ]
which decrease to v; for 1 <[ < k. Since T is a linear combination of positive currents of
the form (#), we obtain from the result of Bedford and Taylor,

T=1lmT;=limw;A---A Wy weakly.

Jj—o0 Jj—o0 1
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It follows that T' is a positive current and we obtain the following well defined formulas;

k
AT = " dw Awy, Ao ANBy Ao Ay,
=1

k
dd'T = 2 ) dwAdwAwy A ABy Ao ABy, A Awy,
1<l<m<k
k
+D ddw A wy, Awy A ATy A Ay,
=1

where @,, implies that the term does not appear in the wedge product. So now we can
define
ddu AT :=dd°(uT) — du AN d°T + du A dT — uddT

for u € PSH(Q,w) N L®(Q). Let {u/}32, be a sequence of smooth w-psh functions
decreasing to u. Then we have dd“u’ A T; converges weakly to ddu AT as j — oo.
For any test form ¢ of bidegree (n —k —1,n — k — 1), we have

du NdT' N =—duNdT N .

Hence
Wy AT :=w AT +dd(uT) — 2du AN d°T — udd“T

is a positive current of bidegree (k + 1,k +1). When v; = --- = v, = v € PSH(Q,w) N
L>(£2), we obtain the definition of the Monge-Ampere operator w, := w, A+ -+ Aw,. Then
the Bedford-Taylor convergence theorem on €2 can be stated as follows:

Theorem 2.5.1. (Bedford-Taylor [5])Let vy, ..., v, € PSH(Q,w) N L>(Q), 1 < k < n.
Suppose that the sequences of bounded w-psh functions {v1}52,,..., {v{}52, decrease (or
uniformly converge) to vy, ..., vy respectively. Then
limw; A Awy = wy, Ao Aw,, weakly.
Jj—00 1 k
In particular, if {u;}22, C PSH(Q,w) N L>(Q) decreases (or uniformly converges) to
u € PSH(Q,w) N L>*(Q), then
lim w,, = w, weakly.
j—o0
The same statement holds for functions in PSH(w) N L>°(X) on a compact Hermitian
manifolds with arbitrary fixed Hermitian metric w. Note that v € PSH(w) if and only if
u € PSH(Q,w) for any coordinate chart Q CC X.
We introduce the L'-Chern-Levine-Nirenberg (CLN) inequality:

Proposition 2.5.1. (L'-CLN inequality (cf. [17, Proposition 3.11])) Let K, L C X be

compact subsets with L C K°. For any plurisubharmonic functions V,us,...,u, on X
such that uy,...,u, are locally bounded, there is an inequality
[IVdduy A+~ Addug||lL < Cr ][V Jual[ oy - - - ug] Lo )
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We notice that all functions « in PSH(w) normalized by the condition supy u = 0 are
uniformly integrable.

Proposition 2.5.2. ([19, Proposition 2.1])Let u € PSH(w) be a function with supy u = 0.
Then there exists a constant C' dependent only on X, w such that

/ lujw™ < C.
X

We need the following two lemmata, which can be given by the proof in [2, Theorem
3.1] and the regularization result in [6], for proving the modified comparison principle:

Lemma 2.5.1. For T := w,, A+ Aw,,_,, where vy ..., v,_1 € PSH(w) N L>®(X) and for
v, € PSH(w) N L*°(X) we have

/ ddp N'T < / dd°o N'T + / (¢ — w)ddcT.
{p<} {p<y} {p<¥}

The following is a weaker version of the comprison principle.

Lemma 2.5.2. Let ¢, ¢ € PSH(w)NL>(X). Then there exists a constant C,, = C(n) > 0
such that, for Bsup, (v —¢) <1,

n—1
/ wgg/ wy + CpB sup (@D—QD)Z/ wg/\w”_k.
{e<y} {e<i} {p<i} k=0 v {e<v}

Theorem 2.5.2. (Modified comparison principle (cf. [48, Theorem 2.3])) Let (X,w) be
a compact Hermitian manifold and suppose that ¢, € PSH(w) N L>®(X). Fix 0 <d <1

and set m(9) = infx (¢ — (1 — 0)?). Then, for any 0 < s < %, we have

n Cs n
w(l*&)’l[) S (1 + 5_77,) ww,
{e<(1=8)yp+m(6)+s} {e<(1=8)yp+m(d)+s}

where C' is a uniform constant depending only on n, B.

We use the notation Vol,(E) := [, w" for any Borel set £ C X, and we write L”(w")
for LP(X,w™). We denote for a Borel set F,

cap,(F) := sup { / (w+ddp)": p € PSH(w),0 < p< 1}.
E

From the argument in [41, Lemma 4.], [42, Lemma 4.3], we obtain the following result:

Proposition 2.5.3. ([19, Corollary 2.4])There are a univarsal number 0 < o = a(X,w)
and a uniform constant 0 < C' = C'(X,w) such that for any Borel subset £ C X

Vol,(E) < Cexp (%)
capy
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Let h : Ry — (0,00) be an increasing function such that

/°° dx
— < +00
1 zh(z)w

In particular, lim, ., h(z) = +oo. We call such a function h admissible. If h is admissible,
then so is Ah for any number A > 0. Define

X

Fu(x) = Py

For such Fj,, we consider the family of bounded w-psh functions such that their Monge-
Ampere measures satisfy

()., /E wy < F(cap,(E)),

for any Borel set £ C X, where w, = w + dd°p. From Proposition 2.4.3, it follows that

Corollary 2.5.1. Let ¢ € PSH(w) N L*(X). If w} = fw" for 0 < f € LP(W"), p > 1,
then W] satisfies (&), for the admissible function h,(z) = C||f \|;;(wn) exp(az) with some
universal number a > 0.

Thanks to the modified comparison principle (Theorem 2.4.2), we can prove the fol-
lowing crucial lemma:

Lemma 2.5.3. ([48, Lemma 5.4])Fix 0 < § < 1. Let ¢,v € PSH(w) N L*(X) be such
that —1 < < 0. Set m(d) = infx(p—(1—0)Y) and U(6,s) = {¢ < (1—90)+m(d)+s}.
For any 0 < s,¢ < 3 min{6", 1‘;—33}, one has

(1= d)tcan, (UG.5) < (14.C) [ ¥a
U(8,5+4(1=6)t)
Remark 2.5.1. By rescalimg t, the statement above can be restated in the following

way: For any 0 < s < 3 min{0", l‘é—SB}, 0 <t<3(1—6)min{o", 1‘;—33}, we have

hcap, (U (5, 5)) < 4"C / W

U(8,5+t)
where C' is a dimensional constant.
Then the next essential statement can be proven with using the result in Remark 2.4.1.

Proposition 2.5.4. ([48, Theorem 5.3])Fix 0 < § < 1. Let ¢,9 € PSH(w) N L>(X) be
such that ¢ <0, and —1 < ¢ < 0. Set m(d) = infx(p — (1 — d)1»), and

5o = L min{6", 2 41— 6)0m 4(1 — 5)-
0= g MmMo 76 ’ 168"

Suppose that w]} satisfies (&) for an admissible function h. Then, for 0 < D < 4y,

D < k(cap,,(U(d, D))),
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where U(d, D) = {¢ < (1=9)yp+m(0)+ D}, and the function  is defined on the interval
(0, cap,, (X)) by the formula

l®) = 4O”<h(i)i ! /:" xhc(li)i>’

with a dimensional constant C,,.

Then we obtain the following a priori estimate.

Corollary 2.5.2. ([48, Corollary 5.6])Suppose that ¢ € PSH(w) N L>®(X), supy ¢ = 0
satisfies
wy = fuw,

where 0 < f € LP(w"), p > 1. Then there exists a constant 0 < H = H(h), depending
only on h, X, and w such that
—H <p<0.

We finally obtain the existence of continuous solutions to the complex Monge-Ampere
equation wy = fw", where 0 < f € LP(w"), p > 1, and understood in the weak sense of
currents.

Theorem 2.5.3. ([48, Theorem 0.1])Let 0 < f € LP(w"), p > 1, be such that [, fw™ > 0.
There exist a constant ¢ > 0 and a function PSH(w) N C°(X) satisfying the equation

n __ n
w, = cfuw",
in the weak sense of currents.

Notice that one can get a weak stability statement from the argument in the proof of
the theorem above:

Corollary 2.5.3. ([48, Corollary 5.10])Let {u;}52, C PSH(w) N C°(X) be such that
supy u; = 0. Suppose that for every j > 1,

CUZJ_ = fjwnv
where f;’s are uniformly bounded in LP(w"), p > 1. If {u;} is Cauchy in L*(w™), then it
is Cauchy in PSH(w) N C°(X).
We can obtain the stability theorem for strictly positive LP-function f:

Theorem 2.5.4. ([50, Theorem A])Let 0 < f,g € LP(w"), p > 1, be such that [, fw" >
0, | + gw"™ > 0. Consider two continuous w-psh solutions of the Monge-Ampere equation

w, = fw", w, = gw",
with supy v = supy v = 0. Assume that
f>co>0

for some constant ¢o > 0. Fix 0 < & < —15. Then, there exists C' = C(co, o, || f||», ||g]]2r)
such that
lu = ollL= < ClIf = gllTs.

33



Then we can develop the statement in Theorem 2.4.3 as follows:

Corollary 2.5.4. ([50, Corollary 3.9])Suppose that 0 < ¢y < f € LP(w"), p > 1. Then
there is a unique u € PSH(w) N CY(X), supy u = 0, and unique ¢ > 0 such that

w, = cfw".

At the last of this section, we introduce that in the case of the right hand side of the
Monge-Ampere equation is smooth, Weinkove and Tosatti proved the following theorem:

Theorem 2.5.5. (Weinkove, Tosatti [68, Corollary 1.])Let (X, w) be a compact Hermitian
manifold of complex dimension n > 2. For every smooth real-valued function F' on X,
there exist a unique real number b and a unique real valued function u on X solving

(w + ddu)™ = "W, with

w+ddu >0, supu=0.
X

2.6 Orbifolds

An orbifold is a space locally modelled on the quotients of Euclidean space by finite
groups. These local models are glued together by maps compatible with the finite group
actions. Let X be a Hausdorff topological space. For an open set U C X, we define an
n-dimensional orbifold chart on X (cf. [1], [16]).

Definition 2.6.1. An n-dimensional orbifold chart is a 3-tuple (U,T, 7), where
(1) U is a connected open subset of R™,
(2) T is a finite group of homeomorphisms of U,

(3) 7:U — U is a map defined by # = 7 o p, where p : U — U/F is the orbit map and
7. U /T" — X is a map that induces a homeomorphism of U/T" onto an open subset
UcCX.

Define an embedding A : (U Iy, m) < (V,Ty,m) between such orbifold charts is a
smooth embedding A : U < V with m = m o A. Note that given two embeddings of
orbifold charts A,y : (U, Ty, m) < (V,Ty, ), there exists a unique v € Ty such that
f = -\ As a result, an embedding of orbifold charts X : (U,T'y,m) < (V, Ty, )
induces an injective group homomorphism A : I'y < I's.

Soppose that (Ui,Fi,m) with WZ(UZ) = U; for open sets U; C X are orbifold charts
on X for ¢ = 1,2. We say the charts are compatible if given a point z € U; N Us, there
exist an open nelghborhood Us C Uy N U, of the point x and an orbifold chart (Ug, I3, m3)
with m3(Us) = Us such that there are two embeddings \; : (Us, I's, w3) < (U;, Ty, ;) for
1=1,2.

Now we define an n-dimensional orbifold atlas &/ on a Hausdorff topological space X.

Definition 2.6.2. An n-dimensional orbifold atlas on X is a collection i = {(U;, T}, 7;)}jes
of compatible n-dimensional orbifold chart which cover X.
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Definition 2.6.3. An n-dimensional orbifold () consists of a paracompact Hausdorff
topological space X together with an n-dimensional orbifold atlas of charts U,.

Every orbifold atlas for X is contained in a unique maximal atlas, and two orbifold
atlases are equivalent if and only if they are contained in the same maximal atlas.

An orbifold atlas U is said to refine another orbifold atlas V if for every orbifold chart
in U there exists an embedding into some orbifold chart of V. Two orbifold atlasses
are said to be equivalent if they have a common refinement. A paracompact Hausdorff
space equipped with an equivalence class [U] of n-dimensional orbifold atlases is called an
effective orbifold.

Remark that an orbifold is smooth if the finite groups I' act via diffeomorphisms and
the charts are compatible via diffeomorphisms h.

Example 2.6.1. A manifold X is an orbifold where each I'; is the trivial group, so that
we have that 7; : U; — U; is homeomorphic.

Definition 2.6.4. Let Q1 = (Xg,,Uo,), Q2 = (Xg,,Uy,) be two orbifolds. A map
[ Xg, — Xg, is a smooth map between orbifolds if for any point z € Xgq,, there are
charts (Uy, 'y, m) around z and (U, I'y, m3) around f(z) such that f maps 7 (U1) into
@(Ug) and f can be lifted to a smooth map f : U; — U, such that myo f = fom.

Definition 2.6.5. Two orbifolds Q1 = (Xq,,Up,) and Q2 = (Xg,,Uy,) are diffeomorphic
if there are smooth maps of orbifolds f; : Xg, — Xg, and fo : Xg, = Xg, with
fio fa =1dx,, and fao fi =idx,, .

If I is a discrete group and X is a Hausdorff topological space such that I' acts on
X, we say that this action is properly discontinuously if given two points x,y € X, there
are open neighborhoods U, of = and U, of y for which (yU,) N U, # ( for only finitely
many 7y € I', which is equivalent to that X/I" is Hausdorff, or equivalent to that for given
x € X, each isotropy subgroup I', = {v € T'|yx = x} is finite. We have the following
propositions for a group acting properly discontinuously (cf. [16]):

Proposition 2.6.1. If X is a manifold and I" is a group acting properly discontinuously
on X, then X/I' has the structure of an orbifold.

Proposition 2.6.2. If a group I' acts properly discontinuously on a manifold X and
[V C T is a subgroup, then X/IV — X/I" is an orbifold covering projection.

The condition that an orbifold () is covered by a manifold is equivalent to that @) is
the quotient of a group acting properly discontinuously on a manifold. Then @ is also
said a good orbifold. Notice that not every orbifold is covered by a manifold.

Example 2.6.2. Let H be the complex upper half plane. The projective special linear
group PSL(2,7) is the quotient of SL(2,7Z) by its center {I,—I}. The group PSL(2,7Z)
is isomorphic to the group of linear fractional transformations of H of the form z +— ZZZ:[S
with ad — bc = 1 for z € H, a,b,c,d € Z. Let T'; be the isotropy group of i € H. Then
we have I'; = SO(2). By considering the map £ : SL(2,R)/T"; — H defined by £(v) = i,
we have that H is homeomorphic to SL(2,R)/SO(2). In addition to it, since PSL(2,Z)
is a discrete subgroup of SL(2,R), we have that PSL(2,7Z) acts properly discontinuously
on H. Then by applying Proposition 2.6.1, we have that H/PSL(2,7Z) has the structure

of an orbifold.
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Chapter 3

Convergence
in the Gromov-Hausdorff sense
and the Chern-Ricci flow

on complex surfaces

3.1 On the Kahler case and other classifications

In [70], Weinkove and Tosatti showed the convergence result in the Gromov-Hausdorff
sense for the Chern-Ricci flow w(t) starting at a Gauduchon metric wy on a compact
complex surface M when w(t) is non-collapsing at a singular time 7" < oo with the
assumption that

(t) there exists f € C*°(M,R) and a smooth real (1,1) form  on N such that
wo — T Ric(wp) + vV —100f = *B,

where 7 : M — N is the blow-down map of finitely many disjoint (—1) curves, N is
a complex surface. The non-collapsing condition to w(t) at a singular time 7" < oo is
equivalent to the condition [, (wy — T'Ric(wp))? > 0. As we see in [70, Remark 1.4], the
condition (t) holds automatically in the projective Kéahler case with a Kahler metric wy:
Denote by X the blow-up of CP" at the point y. Let 7 : X — CP" be the blow-down map,
which sends the exceptional divisor E to yy € CP". Kahler classes on X can be written as
a = br*[H] — a[E] for 0 < a < b, where H is a hyperplane in CP" and [H] = ¢;(Ocpr(1)).
We consider a solution of the Kahler-Ricci flow starting at a form wy in a Kahler class
apg = bom*[H] — ao[E] where ay and by satisfy the condition ag(n + 1) < by(n — 1). Since
we have Kx = m*Kcpr @ L™, where Ky, Kcpr are the canonical line bundles on X
and CP" respectively and L is the holomorphic line bundle associated to the divisor F,
we have ¢;(Kx) = (n — 1)e1(L) + e1(Kepr) = (n — 1)[E] — (n + 1)7*[H], where we used
that ¢;(L) = [F] and ¢;(Kcpr) = —c1(CP") = —(n + 1)c1(Ocpn(1)). Then the singular
time of the Kéhler-Ricci flow T is equal to -, and for x := by — Z—ﬂao > (0, we obtain
lwo] + Te1(Kx) = [km*wps|, where wpg is the Fubini-Study metric on CP" (cf. [59,
Example 1.1.2]). If M is projective, the complex surface N in (1) is also projective (cf.
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[3, IV(6.7)Corollary]) and imbedded into CP' for some integer I > 0. Then, from the
observation above, the condition (}) holds with § = wgg|y multiplied by some positive
constant, where wpg|y is the Fubini-Study metric on CP' restricted to N. On the other
hand, the condition (1) does not hold automatically in the non-Kéhler case in general. But
in the special case, we do not need to assume the condition (). Actually, we can artificially
construct such initial data wy on M satisfying the condition (1) (cf. [70, Remark 3.1]):
For a constant C' > 0 sufficiently large, there exists a smooth real function f on M so
that wy := Cr*wy + T Ric(wyy) + V=108 is Gauduchon, where wy;, wy are Gauduchon
metrics on M and N respectively. We can check that the Chern-Ricci flow starting at wy
is non-collapsing at 7" and satisfying the condition (f) with 8 = Cwy. However, it is not
enough since we would like to continue the Chern-Ricci flow on new surfaces and repeat
contractions of exceptional divisors along the flow until we reach to the minimal model.
Hence, it is necessary for us to remove the condition ().

We hope that the condition (1) holds automatically on any non-Kéhler compact com-
plex surfaces contain some disjoint (—1)-curves. For simplicity, we consider a map 7 blows
down the only one (—1)-curve E on M to a point yy € N. Then we have a biholomorphism

e : M\ E SN \ {yo}. Our main results are as follows:

Theorem 3.1.1. Let M be a non-Kéahler compact complex surface and 7 : M — N be
a blow-down map of the (—1)-curve E on M to the point yo € N, where N is a compact
complex surface. Let wy be a Gauduchon metric on M. Suppose that we have

/M(wo — T Ric(wp))® >0, and /D(wo — T Ric(wp)) >0

for all irreducible curves D on M with D* = (D - D) < 0 different from E, where T is a
finite singular time of the Chern-Ricci flow w(t) starting at wy for t € [0,7), 0 < T < oc.
Then, there exist a smooth real function uj on M and a Gauduchon metric wy on N such
that

wo — T Ric(wp) + vV—100uj) = Ty

Note that the first condition [, (wo — T Ric(wp))? > 0 implies that the volume of M
with respect to the Chern-Ricci flow w(t) stay strictly positive as t — T, that is, w(t)
is non-collapsing at 7', and that the second condition [, (wy — T Ric(wg)) > 0 for all
irreducible curves D on M with D? = (D - D) < 0 different from E means that there is
no other (—1)-curve on M except for E. This is from the following proposition:

Proposition 3.1.1. (cf. [3, (2.2)Proposition])Let X be a compact complex surface. An
irreducible curve D C X is a (—1)-curve if and only if

D? <0 and (Kx-D)<O0.

If there exists an irreducible curve D with D* < 0 such that [, (wy — T Ric(wg)) = 0,
then we have (Kx-D) < 0. Then D must be another (—1)-curve on M, which contradicts
to our assumption that E is the only one (—1)-curve on M. Hence, under the condition
that there is an only one (—1)-curve, the second condition always holds. Here, "M is
non-Kéhler” means that there is no Kéhler metric on M. The condition (}) is not always
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true when only M is Kéhler. The condition (}) holds if M is Kéhler and the initial metric
wy is Kahler. Note that there are examples when M is projective, wy is not Kéhler, and
(1) fails (cf. [70, Remark 3.7]). That is why we assume that M is non-Kéhler in the
statements above.

In the case of Kod(M) = 1 with the first Betti number by (M) = even, or the case of
Kod(M) = 2, then the surface M is projective and Kéhler. So the condition () holds
automatically with wy Kéhler as we confirmed. Plus, the surface M with Kod(M) = 0,
or with Kod(M) = —oo and b;(M) # 1, and the surface of class VII with the second
Betti number by(M) > 0 can be excluded as well. Hence our interest inclines only to the
surface with Kod(M) = 1 and b;(M) = odd. Remark that their first Betti numbers are
odd. We will see more specific reasons in Remark 3.1.2.

We here note the definition of the Kodaira dimension. In our case, it is stated in the
following way:

log dim H°(M, mK
Kod(M) := lim sup og dim H(M, mKy)
m—00 logm

€ {—,0,1,2},

where Kj; = A" T*M is the canonical line bundle of M and H°(M,mK);) is the vector
space of holomorphic sections of the holomorphic line bundle K7} = mK,,.
We introduce the Buchdahl’s Nakai-Moishezon criterion.

Lemma 3.1.1. (Buchdahl’s Nakai-Moishezon criterion [14, Theorem.|)Let M be a com-
pact complex surface equipped with a Gauduchon metric wg and let 1 be a smooth real
00-closed (1, 1)-form satisfying

/sz>0, /MwAwG>o, /Dw>o

for every irreducible effective divisor D C M with D? = (D - D) < 0. Then there exists a
smooth real function f on M such that

Y+ V/—100f > 0.

Remark 3.1.1. In the condition (}), a smooth real (1,1) form S is not supposesed to be
positive definite. But since 3 is then 00-closed and we actually may apply the Buchdahl’s
Nakai-Moishezon criterion. We obviously have [, 5% = [, (wo — T Ric(wg))? > 0 and for
any irreducible curve C' C N with C? < 0, we have [, 5 = [ .. (wo — T Ric(wp)) > 0,
where note that we have 7*C' # E and (7*C)? < 0 for curves C' with C? < 0. Let wg be
a Gauduchon metric on N. Then we have

/ BAwg = / T BNAT WG = / (wop — T Ric(wp)) A m*'we = lim w(t) A m*we > 0.
N M M

t—T— M

For 0 > 0 sufficiently small, wg + 03 is positive definite and becomes Gauduchon, then

/Nﬁ/\(wG+55)Z5/NBQ>O.
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Therefore, all assumptions in Lemma 1.1 are satisfied and there exists a smooth real
function Ay on N such that wy := 5+ v/ —100hy > 0, which is a Gauduchon metric on
N, and then we have

wo — T Ric(wy) +vV—100f = n*wy

where f := f] + m*hy is a smooth real function on M.

Then we see that wy — m*wy is d-closed and which tells us that we obtain

(To)gl(wo)plé = (W*TN)gl(ﬂ*wN)pl}a

where Ty and 7*Ty are torsion tensors with respect to wy and 7m*wy respectively. This is
used crucially in the argument of [72, Proposition 3.1].

Remark 3.1.2. The followings are the reasons that we may exclude the cases of the
surface M with Kod(M) = 2, 0 and —oo from our concern. All notations and settings
are the same as in Proposition 3.1.1.

(1) There is a possibility that the surface M with Kod(M) > 0 has some (—1)-curves
since M with Kod(M) > 0 and (K, - D) < 0 for the canonical divisor Kj; and an
effective divisor D C M, where (K - D) indicates their intersection number, then
D contains a (—1)-curves (cf. [3, I1I(2.3)Proposition.]).

(a)

In the case of Kod(M) = 2, if the surface M does not have any (—1)-curves,
then M is projective since its algebraic dimension is equal to 2; the complex
dimension of M (cf. [3, IV(6.5)Corollary]). And its blow-ups are also projective
(cf. [3, IV(6.7)Corollary]). Hence the surface M with Kod(M) = 2 can be
excluded from our concern since the condition (1) is satisfied automatically
with wy Kahler.

In the case of Kod(M) = 0, they are divided into five cases (cf. [3, p.244)):
Enriques surfaces, bi-elliptic surfaces, Kodaira surfaces, K 3-surfaces and tori.
Firstly, Enriques surfaces and bi-elliptic surfaces are projective Kahler since
their algebraic dimensions are equal to 2. Then, they can be excluded from
our concern as in the case (a) above. If the surface M is a primary or secondary
Kodaira surface, it has torsion canonical bundle, which means that some power
[Kyr, 1 > 1 is holomorphically trivial. Then we have ¢P¢(M) =0 and T = oo
(cf. [28, Theorem 1.1], [72]). And if the surface M is a K 3-surface or torus,
we have ¢;(M) = 0 and T' = oco. Note that a complex torus does not contain
any rational curves. These are in the case (1) of Proposition 3.2.1.

(2) If Kod(M) = —oo and b;(M) = 1, then the surface M is called a surface of class
VII. Surfaces of class VII with by(M) = 0 are completely classified and they are
either Inoue surfaces or Hopf surfaces.

(a)

An Inoue surface, which is a T3-torus bundle over S!, does not have any curves
and then we have T' = oo.
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(b) On a Hopf surface H, diffeomorphic to S* x 5%, we have [, woAcPC(H) > 0 for
any Gauduchon metric wy on H. It implies that [}, (wo—T Ric(wg))? = 0. Note
that (H,w(t)) converges to S* in the Gromov-Hausdorff sense, where w(t) is a
solution of the Chern-Ricci low on H. Since every curve on H is homologous
to zero, the flow exists precisely as long as the volume stays positive and then
it collapses. Hence this is included in the case (2) of Proposition 3.2.1 (cf. [70,
Theorem 1.6], [72]).

(c) If the surface M of class VII has bo(M) =: n > 0, then we can observe that
we have [, cP¢(M)?* = —n (cf. [63, p.494]) and then we obtain f,, w(t)* — 0
as t — T for some 0 < T' < oo, where w(t) is the solution of the Chern-Ricci
flow starting from a Gauduchon metric. There might be some (—1)-curves on
M but as we see that w(t) is collapsing, we may exclude this case from our
concern. There are lots of examples of minimal surfaces in this case and a
complete classification has not been done yet except for the case by(M) = 1

(ct. [63)).

(3) When Kod(M) = —oo with b;(M) # 1, and if M is additionally minimal, it is
limited to be a ruled surface of genus ¢ > 1 or a minimal rational surface. They
both are projective Kéhler since their algebraic dimensions are equal to 2 (cf. [3,
p.244]).

Here we recall the definition of the convergence in the sense of Gromov-Hausdorff.
Then we need to define the Gromov-Hausdorff distance dgg((M,dar), (N, dn)) between
two metric spaces (M, dy;), (N,dy). Which is defined to be the infimum of all € > 0 such
that the following holds: there exist maps F': M — N and G : N — M such that

|dM($1,$2) — dN(F(ZL‘l),F(I‘Q))| <, for all X1, To € M

and
dy(x,Go F(x)) <e forallze M

and the two symmetric properties for N also hold. We do not require the maps F' and GG
to be continuous. In this sense, we say that (M, d,)) converges to (N,dr) ast — T~ in
the Gromov-Hausdorff sense if we have

deu((M,dywy), (N,dr)) =0

ast — T, where d ), dp are distance functions induced from w(t) and w(T") respectively.
From the result of Theorem 3.1.1, we can restate [70, Theorem 1.3] as follows:

Theorem 3.1.2. Let M be a non-Kéahler compact complex surface and = : M — N
be a blow-down map of finitely many disjoint (—1)-curves on M onto a complex surface
N. Let wy be a Gauduchon metric on M. We assume that the Chern-Ricci flow w(t)
starting from wy is non-collapsing at a singular time 7" < co. Then there exists a distance
function dr on N such that (IV,dr) is a compact metric space and (M, d, ) converges
in the Gromov-Hausdorff sense to (IV,dr) as t — T, where d,,) are distance functions
induced from the metrics w(t).

The way of the proof for Theorem 3.1.2 is totally the same as in [70] except for the
results in Proposition 3.1.1 and Theorem 3.1.1.
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3.2 The Chern-Ricci flow
and some convergence results

Let M be a compact complex surface and gy be a Gauduchon metric on M. In local com-
plex coordinates, the associated (1,1)-form is given by wy = v/—1(go);5dz; A dz;, which
we will also often refer to as a Gauduchon metric. A Gauduchon metric on M is a Her-
mitian metric g whose associated (1, 1)-form w satisfies 90w = 0. Note that Gauduchon
showed that every Hermitian metric on a compact complex surface is conformal to a
unique Gauduchon metric [24].

The Chern-Ricci flow w(t) starting at wy is the flow of Gauduchon metrics

Dw(t) = —Ric(w(t)),

w(t)|t=0 = wo,
for t € [0,T) where T' = T'(wy) is a finite singular time with 0 < 7" < oo stated by
T = sup{t > 0|3 € C°(M,R) with wy — t Ric(wp) + v —199% > 0}

and Ric(wp) is the Chern-Ricci curvature of wy, given locally by Ric(w) = —+/—109log w2,
which determines the Bott-Chern cohomology class denoted by c¢P¢(M) € Hyl(M,R).
We call it the first Bott-Chern class of M. Note that we omit a factor of 27 in this paper,
and it is independent of the choice of Hermitian metrics. There exists a unique maximal
solution to the Chern-Ricci flow on [0,7) [72, Theorem 1.2].

There is a strong relationship between the Kahler-Ricci flow and the minimal model
program. A minimal surface is a surface with no (—1)-curves. A (—1)-curve is defined
to be smooth rational curves with self-intersection —1. In [59, Theorem 1.2], Song and
Weinkove showed that along the Kéhler-Ricci flow starting at a Kahler metric wy with
[wo] € HY (X, Q) on projective algebraic surfaces X = X;, X1, ..., X}, algebraic contrac-
tions can be proceeded along the flow and in the end of this process, which tells us that
Xy is Fano or ruled surface, or the singular time T} of the Kahler-Ricci flow on X, is
infinite and X}, has no exceptional curves of the first kind, i.e, no (—1)-curves. As we
confirmed, we do not need to assume the condition (1) in this case since it automatically
holds in the projective Kéhler case with an initial Kéhler metric wy. In [72], Weinkove
and Tosatti conjectured that this algebraic procedure can be proceeded along also the
Chern-Ricci flow on any compact comple surfaces. They showed the following result:

Proposition 3.2.1. ([72, Theorem 1.5])Let M be a compact complex surface with a
Gauduchon metric wy, and let [0,7) be the maximal existence time of the Chern-Ricci
flow starting from wy. Then

(1) If T'= oo then M is minimal

(2) If T < oo and [, (wo—T Ric(wg))? = 0, then M is either birational to a ruled surface
or it is a surface of class V' I/ (and in this case it cannot be an Inoue surface)

(3) If T < o0 and [, (wo — T Ric(wp))* > 0, then M contains (—1)-curves.
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Furthermore, if M is minimal then 7' = oo unless M is CP?, a ruled surface, a Hopf
surface or a surface of class VII with by(M) > 0, in which cases (2) holds.

When M is not minimal and (3) occurs, we expect that the Chern-Ricci flow will
contract finitely many (—1)-curves and can be uniquely continued on a new surface.
They conjectured that this process can be repeated until one obtains a minimal surface,
or ends up in the case (2). It is crucial to show that we can remove the condition () for
proving this conjecture. Additionally, they have proved in any complex dimension, the
following result can be realized under the condition (}):

Proposition 3.2.2. ([72, Theorem 1.6])Assume that there exists a holomorphic map be-
tween compact Hermitian manifolds 7 : (M, wy) — (I, wy) blowing down the exceptional
divisor E on M to a point yg € N. In addition, we suppose the condition (1) with 7" < occ.
Then the solution w(t) to the Chern-Ricci flow starting at wy converges in C*° on compact
subsets of M \ E to a smooth Hermitian metric wr on M \ E.

They also showed the convergence in the Gromov-Hausdorff sense under the assump-
tion (f) on a compact complex surface with a Gauduchon metric wy with using some
arguments in [59] (cf. [70, Theorem 1.3]).

As we stated "finitely many disjoint (—1)-curves” in Theorem 3.1.1 and other parts,
we can check that (—1)-curves E, ..., Ey on M are finite and disjoint each other, giving
rise to a map m : M — N onto a complex surface N, blowing down each E; to a point
y; € N. Now we assume that Ey, Fy are irreducible distinct (—1)-curves with (E;-FEy) > 0
and [, (wo — T Ric(wp)) = [, (wo — T Ric(wp)) = 0, then we show that they are disjoint.
The Poincaré-Lelong formula tells us that we have an expression of the divisor £y + FE»
in the sence of currents:

(SE1+E2) =n+tv _18510g |SE1+E2’i21E1+E2’

where sg g, is a holomorphic defining section of holomorphic line bundle [E; + Ej]
associated to the divisor Ey + Es. Sg,+g, goes to zero of order 1 along Ey + Fs. (Sg,+8,)
denotes its principal divisor corresponding to E; + Es. hpg, g, is a smooth Hermitian
metric on [Ey + E] and 1 := ¢pp, 4 p, is the Chern form, which is a smooth d-closed
real (1, 1)-form represents ¢ ([E} + Es]). We here introduce an important lemma for our
argument:

Lemma 3.2.1. ([13, Lemma 4.])Let M be a compact complex surface and let 1, w be
smooth real 9-closed (1,1)-forms on M. Assume that [, w? > 0.Then we have

(fene) = ([ )(],»)

with equality if and only if ¢ = cw + /=190y for some constant ¢ and a smooth real
function ¢ on M.
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Since wy — T Ric(wp), n are d0-closed and [, (wo — T Ric(wp))? > 0, we may apply
Lemma 2.1 and obtain

0 — </El(wo — T Ric(wp)) + /EQ(WO — TRic(wo))>2 _ (/(8 )(wo —TRic(wO)))2
_ (/Mn/\(wo—TRic(wo)))2

> ([ )( [ o= TRicE)?).

Then, since [,,(wg — T Ric(wy))? > 0, we have

(E1 +E2)2 _/ 772 < 0.

M

If [}, 7* = 0 holds, then we have

(/M?M (wo —TRic(wo)))2 = (/Mn2> (/M(wo ~ TRic(w))?) =0

and n = /=109y for some smooth real function ¢.
Recall the fact that an irreducible curve C' on M is a (—1)-curve if and only if C* < 0
and (K, - C) < 0 (cf. [1, III(2.2)Proposition.]). Combining these, we have

0> <KM-<E1+E2>>=—/ c?C<M>=—/ n A CFE(M) =0,

(SE1+E2)

which is a contradiction. Hence, we conclude that (E; + E)? < 0, which gives us that
0 < (Fy - E3) < 1. Therefore, we have (E; - Ey) = 0, that is to say Ej, Es are disjoint
each other. Additionally, the set of all these (—1)-curves is finite, for instance F, ..., Ej,
because they give linearly independent classes in homology.
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3.3 Proof of Theorem 3.1.1

Since the condition () holds automatically in the projective Kéhler case with an initial
Kéhler metric wy as we see in Section 1, our concern is only for non-Kéhler surfaces
contain some (—1)-curves. For giving a proof in the non-Kéhler case, we crucially use
(64, Remark 3.3], which says that a complex surface with its first Betti number b; = odd
has only finitely many irreducible curves with negative self-intersection. We can confirm
that the non-Kéhler compact complex surfaces M contain some (—1)-curves is only the
case of the surfaces M with Kod(M) =1 and b;(M) = odd. The reason is as follows: In
[13], Buchdahl showed that a compact complex surface with its first Betti number b; =0
(mod 2) admits a Kéhler metric. Moishezon showed that a smooth Moishezon variety is
projective if and only if it admits a Kéhler metric (cf. [47]). By applying Riemann-Roch
theorem formula and Grauert’s ampleness criterion for surfaces, we obtain the fact that
a compact complex surface is projective if and only if there exists a line bundle L with
c1(L)?* > 0 (cf. [3, IV(6.2)Theorem.]), which indicates that a compact complex surface
is projective if and only if it has algebraic dimension 2, i.e., it is Moishezon (cf. [3,
IV(6.5)Corollary]). When the dimension is more than 2, it does not hold in general.

Note that a Moishezon manifold is a compact complex manifold which is bimero-
morphic to a projective manifold. Equivalently, it is defined to be that it is a compact
complex manifold admitting a big line bundle (cf. [69]). This gives us that if M is a
minimal complex surface with Kod(M) = 2, then it is a Moishezon surface whose first
Betti number is even, and the surface M is a projective Kahler surface. So, its blow-ups
are also projective (cf. [3, IV(6.7)Corollary]). When Kod(M) = 1 with b;(M) = even,
then the surface M admits a Kahler metric. In this case, its minimal model is a minimal
properly elliptic surface and whose algebraic dimension must be equal to 2 since it also
has a Kéhler metric, which means that it is Moishezon and then it is projective. So its
blow-ups are also projective. As we see in Remark 3.1.2, we do not need to consider the
case of Kod(M) = 0, an Inoue surface, a Hopf surface or the case of Kod(M) = —oo with
by (M) # 1, the case of Kod(M) = —oo with b;(M) =1 and by(M) > 0.

For these reasons, the remaining case is of the surfaces M with Kod(M) = 1 and
b1 (M) = odd. Hence if it is additionally minimal, the surface M is limited to be a non-
Kéhler minimal properly elliptic surface. Therefore, we may assume that M has only
finitely many irreducible curves with negative self-intersection. Let C' be any such curve.
The notations and settings are the same as in the previous sections such as that F is the
only one (—1)-curve contained in M which is blown down to the point yo € N. Then we
have either C'= E or [ (wo—T Ric(wy)) > 0, since E is the only curve whose intersection
with wg — T Ric(wp) is zero. Let h be a smooth Hermitian metric on the holomorphic
line bundle [E]. Since [E] has self-intersection —1, its curvature Ry, locally given by
Ry, = —v/—100log h, satisfies fE R, = —1.

When we take € > 0 sufficiently small, then we claim that we have

/ (wo — T Ric(wp) — eRy)* > 0, / (wo — T Ric(wo) — eRp) ANwg >0
M M

for any Gauduchon metric wg. The first one is easy because we have assumed that
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Jis(wo — TRic(wy))? > 0. The second can be showed since we have
/ (wop — T'Ric(wp)) A we = lim w(t) Awg >0
M

t—T— M

and if we have [, (wo — T Ric(wp)) A wg = 0, then we have [} wg < 0 from Lemma 2.1,
which is a contradiction. Therefore we have

/M(WO - TRiC(WQ)) ANwg >0

for any Gauduchon metric wg and we obtain
/ (wg — TRiC(WO)) Nwg — 5/ Ry, ANwg >0
M M

for sufficiently small € > 0.
In the case of C' = E, we have

/ (wo — T Ric(wy) — eRy) = —2(E- E) = £ > 0,
E
and if C' is different from E then
/ (wo — T Ric(wy) — Ry) / (wo — T Ric(wy)) — £(C - E).
C C

Since there are only finitely many such curves C| it follows that we can choose ¢ > 0
sufficiently small so that

/(wo — T Ric(wy) — eRyp) > 0,
c

for all such C.

Therefore, we can apply the Buchdahl’s Nakai-Moishezon criterion (Lemma 3.1.1) to
wo — T Ric(wy) — Ry, for sufficiently small € > 0 and then we obtain the following result:
For a smooth Hermitian metric A’ on [E] and for each sufficiently small € > 0, there exists
a smooth function f! on M such that

wo — T Ric(wy) — eRp + vV —190f. > 0

where Rj, is the curvature of h'.
Additonally, we need the following Lemma for proving our result.

Lemma 3.3.1. (cf. [28, p.187]) Let 7 : M — N be a blow-down map of the (—1)-curve
E on M and let wy be a Hermitian metric on N. We can choose a smooth Hermitian
metric h on the holomorphic line bundle [E] associated to E with its curvature Ry, such
that

7T*LL)N —eRy, >0

for any sufficiently small £ > 0.
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From these results, for our Hermitian metric wy on N and for any sufficiently small
e > 0, we have the equivalence depends on € between the metrics

w*wN —cRy, >0

and
wo — T Ric(wy) — Ry + V—100f! > 0.

Hence, there exists a positive constant C. > 1 depends on ¢ such that

(1) Ci( *wy — eRyp) < wy — T Ric(wg) — eRp + V—100f! < C.(n*wy — eRy)

for any £ > 0 sufficiently small.

We will choose a sequence {e;}32, such that ¢; — 0 as j — oo. The inequality ()
replaced ¢ with €; holds for j chosen sufficiently large since sufficiently small € was chosen
arbitrary.

Set @, := wy — T Ric(wy) — ;R + V=100 féj and then it is a Hermitian metric for
each j > jo for some sufficiently large jo. We fix such a large number j,. By applying
the Tosatti-Weinkove theorem (Theorem 2.5.5 [68, Corollary 1]), the Hermitian version
of Yau’s theorem, for each j > jo, there exist a unique smooth function u.; on M and a

unique positive constant c., such that
b); (@, + V=100u.,)? = c.,(T*wy — &;Rp)?

with @, ++/—=199u., > 0 and supy (fL, + ue;) = 0 (cf. [67, Section 2], [69, Section 3]).
Set u’E], = fs’]_ + ue,;. By applying Proposition 2.5.2, we see that the set

{u. € PSH(wy — T Ric(wy) — &;Rp);supuL.. =0}
J M J

is compact in L'(M,w?), since u;, € PSH(Cuwy) for some uniform constant C' > 0. Hence,
after passing a subsequence, still writing u., and £; — 0 as j — 0o, we may assume that
{ul,}; is Cauchy in L'(M,wg), that is, we have that

ul, = ug € LH(M,wp)

in L'(M,w?)-toplology as j — oo.

We may normalize féj by sup,, féj = 0 after subtraction of fixed constants for each 57 >
Jo- Since we have f/ € PSH(Cwy) for some uniform constant C' > 0, thanks to Proposition
2.5.2, after passing a subsequence, f;j converges to f} in L'(M,w?)-topology as j — oo.
So we have fj € L'(M,w;) and then also we have ug := lim;_,oc u., € L'(M,wj) since
upy € LY(M,w?). The following lemma will be used crucially in our argument.

Lemma 3.3.2. For any Borel set D C M and any j > Jo for some sufficiently large
number j, > 0, we have .
cap,, (D) < Aocapasj (D)

for some sufficiently large constant Ay >0 depends only on wy independent of ¢;.
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PROOF. We arbitrary fix a function v € PSH(M,wy), 0 < v < 1.
For proving the lefthand side of the inequality, we use the fact that for any Borel set
D C M, we have for any j > 7o,

/ (wo — T Ric(wp) + \/—_185]“8’]_)2 > 0.
D

Indeed, if there exists a Borel set D C M such that [, (wo— T Ric(wo) +v/=199f.)* = 0,
then for any open set U C D we have

/(wo — T Ric(wp) + \/—_185f;j)2 = /(wo — T Ric(wy))* =0

U U

and U is birational to a ruled surface or it is a surface of class VII (Proposition 3.2.1).
Then we must have Kod(U) = —oo, which contradicts to that surfaces in our concern
are limited to the blow-ups of non-Kahler minimal properly elliptic surfaces: Since the
Kodaira dimension is biholomorphic invariant, we may assume that M is a non-Kahler
minimal properly elliptic surface by choosing sufficiently small open set U C D which does
not intersect any finitely many (—1)-curves. Then, there always exists a finite unramified
covering p : M’ — M which is also a minimal properly elliptic surface ' : M’ — S’ and
7' is an elliptic fiber bundle over a compact Riemann surface S’ of genus at least 2, with
fiber an elliptic curve E (cf. [12, Lemmas 1, 2]). If needed, by choosing sufficiently small
open set U C D, we have that p~'(U) is a disjoint union of finitly many copies U; of U.
Then p : U; — U is a biholomorphism for each j. Since 7’ is an elliptic bundle, we can
choose a sufficiently small open set U’ C S satisfying 7'~'(U’) is inclueded in U; for some
7 and that we have the biholomorphism

U x E= Y (U") CUj

at the same time, where E is an elliptic curve, i.e., 1-dimensional complex torus. Then
we obtain

Kod(U') = Kod(U') + Kod(E) = Kod(U’ x E) = Kod(7'~'(U")) < Kod(U;) = Kod(U),

where we used that Kod(E) = 0, that the Kodaira dimension is a biholomorphic invariant
and additionally it requires the following two lemmas:

Lemma 3.3.3. ([3, (7.3)Theorem.))If X; and X, are connected compact complex mani-
folds, then
KOd(Xl X XQ) = KOd(Xl) + KOd(XQ)

Lemma 3.3.4. ([3, (7.4)Theorem.|)Let X and Y be compact, connected complex mani-
folds of the same dimension. If there exists a generically finite holomorphic map from X
onto Y, then h°(Ox(Kx)®") > h°(Oy(Ky)®") for n > 1, hence Kod(X) > Kod(Y). If
the map is an unramified covering, then Kod(X) = Kod(Y).

Hence we have Kod(U’) = —oo since Kod(U) = —oo. But on the other hand, since
the genus of S’ is at least 2, there exists a metric with negative constant curvature, which
is a Kahler-Einstein metric wg: induced by the Poincaré metric on the upper half plane

47



in C such that Ric(wg') = —wg and we have ¢;(Kg/) > 0. Then for the canonical bundle
Kg restricted to U’, we obtain ¢;(Kg|y/) > 0, which means that Kg |y is positive. By
applying the Kodaira Embedding Theorem (Theorem 2.2.1), we have that Kg |y is ample.
It follows from the Riemann-Roch Theorem that a nef holomorphic line bundle L over a
smooth projective variety X is big if and only if

a(ty = [ (®) >0,

where h is a Hermitian metric on L, R, is the curvature of h and n is the complex

dimension of X. It follows that since the restricted canonical divisor Kg |y is ample, it is

then nef and big. It follows that we must have Kod(U’) = 1, which leads a contradiction.
So we have for some sufficiently large j, > 0, we have for any j > j{,

/(wo — T'Ric(wo) + V=190fL — e;Ry)* = / @2 >p>0
D D

for some uniform constant p > 0.
We then set jo := max{jo, j;}. Hence we have for any j > jo,

/(W0+\/ —185’(})2 < Ao/(z}i
D D

< flocap@g_ (D)

for some uniform sufficiently large constant A, > 0 depending on wy and j,. Taking
supremum over v, then we obtain

ca D) < Agcap, (D).
pwg( ) png
m

Remark 3.3.1. (cf. [53]) Recall that the following conditions are equivalent: Let X be
a compact complex manifold with dim¢c X = n.
(H) there exists a Hermitian metric w on X such that

Q0w* =0 forall k=1,2,...,n—1.
The condition (H) is equivalent to either of the following two equivalent conditions:
00w =0 and 900w® =0<+= 00w =0 and Ow A dw = 0.

In Chapter 2, we defined the so called ”curvature” constant B,,. Under consideration
of the condition (H), when the cases w = wy or w = @, the curvature constants B, and
B@Ej with respect to wy, W., respectively can be chosen equal to 0 since we have 0wy = 0,

Owy A Owy = 0 and that the forms —T Ric(wg) — e Ry + \/—185]{5’], are d-closed. Note
that we have the equivalence that

d-closed < d-closed < O-closed.

Then we can choose uniform constant C' > 0 independent ¢; in the inequality appeared
in Remark 2.5.1.
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The equation (b); for each j > jy can be rewritten by
(Jj)J (ajé]' + \% _1aéu€j)2 = cnggng,

where we put

* o~ 2
F, = Moy SRy
Wo

We observe the following lemma:

Lemma 3.3.5. For any p > 1 sufficiently close to 1 and for any j > jy, the functions
F_’s are uniformly bounded in LP(M,wg).

PrOOF. We may assume that p’ := zﬁ > 1. By the Holder inequality for z%+$ =1,

/ FPuw? = / F (m*wy — € Ry)?
M M
% %
</ ng(W*OJN—Sth)Q)p </ (W*WN—€th)2)q
M M

EE L

< (/ st(w*wN—szh)2>p Ag’(/ w%)q
M M

for some sufficiently large uniform constant Ag > 0 depending only on wy.
Since F; > 0 for any sufficiently large j > jo,

IN

/Ffj(W*WN_eth)z < AO/ Ffng
M M

2 2
< Ao/wo
M

for some sufficiently large uniform constant Ag > 0.
Combining these estimates, we obtain

P, 2 p 2
/ FeijSAO/ “o
M M
'+l

since &=~ = p. O
p

Hereafter, we consider p > 1 sufficiently close to 1 such that F_ s are uniformly
bounded in LP(M,w?). We note here that by defining the admissible functioon h; for
each j > jo by
exp(ax)

(D) hy(x) = O |,

-1
|| LP( M,wg)
for some constant C' > 0 and some number a > 0 depending only on M, wy, and also
defining



then from Corollary 2.5.1, (@, + v/—180u.,)?* satisfies the inequality ()., :
/ (@, + \/—185u8j)2 < Fy,(caps, (D))
D J

for any Borel set D C M. Indeed, we have for any Borel set D C M,

(%) /(@5j+\/—188u5j)2 = caj/ FL,w)
D D

1
< el (/ w%) q
D
~Lq
< Cog||1 5l o are) exp <l—>
Capu%()(D)
—Q
< Ceg||Fg il o aw) exp <l—)
cap?_ (D)
J

for a number @ = a(M,wy) > 0 and a constant C = C(M,wy) > 0, where we put

a = : %% and we used the Holder inequality for % + % = 1 at the second line, the result
in Proposition 2.5.3 at the third line and Lemma 3.3.2 at the forth line for each j > Jo.
Hence, from the estimate (x), we can apply Proposition 2.5.4 to (@., + v/—199u.,)* with
the equations (f);, w = %&;6]., ¢ = u., and ¢ = 0 for each j > Jo. Recall the definition of
the function x in Proposition 2.5.4, we define

oy(53) = 402(;13.(13)% + /:O —xhjé)%),

with a dimensional constant C. By the definition of the admissible function h; in (©);,
we compute and obtain that

~ 1 1 1
2 2 ST o
Kj (z) < Ccfj | |F6j | ’Lp(Mng) exp(—azr~2)
for some uniform constants C',a > 0 independent of €;. As x; is an increasing function,

its inverse function h; satisfies

.1 1
chjHFaszp(M,wg)))—?

hj(z) > (%10,@;( .

We will use Proposition 2.5.4 to prove the following lemma which is used for showing the
uniform convergence.

Lemma 3.3.6. There exists a large number 5{) > ( such that for any j > 36, we have
co < ¢; < Con

for some unform constant Cy n,cy > 0 independent of ¢;.
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PROOF. Fix 0 < < 1. Define S;; := infy; u., and 4y is the positive number defined
in Proposition 2.5.4. Then for any 0 < s,t < g, we have by applying Remark 2.5.1,

t*capy, ({ue, < S, +s}) < C’/ (@e, + V—100u,,)?
’ {ue; <Se;+s+t}

= C’/ Ce, ngwg
{Uaj <Saj +3+t}

1
< Ces IF, |l poqarazy Voluy ({te, < Se, + 5 + })

for some uniform constant C' > 0 independent of ¢; (Remark 3.3.1), where Il) + % =1
Hence for fixed 0 < s =t < dp, we obtain

Ce.. 1

capg, ({ue, < S;, +s}) < 821 ||F6j||LP(M,W3)Vole({usj < Se, +2s})q
ClCa 1 _
< 2 LVoly, (M) =: Co(M)c., s>

for some uniform constant C” > 0, where we used that [|F%; || 1»(ar.2) is uniformy bounded

from above (lemma 3.3.5) and we put Co(M) := C“Volwo(M)% > 0.
Then from Proposition 2.5.4, for any 7 > jo,

0<s < rj(capg, ({ue; < Se; +s}))
< #;i(Co(M)ee,s7%)
.1 1 —as
< G 1P gy o0 (1)
Co(M)2cs;

C’/Cg%j exXp <_—a81l)
Co(M)2cs;

IN

18

. . 1
for some uniform positive constants C,a and C’, where we used that ||F. ||? 9
’ ) il (M w?)

uniformy bounded from above. If ¢.; — 0 as j — oo, then

~ 1 —as
0<s<C'cqexp <ﬁ> — 0.
Co(M)2c2,
This is a contradiction, and therefore c., must be uniformly bounded away from 0.
For the uniform upper bound, we use the pointwise arithmetic-geometric means in-
equality and which implies that we have

((aaj +/~100u.,)?

1

2
* —e.R 2
(ﬂ*WN_ijh)Q ) (71' WN € h)

(@e, + V—100u.,) A (T*wy — ;Rp)

1
= c(m'wN — ath)z.

Since we have that fM(W*wN — ¢jRp)? > 0 for sufficiently large j, there exists a large
number j§ > 0 such that for any j > jf,

/ (m*wy — eth)Q > py >0
M
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for some uniform constant py > 0 depending on wy and Jo- We put 56 := max{jo, jg }-
It follows that for any j > 50,

1

-1 _
2 < (/ (T*wn — eth)z) / (W, +V—100u.,) A (m*wn — € Ry)
J M M J J

-1

= (/ (T*wy — &?th)2) / (wo — T'Ric(wp) — €jRp) N (m*wy — €, Rp)
I M

Ao

1
2 .2
wy =: CO,N
PN JMm

<

for some sufficiently large Ag > 0 depending on wy and 7}, where we used that 7wy —&; Ry,
are 00-closed. O

We now arbitrary choose a sufficiently small open set U C M such that we have
V—190u! = —T Ric(wy) — &R + v —100u,

for the smooth function u? = T'logwg + ¢;logh’ +ul on U. Then the equation (); for
each j > jo on U can be rewritten by

(1), (wo+ \/—18514'4_)2 = ¢, F.,wy.

Since ul converges to ug in L'(M,wg), we have ul — ug in L'(U,wg). Hence we have
that {ul }; is a Cauchy sequence in LY(U,wg). Since the righthand side c., F;,’s of the
equations (f); for any j > j; are uniformly bounded in L?(M,w?), {ul }; are uniformly
bounded (Corollary 2.5.2) and the sequence {u }; is Cauchy in C°(U) (Corollary 2.5.3).

Then we have
ul = up = Tlogw: + ujy € PSH(U,wy) N C°(U)

uniformly on U as j — oo, which implies that u’aj converges to uf uniformly in C°(U)-
topology as 7 — oo on U. Since M is compact, we can cover M with finitly many
sufficiently small open sets. Therefore, we conclude that, on whole M, as j — oo uni-
formly,

(O)  ul, = ug = fo+uo € PSH(wy — T'Ric(wy)) N CO(M).

We may normalize u.; by sup,, u., = 0. Then, since the righthand side c., F.,’s of the
equations (f); are uniformly bounded in LP(M,w?) for any j > ji, from Corollary 2.5.2
(cf. [30, Corollary 5.6]), there exists a uniform constant H > 0 such that —H < u., <0
for j > jo. Indeed, as we see in the proof of [48, Corollary 5.6], by applying the L'-
CLN inequality (Proposition 2.5.1) (cf. [17, Proposition 3.11], [44, p.8]) and the capacity
estimate of sublevel sets ([19, Proposition 2.5]), we have

C
infu. | <s+ / ug,w2+/ Ve, |w?
Jinfu,| hj@%( o+ )

for any 0 < s < 4y for some uniform positive constant C' independent of ¢;, where h; is the
inverse function of the function r;, and 1., are the strictly plurisubharmonic functions
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can be chosen locally on a sufficiently small ball B in M such that for each j > j, they
are smooth, supg 1., = 0 and satisfy on the small ball B,

V=100, > @,

Since we have that ¢ are plurisubharmonic on the sufficiently small ball B, by applying
Proposition 2.5.2, the functions )., are uniformly integrable on B. Since u.; are uniformly
integrable with respect to w3, then by combining with the lower bound of ; as we observed
before, we obtain the uniform bound for u,.

We observe this argument for the uniform bound of u., more specifically below: Let
{B;(r)}_, be a finite covering of M for i = 1,2,..., I, where B;(r) = B(xz;,r) is the ball
centered at x; € M of radius r > 0 with B;(r) CC B;(2r). We may choose r > 0 small
enough such that for all 4+ = 1,...,1, each j > jo, there exist smooth negative strictly
plurisubharmonic functions v, ; on B;(3r) and p; on B;(2r) satisfying that

Sup ¢€j,i = 07 \% _185¢5]72 Z (Z)gj on Bl(QT),

B;(2r)
and

piloBi2ry = 0, Bil(l2f)Pz‘ > —C1, V—180p; > wy on B;(2r),

where '] > 0 is a constant depending only on the covering and wy.
Then, since 1, ; € PSH(B;(2r),w), thanks to Proposition 2.5.2, we have

/ e, e < Ci
BZ(QT’)

for some constant C;, > 0 independent of ¢;. Fix a function v € PSH(M, wy), 0 <v <1,
then we have for sufficiently small s > 0, S, = infys u,,,

/ (wo + V/—190v)? / | =, |(wo + V—100v)?
{Luc <15 +s}

115, + s S€J+
1 1 _
S T5 gl “ug, |(V=100(p; + v))?
- ’%S6j+s|<izl/31(r)|8uj|( (P+U))>
1 ! 1 1
S T o —U.. + = —199( . 2
B |lSej + 5] @/BM St + el (V1000 + 0)))

CBi(r),Bi(2r)
< Z H— T+ @bsg HL1 2T))||pi+v‘|%°°(3i(2r))7
B 38, + s

where notice that %uej + %%N», p; + v belongs to PSH(B;(2r)), so we applied the L'-CLN
inequality (Proposition 2.5.1) at the last line. Since p;, v are uniformly bounded,

|pi + UH%OO(Bi(QT)) < CUB,(2r)
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for some constant Cg,(2,) > 0 depends only on wy and B;(2r). Then we have

~

/
wo +V— 881} B ~Bi(r),Bi(2r) L -
/{1us <1ls. +S}( 0 Z %Saj + 5 | H ng, HL )

where we put 0331-(7% Bi2r) = CBy(r),B:(2r)CB,(2r)- Taking supremum over v, we obtain

1

1
| 150 + < Vel sien)-

1 C’
capwo({ U, < S€J+5} SZ Chy(

We compute for 0 < s < dy,

— S\ 2 _
[ (3o, +vetoo(*e—=2))" — [ (@, + V=100u,,)?
{1u < SE +s} {%u5j<%55j+s}
= Csj/ <7T*wN —&Tth)Q
{%U£j<%sej+$}

< AoCon / ¥
{éuaj <§Saj+3}

R 1 1
< A()OQNCElpr({gUaj < ESEJ' + S})

for some large constant AO > (0 depending on wy and jy, where we used that ¢, < CO N-

Since 0 < = ; < s < <1ontheset {fu, < 1S, + s} and = ;SJ e PSH(=L 2,
by taking supremum, we obtain

1 1 AgCon 1 1
cap%%j({;uej < ESE]. +s}) < R capwo({gusj < gSej + s}).
We note that by defining the admissible functioon h;; for each j > jy by

(D)s  hjs(x) = CSZC;leFEj -1

ks exp(az)

for some constant C' > 0 and some number a > 0 depending only on M, wy, and also
defining

then from Corollary 2.5.1,
L. 501 2 -2 2
(8) . (gwsj + v —1aa(gu5].)) = ¢, F. 57w

satisfies the inequality ()., :

S

[ e+ VTT00 0 )P < B (caps, (D)
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for any Borel set D C M from the estimate in (x). We then define

1 © d
’i]}S( %)_ 402( 1 +/ - 1>7
h;s(s)2 s xhj(z)?
with a dimensional constant Cy. By the definition of the admissible function b, in (©);,,

we compute and obtain that

1

1
vas( ) CEJHFEJHLP(M7UJ3) exp(—&x_i)

for some uniform constants C',a > 0 independent of €;. As k; is an increasing function,
its inverse function h; ¢ satisfies

. 1 3
C’s_lCEQjHFEj | |zp(M,w§)>>2
- .

Therefore, since we may apply Proposition 2.5.4 to (%d)si + \/—183(§u5j))2 for j > jo
with the equations (f);s, w = 1@.;, ¢ = tu., and ¢ = 0, then we have

h;s(z) > (é log<

Bials) < capiy ({tue, < 5., + )
< AOgO’Ncapr({ ug; < =S, + s})
= 52|14 ﬁ(jgzoi s| <= Z Bt </B¢(2r) Eugj o + /Bi(QT) |§¢€j’i|w3>
< %IC’%(T),B(%)§</M |Uaj|w(2) + Cr)’
where 01,3(7« Br) = max1<l<IC ). Bi(2r) and C, := max;<,<; C;,. Since we have that

Sag Tt | < C for some umform constant C > 0, and that ¢ < c.; < Con for j > jb, we
finally obtain for any j > 57 := max{jo, 7},

AyConICH, )
< @ 7 (r).B(2r)
IS, < s+ T (s) (C+C))

) <

uniformly bounded independent of €;, where we used the following estimate:

1
< B4 AOOON](JB 2T(C’—|—C’)(510g<

~ 1 1
Cs™'e2 || F,,

1 1 NE I Doarwa\\2 71 ,C\\2
< (G los =) = Gres(s))
his(s) — <a ©8 s =\z %\

for some uniform positive constants C',a and C".
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Hence, we conclude that u.; for j > 5'6’ are uniformly bounded and so by rescaling, we
may assume that —1 <wu., < 0. We define

Ukj == i]r\14f(uak — ;) < 0.
Suppose that Uy; does not converge to 0 as k,j — 0o. Then there exists 0 < 7 < 1 such

that
Upj < —4r

for arbitrary chosen large k # j. We choose sufficiently large numbers ko, k and k‘g in
the same way as the numbers jg, jO and j ' in Lemma 3.3.2 and in Lemma 3. 3 6 and the
argument above respectively. We define m(7) := infy (u., — (1 — 7)u,),

U(r,s) = {ue, < (L —=7)ue, +m(r) + s}

and 7y := 3 min{7?, {7z, 41— 1), 4(1 — 7')12—;}. Obviously we have m(7) < Uy;. From

Remark 2.5.1, we have for any 0 < s, < 79 and k > k),

Peaps, (U(rs) < € [ (@ + VT00u, )
U(t,s+t)

— 2
= Cc, / F., wi
U(t,s+t)
1

< CCo,NHFEkHLp(M,wg)</ W8>q
U(7,s+t)

for some uniform constant C' > 0 independent of ; (Remark 3.3.1), where % + % =1 and

we used that c., < for k > I~C(’)
We can observe the following inclusions hold:

U(r,s+1t) C{ue, <ue, +Upj +7+ s+ 1t} C{u, <u., — 7} C {|ue, —ue,| > 7}

Then we obtain

1
tZCap@Ek(U(T,S)) < CCO»NHFEICHLP(M,UJ(%)</ wg)q
{|u5k—ue.\>7}
CCON i
< P ([l = usled) "

7'q

For fixed 0 < s =t = 59 < 79, from Proposition 2.5.4, we have for k > l;:g,

so < rk(capg, (U(7,5)))

CCON
< ( ey ([ oo = ki) )
s T‘I
/‘UEk us]‘w0>>
SOT‘I
1 1 a QL L
= = = CI/SOT a 2 7%
OCngFEkH[%P(M,wg)eXp(_ (C”)% (/M|Uak_uaj|w0> )
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for some uniform positive constants C, @, ", where we used that [ Fel o Mp) 18 uniformly
bounded from above and the functions kj are increasing.
Recall that the sequence {u., }; is Cauchy in L' (M, wj). Since we have that ||FL, ||1»(a.2)
1 1 -
is uniformly bounded from above and that ¢, < (g y for k > kg, then we obtain for some
uniform constant C’ > 0,

1
as E
0<so<C exp o7 / e, — usj|w0> )

1
2

as k,j — oo, which is obviously a contradiction. Hence we have Uy; — 0 as k,j — oo.
Therefore we obtain
e, — ue;| < 2|Ug;| — 0

as k,j — oo, which indicates that the sequence {u.,}; is Cauchy in C°(M) and uy €
C°(M). Thus, from the convergence result (), we have f§ € PSH(wo—T Ric(wg))NCO(M)
and then we obtain

1folleoan <€

for some constant C' > 0. Therefore, we obtain the following result under the assumptions
in Theorem 3.1.1:

Proposition 3.3.1. We can choose a uniform positive constant C' such that

/ 1 * ~ *
(1) 5(71’ wy —€;Rp) < @e; < C(r*wy —€;Rp)

holds in the weak sense of currents on M.

From the inequality (1)’, by restricting on £, we have

1 1 5
5= R)le = Fejwrs < Gy lp < Cgjops = Cgj(—Ri)ls

in the weak sense of currents. Now we define
(;)O =Wy — TRiC(U)Q) + V —185][6

as a positive current by the clasical distribution theory. Then we must have

/QOLDE]%/QO(DQ:O
E E

as j — oo for any test function ¢ € C§°(E). Hence, we have
@olp = (wo — T Ric(wo) + V=190 f)|e =

in the weak sense of currrents on E.

After passing a subsequence {¢;, };, by letting i — oo in (b);,, since ug, f§ € CO(M)
and we have that Ce;, = c? for some constant ¢ > 0 from the uniform estimate in Lemma
3.3.6, we obtain

(@ + vV —100up)* = (cm*wy)?
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on M as currents. Then we obtain (&g + v/—109ug)|z = 0 on E as a current. Since we
have @y|g = 0 as a current, we obtain

vV —185UO|E =0

on E as a current.
Notice that since we have assumed that F is the only one (—1) curve on M and we

have a biholomorphism 7|yng : M \ E = N\ {yo}, we may identify forms, metrics and
functions on M \ E and N \ {yo}. Then we have that (Gy + v/—100ug)? = (cwy)? on
M \ E as currents.

For an arbitrary chosen point p € M \ E, we choose sufficiently small open neighbor-
hood U of p. We may assume that cwy — (@y + \/—_185%) is a positive current on U (If it
is not possible for any sufficiently small U, we consider @+ v/—1900ug — cwy and choose a
sufficiently small open neighborhood U so that &y + v/ —100uy — cwy is a positive current
on U). Then (in either case), (cwy — (@ + v/—190up))? is also a positive current on U
and we have for any ¢ € C§°(U) with ¢ > 0 on U,

/ p(cwy — (@o + vV —100ug))* > 0.
U
On the other hand, using the equality (@ + v/—199up)? = (cwn)? on N\ {yo}, we can

find a unitary frame 6; and 6, with respect to (cwy, J), where J is the complex structure,
at a fixed point py € U, so that

CWN = \/—191/\9714-\/—192/\(972, (IJO—F \/-185U0: \/—1)\01/\él+ 92/\ég

v—1
A
for some positive constant A. Additionally, we have

(cwn — (@0 + vV—100ug))? = (ch)2<2 — ()\ + %)) <0,

with equality if and only if A = 1. B
Then by combining these, we must have wy++ —190uy = cwy as currents on U. Since
the choice of a point p € M \ E was arbitrary, we obtain

(:)0 + v —18511,0 = CWN

as currents on whole M \ E. The similar argument can be seen in [67].
We compute that for an arbitrary chosen open set U C M\ E, for an arbitrary chosen
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test function ¢ € C§°(U) and the function ufy = f§ + ug € C°(M),

’/gox/—laug A Ouj)
U

_ _/ng\/—_lagp/\éug—/UWG\/—_laéué
-1 /U VIO A Bul)? — /U o/ ~To0,
- % /U (up)>V/—109p — /U pugy/—199u;
< %||ug||2cO(M)]/U¢—_185w\+||u6||co<M>\/UW—_135“6
= glalioan| [ v=T004

Hlugllooin| | (T Ric(an) - wo + cox)]
U

< Culllugl|Eoan + lluglleo@n) < oo
for some positive constant Cy = C(U, wy,wyn ), where we used that we have
V—100ufy = T Ric(wp) — wo + cwy

as currents on M\ E. It follows that we have uy € W'?(M\ E) since U is chosen arbitrary.
From the equality &g + v/—100ug = cwy,

Aou6 = —try, (wo — TRiC(wO) — ch) —- FM\E

holds in the weak sense of currents on M \ E for (go)”|ang, Fang € C(M \ E) and
upy € WH(M \ E), where A is the Laplacian of wy, and wy = J—_lzi’j(go)i;dzi AdZ
in local coordinates. Then, by applying the regularity theory for weak solutions (cf. [25,
Theorem 8.10]), we have uy, € W™?(M\ E) for any m € N, and by the Sobolev imbedding
theorem (cf. [25, Corollary 7.11, Corollary 8.11]), we have uy € C*(M \ E).

We similarly compute for arbitrary chosen open set V' C E, for an arbitrary chosen
test function ¢ € C§°(V)

[ evTrognon| = |5 [ wv=ione - | erv=Toos

(
Vv

1. _ , .

lillEwaan | /V V=100 + I|ftllocan /V oV/=100;
1 / 2 / .

= 5Allesn| [ VT086]+ 1Allevan] [ o7 Ricten) )

< Cv(llfelleown + 1folleoan) < o0

IN

for some positive constant Cy = C(V, wy), where we used that we have

V—100f} = T Ric(wp) — wo
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as currents on F. It follows that we have f; € W"?(E) since V is chosen arbitrary.
Symmetrically, with using that we have as currents on E, \/—190ug|gp = 0, we obtain the
following estimate for any open set V C E:

’L@\/—laUOAaUO < C(/HU/(]H%O(M) < 00

for some positive constant C{,. Hence, we also have ug € W2(E).
From @y|p = 0 in the weak sense on E, the following equation

Ao f} = —try, (wo — T Ric(wy)) =: Fg

holds in the weak sense of currents on E for f; € W42(E) and (go)”|g, Frz € C®(E). By
applying the regularity theory for weak solutions, we have f; € W™?(E) for any m € N,
and by the Sobolev imbedding theorem, we have fj € C*(E).

From v/—100u|x = 0 in the weak sense on E, the following equation

A()U,O =0

holds in the weak sense of currents on E for ug € WY?(E) and (go)7|p € C*(E). By
applying the regularity theory for weak solutions, we have ug € W™?2(E) for any m € N,
and by the Sobolev imbedding theorem, we have uy € C*(F) and ug|g is a constant
function on E since E is compact.

Hence, combining these, we have uj = fi + ug € C(E) and then together with
uy € C°(M \ E), we obtain that

up € C(M).

As a consequence, there exist a smooth function uj on M and a Gauduchon metric wy
on N such that B
wo — T Ric(wp) + v —100uy = m*wy,

where Wy = cwy.

Therefore, we conclude that we can remove the assumption (1) from the convergence
theorem in the Gromov-Hausdorff sense in [70, Theorem 1.3] on a non-Kéhler compact
complex surface.
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Chapter 4

Continuity of the Chern-Ricci flow
after the singular time

on non-Kahler

compact complex surfaces

4.1 Continuous existence on the space-time region

Let M be a non-Kéhler compact complex surface, and let wy be a Gauduchon metric on
M. The Chern-Ricci flow w(t) starting at wy is a flow of Gauduchon metrics

%w(t) = — Ric(w(t)),

w(t)|i=o = wo,
for t € [0,T) where T' = T'(wy) is a finite singular time with 0 < T" < oo stated by
T = sup{t > 0|Fp € C°°(M) with wy — t Ric(wy) + v/ —199¢ > 0},

where Ric(wp) is the Chern-Ricci form associated to wy. It was shown that a unique
maximal solution of the Chern-Ricci flow w(t) for t € [0,7) for a number T" € (0, ]
determined by wy. If the volume of M with respect to w(t) tends to zero as t — T', we
say that w(t) is collapsing at 7. Otherwise, we say that w(t) is non-collapsing at 7T

Let N be a non-Kahler compact complex surface and 7w be a blow-down map of disjoint
irreducible finitely many (—1)-curves to some points. For simplicity, we consider the map
7 blows down the only one (—1)-curve E to a point yo € N. Note that then we have
M\ E = N\ {yo} biholomorphic via m|y\g. We are going to show that there exists a
smooth solution of the Chern-Ricci flow w(t) on N for ¢t € (T, T"] for some T" > T, where
T > 0 is the singular time of the Chern-Ricci flow w(?) on M. Then we can prove that
the Chern-Ricci flow w(t) can be smoothly connected at time 7" between [0,7") x M and
(T, T'] x N, outside T' x {yo} = T x E via the map m. We define the space-time region

R :=([0,T) x M)U(T x (N\{yo})) U (T, T'] x N).
We specify the meaning of that w(t) is smooth on the region R in the following.
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Remark 4.1.1. Consider a family of metrics w(t,x) for (t,2) € R. For t € [0,T),
t € (T,T'], we require w(t) to be smooth at ¢ in the usual sense, in M, N respectively.
On the other hand, if (t,x2) = (T,z) € T x (N \ {yo}) =T x (M \ E), then we choose
a sufficiently small neighborhood U of z in M \ E and we consider w as a metric on
(T'—96,T + 0) x U for some 6 > 0 via the map m. We say w(t) is smooth at (7', z) if w(t)
is smooth at (T, x) in (T" — 0,7 + 0) x U. In the same way, we can define what it means
for w(t) to satisfy a PDE at an arbitrary point of R.

In this sense, we can continue the Chern-Ricci flow starting at a Gauduchon metric
until we contract all finitely many (—1)-curves on a given non-Kéhler compact complex
surface and eventually reach a minimal surface. Additionally, that (N,w(t)) converge to
(N,dr) in the Gromov-Hausdorff sense can be shown by the same way as in section 6 in
[59] with using Lemma 3.4 and Lemma 3.5 in [70].

The result of Theorem 3.1.1 indicates that the requirement of the cohomology classes
for the convergence of the Chern-Ricci flow:

(1) [wo] + Tl (Ky) = [ ]

holds under the assumptions in Theorem 3.1.1. Then, we can say that the Chern-Ricci
flow performs a canonical surgical contraction in the sense of Definition 1.2.5:

Theorem 4.1.1. Let w(t) be a smooth solution of the Chern-Ricci flow on M starting
at wy for t € [0,7), 0 < T < oo. Assume that w(t) is non-collapsing at 7". Suppose that
there exists a blow-down map 7 : M — N contracting the only one (—1)-curve E to the
point yo € N. Then the Chern-Ricci flow w(t) performs a canonical surgical contraction
with respect to the data E, N and 7.

As considering the definition in [70], in order to say that g(t) performs a canonical
surgical contraction in the sense of [70], it additionally requires to show that (N, dr) is the
metric completion of (N \ {yo}, dy, ), where these notations are the same as in Defenition
1.2.5. It only suffices to prove that dy, = dp|n\fy,}. In the Kahler case (cf. [60]), this
can be shown with using the fact that any Kahler metrics are locally given by Kahler
potentials. Hence we expect that it requres new techniques in the non-Kahler case.

4.2 Key estimates

We will proceed our argument along the way of Section 5 of [59] and we will state some
of its results in the Hermitian case. Remark that our computations are valid for general
complex dimension n, but we will only focus on surfaces.

From Theorem 3.1.1, we may assume to always have the condition

(1) wo — T Ric(wy) + vV —1900u) = T 0N

for a smooth real function uy on M and a Gauduchon metric wy on N. Then the Chern-
Ricci flow 9
(CRF) aw(t} = — Ric(w(t)), w(t)]=0 = wo
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on M is written with using u(, and wy in the following way:
w(t) = & + vV—190¢;,
where @ := £ ((T — t)wp + tr*wy) and ¢, solves the parabolic Monge-Ampere flow:

0 w(t)?
(MAF> a%ﬁt = log (Q) ) 90t|t:0 =0,

with Q = wgeuTO. Note that ¢ is uniformly bounded from above and below on M x [0, 7).
One can show that the two flows (CRF) and (M AF) are essentially equivalent:
If ¢ solves (M AF'), then taking /—100 of (M AF') shows that

/0 ~ H? 1 -
\/—188(§¢t> = +V—190log w(ig) — T\/—l&‘?ug
— _Ric(w(t)) + Ric(ws) %w*@N + %(wo ~ TRic(wy))
. J .
= — Ric(w(t)) — pTese

which implies we have (C'RF'). Conversely, if w(t) solves (CRF’), then we have

4 . . o1,
&(W(t) - Cdt) = — RlC(UJ(t)) — Two + Tﬂ- ON
_ 5 wt)? 1,
= V=109 (10g 2 _T%)
2
= \/—16510gw$>

so if we choose ¢; to solve (M AF'), which is an ODE in ¢ for fixed point on M, then we
obtain

B ) _
;W) = @ = V=100p,) = 0
so that indeed w(t) = & + /—190¢p, and ¢, satisfies (M AF).

Since the positive current w(7'), which is smooth on M’ can be written by

w(T) = 1 On + vV —100pr > 0,
where @7 is a bounded function satisfies pr|p = constant since we have
vV —185QOT|E = w(T)|E Z 0

and then we apply the strong maximum principle. Hence, from the properties of the
blow-down map , there exists a bounded function 17 on N, smooth on N \ {yo}, with
o7 = 7. Especially, we have ¢r € PSH(N \ {yo}, @n) NCO(N \ {vo}).

We here define a 90-closed positive (1, 1)-current w’ on N by

w' = (;.)N + v —165¢T Z 0,
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which is smooth and positive on N \ {yo} and satisfies 7*w’ = w(T"). We have

12

S

0< =

e LP(N, &>
_WN ( >WN)

for some p > 1 sufficiently close to 1 (cf. [59, Lemma 5.4]) and w? > 0 on N \ {yo}. We
consider the equation R
w? = fo3,
on N\ {yo}, where we put fi= :’—;2 We normalize 17 such that supy, ¢,y 7 = 0. Then
N
tr is a unique continuous wy-psh solution of the equation w? = f&% on N\ {y,}.
We would like to construct a solution of the Chern-Ricci flow on N starting at the

metric w’. We fix a smooth d-closed (1,1) form —y € ¢P¢(N). Then there exists T" > T
sufficiently close to T" such that for all ¢t € [T, T"], the following (1, 1)-form

Wy i=on + (t—=T)x
is Gauduchon. We also fix a smooth volume form {2 on N satisfying
Ric(Qy) = —v/—1001log Qy = —x € cP9(N).
For € > 0 sufficiently small, and A sufficiently large, define a family of volume forms
Q. on N by

s w(T — )?
S+ <

Q. = ()" (

on N\ {yo}, and €.|,, = eQy|,, where s is a holomorphic section with £ = (s), where (s)
is a principal divisor defined by s, and h is a smooth Hermitian metric on the holomorphic
line bundle [E] associated to the effective divisor E respectively. Note that €. is smooth
on N\ {y}. By choosing A sufficiently large , the volume form (. lies in C'(N) for
a fixed large constant [. And note that €, converges to w'? in C™ on any compact
subsets of N \ {yo} as ¢ — 0. Now, for each ¢ > 0, by the theorem of Tosatti and
Weinkove (Theorem 2.5.5), there exist a unique constant C. € R.o and a unique function
Yre € CF(N) N C®(N \ {yo}) for some positive integer k with supn 1,0y ¥r.e = 0 such
that

)—i—aQN

(dJN + v _185¢T,<€)2 = Osfsw?\h

where we put f. := 0%5 Since we have 0 < :le € LP(N,&%) for some p > 1, f.’s are
N N

uniformly bounded in LP(N, &%) for some p > 1. Notice that we can freely rase k by

increasing [ and A. The constants C. > 0 satisfy that C; — 1 as ¢ — 0. We define

the admissible function h(z) := CC!|| fEH;(N 52 exp(az) for some uniform constants
W

C,a > 0. Then (Oy + /1007 )? satisfies (&)s, from Proposition 2.5.3, and then we
may apply Proposition 2.5.4.

Lemma 4.2.1. There exists a uniform positive constant C' = C(||f.||z», N,@wn) > 0 such

that
1

— < (C. <C.
C—CE—C
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PROOF. Fix 0 < § < 1. Define S, := infy 7. and

o := 1mm{a2 o 4(1 —6)6%,4(1 — 5)‘5—3
03 168’ ’ 1687

Then for 0 < s,t < dy, we have (Remark 2.5.1)

tQCapa}N({Q,DT’E < S.+s}) < C’/ C'gfacf}?v
{Y7,e <Sc+s+t}
1
< CC|fell o e 2y Voloy ({1 < Sc +s+1t})7,
where zla + % = 1. Hence for fixed 0 < s =t < §p, we obtain

CC.

cap,, ({tre < 5. +s}) < oll o (v,2,)) Voo ({Ure < Sz + 2})1
C’CE

<
= on

Vol@N(N)E =: C.Cys™"

for some uniform constant ¢’ > 0, where we used that || f.| Lr(N2,)) is uniformly bounded
from above. and then from Proposition 2.5.4,

s < k(cap,, ({¥re < S +5})) < K(CCrs™).

Since lim,_,o+ k(x) = 0, C: must be uniformly bounded away from 0.
Since f. — f in L'(N,&%), we also have f2 — fz in L'(N,&2). Since we have
I f 202, > 0, for £ sufficiently small, we obtain

/fa Wy > = /ﬁw?v

By the pointwise arithmetic-geometric means inequality implies that

<WN+\/_aa¢Tg)>2w]2V:< X

WN

(G + V—1000r.) Adoy > (

It follows that for sufficiently small

1 2 = 2
ng S A—lAQ/((JTJN + V —188¢T75) /\(;JN - A—1A2/ C‘DJQ\H
[y f20% I [y f20% In
where we used the Stokes theorem and that @x is Gauduchon. O

Suppose that there exists a subsequence C.;, — ¢ # 1 as k — oo. Consider the
equation

(On + V=100Yr.,)? = Cep for 0%
Then since the family {7, € PSH(Ox) NCO(N\ {y0}); SUPp (o) ¥1er, = 0} is relatively

compact in L'(N\{yo}, 0% ), after passing a subsequence, still write ¢, , since C., fak are
uniformly bounded in L?(N, &%) for some p > 1 sufficiently close to 1, we have that {¢r., }
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is a Cauchy sequence in C°(N \ {yo}) (Corollary 2.5.3). This means that ¢r., — 1} for
some 97 € PSH(wy) N CO(N \ {yo}) in C°(N \ {yo})-topology with supp, 1,0y ¥7 = 0. By
the Bedford-Taylor convergence theorem (Theorem 2.5.1), we obtain by taking the limit
on N\ {yo}, since 97 is the unique solution of the equation (w')? = f@&%,

(&) = (@n + V=100¢7)* = cfif = e(W')?,

which is a contradiction. Hence we conclude that C. — 1 as ¢ — 0.
For the following two equations

A B Ww? . _ C.Q. .
(On + V—100¢r)* = o2 WXy (On +V—100Yr.)? = @—Qw?\ﬂ
& N

we apply the stability theorem:

Proposition 4.2.1. ([50, Theorem A.])Let (X", w) be a compact n-dimensional Hermi-
tian manifold. Let 0 < f,g € LP(X,w"), p > 1, be such that [, fw" >0, [, gw™ > 0.
Consider two continuous w-psh solutions of the complex Monge-Ampere equation

(w+V—100u)" = fw", (w++V—100v)" = g™
with supy © = supy v = 0. Assume that f that
f>co>0

for some uniform positive constant ¢y > 0. Fix 0 < a0 < n%l Then, there exists a positive
constant C'= C(co, @, || f||#, |gl|z») > 0 such that

[lu=vl[ze < CIIf = gllz0-

Now we apply Proposition 4.2.1 for X = N\ {yo}, u = V1., v = ¢r, [ = 05295 and
N
g= g—f, since we have 0 < :Y)—f, & € LP(N, %) for some p > 1 and (w')? > 0 on N\ {yo},
N N N
which indicates that we can choose a uniform constant ¢y > 0 independent of € such that
C.)
e > Co > 0.

/\2 pu
Wy

Then we obtain, for arbitrary fixed 0 < a < %,
w/2

~2
Wy

[0}

C.Q
_ o < C‘ ‘ g - )
197 = D]l oo (v gyo)) o2 LP(N\{wo0})

Hence 7. converges to ¢y on N \ {yo} in L>-topology as ¢ — 0. It follows that we
obtain that as ¢ — 0,

l|[7e — Vr|[Loo(vy = sup |¥re — ¥r| = sup [Yre — Y| — 0.
N N\{yo}

Thus we have that 17 € PSH(N,wy) N C°(N) with supy 7 = 0.
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With using the regularity of the functions ¢r., we can show the following result for
solutions . = @.(t) of the parabolic complex Monge-Ampeére equations

A~ /_1 a . 2
;P = IOg (WLN + aa(p ) ) fOI‘ t € [T7 T/]a Spslt:T - Q/}T,&
ot Qn
which is equivalent to the Chern-Ricci flow
%wg(t) = —Ric(w.(t)), forte[T,T'], w(T)=wr.

where w, = w.(t) = Oy n + V—100¢. and wr. = On + v/—199Yr.. Then we obtain the
following results as in [59].

Proposition 4.2.2. ([59, Proposition 5.1])
There exists a function ¢ € C°([T, T'] x N) N C>((T,T'] x N) such that

1) ||¢el|z < C for some uniform constant C' > 0 for all € > 0 sufficiently small.

(
(2) ¢ = @ in L®([T,T'] x N).

(3) The convergence ¢. — ¢ is C'™ on compact subsets of (7,7"] x N.
(4)

4) ¢ is the unique solution of

e N+ V/—100p)?
agp = log ( LY On ?) . Qli=r = Ur

for t € (T, T"] in the space C°([T,T'] x N)NC>=((T,T'] x N).
We take advantage of the following result:

Proposition 4.2.3. ([54,Theorem 1.1, Corollary 1.2.])

Fix r with 0 < r < 1. Let w(¢) solve the Chern-Ricci flow for ¢ € [0, Ty], To < oo, starting
at wg; a Hermitian metric on a Hermitian manifold M, in a neighborhood of B,., which is
the ball of radius r at the origen in C", for t € [0,75]. Assume R > 1 satisfies

1
}—%w() <w(t) < Rwy on B, x [0, Tp].

Then there exist positive constants C, «, # depending only on wy such that

(1) |VOw|? < €& on Br x [0, Ty], where V° is the Chern connection of w.

(2) |[Rm|? < Cﬁﬁ on Br x [0, Tp], for Rm the Chern curvature tensor of w.

(3) For any 6 > 0 with 0 < 0 < Ty, there exist constants C,,, «,, and 7, for m =
1,2,3,... depending only on wy and ¢ such that

CpRO™

T”YTVL

(VR)"wl[Z, < on B: x [8,Ty),
where V§ is the Levi-Civita covariant derivative associated to wy.
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For the metric wr., which is smooth away from y,, we have the following estimate:

Lemma 4.2.2. For all sufficiently small € > 0, there exist positive uniform constants C,
«, independent of such ¢, such that on N\ {yo},
s[5 ¢

~ ~

wy S wre < |S|2awN-
h

Fix a large positive integer K. Then for each integer 0 < k < K there exist Cy, o > 0
such that
Ck

(V8 ralty < o
h

where V& denotes the real Levi Civita covariant derivative with respect to the metric &y,

Remark 4.2.1. We identify a small neighborhood of yy € Y with a small ball B centered
at the origin of C2. From the property of the blow-down map 7, we identify via 7 the sets
7 4B\ {0}) and B\ {0}, and for the various functions and (1, 1)-forms on these sets.
For instance, we write |s|2* as (7T|X41\ ) (|s]7%) for simplicity.

PrOOF. We fix arbitrary sufficiently small real numbers ¢y and § with ¢y > d > 0 and
consider ¢ € [0, ¢]. From the definition of Q, w%,a = C.Q),, together with

sl ¢
(%) Thwo <w(t) < WWO

for t € [0, T') and for some uniform positive constants C, 1, where w(t) = &; + v/—190¢;,
@y = 7((T — t)wo + tr*n) (cf. [54, Theorem 1.1] and [59 ,Lemma 2.5]), we have, for

wi C.Q
F. :=log —5= = log —5—,
Wy Wy
A A w%s . PN C
‘AFa = ’A10g< ~] )‘ = ‘ — trg, Ric(§2) + try, Ric(wy)| < —2F
“N Eih

for some uniform constants 8,C > 0, where A for the Laplacian with respect to § (cf.
[59,Lemma 5.3]).

By choosing local coordinates (z1, 22), then locally we will write wy . = v/—1g;dz'AdZ7,
Wy = \/—_1§]i3dz" A dz7. We write V, V for the Chern connections associated to g,
respectively. We also write A for the Laplacian of g.

Then we can estimate (cf. [72, Proposition 3.1])

A A 1
klrpi ~ .
Alogtrygg > — (trgg)QRe (g TkiV[trgg) — Ctryg — @trg Ric(g)
o 1 C
— Re(gleliV-trAg> —Ctr,g — ——=
(trgg)? S T trg sl
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for some uniform constants 3, C' > 0, where T' is the torsion tensor of § and Ric(g) is the
second Ricci tensor with respect to g and we used that |[AF,| < MLQB for estimating
h

tr, Ric(g)’ < %
El

for some constant C' > 0. Here note that we will write Ricy, Ric for the first Ricci tensor
and the second Ricci tensor with respect to g:

(Ricy )y = ginijkl_a Ric;; = gklRijkl' .

We define

Q :=logtr,g — Azz;n + —
I : ¢T75 + C

for sufficiently large A,a > 0, where ’(ZJT@ = Y7 — %IOg |s|2* and C is a constant such
that ¢p. + C > 1. Since  — —o0 as © — Yy, we may assume that () achieves its

maximum at a point o € N\ {go}. Note that we may assume that trzg > 1 and |s|>” <1
at xzg.
At the point xy, we have

1 = 1 -
@Vl‘tl"gg = (A + m)@ﬂﬁﬂa.

We compute at z,

0>AQ > -

> (trAg)QRe (gklfgi@l-trgg) — Ctryg —
g

sl
1 (6% 2|8'J}Tay2
< (¢T,a + 0)2) g( A h> (wT,e + 0)3

C
> (—C + Aco)tryg — ﬁ
Slh

for some constant C'y > 0, where we used that for an arbitrary fixed constant 1 > ¢y > 0,

g— G Rn > cog for sufficiently large A, Ry, is the curvature of the smooth Hermitian metric
h given locally by

R, = —v/—100log h.

Remark that we have v/—1901og h = /=199 log |s|? away from 5. And we also estimated
in the following way:

I & 2 1 .
kl [ y A < e kl (P
|81;T6|2 ~ ~.3 11,0
< = L CA (e + O 2
= (e +0)? Wre + O G2
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Since we may assume that (tryg)? > A?(¢p. 4+ C)3, we have

2 S o |
Re( le&V;trw) > —ﬂ — Ctryg.
- (trgg)? (Vre + C)3
If necessary, we again choose a much larger constant A and then we have Acy > C' in
the estimate above. Therefore, we obtain

. C
tryg(zo) < —35.
Eln

Hence we have

C
! i

trg (o) < trgf(zo)e™
Since 97, is uniformly bounded, we obtain
Q < Qxy) <log(Cls|;" )+ C < C

for a sufficiently large so that o« > 5 and we obtain the desired estimate.
For the higher order estimates for wr,, we firstly consider the quantity

ST,g = |(VHT,5)Hii|_(2}

where (Hr.)i := §"g;;, V is the covariant derivative with respect to wr. = g and we here
write A for the rough Laplacian of wr., A = V¥V, where V¥ = ¢"V; (cf. [52], [54]).
Note that we compute

ji = ((ViHr)Hp) =T = T

where T
we have

“ Fé'z denote the Christoffel symbols of wy. = g, Wy = § respectively and then

= |H[;.
By commuting V and V, we obtain

AH — AHl = (Ricy); "H!, + (Ricy), 7”HZ — (Ricy),”

]l

for some constant C' > 0, where (Ric,);" is the first Ricci tensor with respect to wy.
With using the inequality

(xx) o wy Swre < wN
and the following; . o .
AH), = V"R — VR,

where R ! R " are the Chern curvature tensors of wr ., Wy respectively.

gkl
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Here we notice that the Bianchi identities will not hold necessarily for general Hermi-
tian manifolds: Let (M, g) be a n-dimensional compact Hermitian manifold and let V be
the Chern connection of g with Christoffel symbols Ffj and torsion 71" given by:

E _ kl _ k _ 1k k

ij
and

T = Th950 = Tis1 = Tig

7. 7.
since g;; = g;; + 0;0;¢r.. There are extra torsion terms in the following identities:
Rz‘jki - Rkjil‘ —V; Tzkl
Rz‘jki - Rkl‘ij = _vile_k
R — Rygiz = —ViTya — Vily
VR — ViR = =15 R0
Vel — ViRigr = T3 Risi-

With using the identities above, we then compute
AST,E — gp‘jvpvq< ia ]b HkHc>
= |VH2+|VHP + g“¢"ge (AHf. - HS, + Hf - AHgb)

= [VHE +[VHE + 2Re((=V, Ryyig + V, R, ) Y

ipjl
9 g e Hly ((Riey )", HF, + (Riey )3 g, — (Riey)', T, )
W 2 2
— |VH?+ |VH|?
+2Re< — (ViRic;; — HJRic,; — V,0;05F. + H},0,05F.) H}
ViV T HyY + V‘V'szpgkiﬂ ot Trisg" Rypirg™ H}?
k r o k T k i
(VR = Hyp Rk — Hy R f o+ HE Ry HY )

ipr prYipj
+gz&g] *Hk
(Rlcm HE, — NV Tsag Hey + HRH T g™ — Vi Thapg™ HY + HIHE Tyamg™
+ Ric,; HE, — VT, 59" He, + HggHgTTpsmg” V. Tog  He, + HHE, T g™
—(Rices HY, — VyTyurg® Hy + HH Ty g™ — Vo™ HTy + HHT Tyng’® ))
_ C 3 1
> 5|VH|§ + §|VH|§ e (St.+ Sre+S7.+1)

since we have Ric,5 = Ric,g — 0,0, F. and ]AF | < , IQ’B’ where Ric and Ric are the second
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~

Ricci curvatures with respect to g and g respectively and we used that T;;; = T;;;

V,R ViR, — TR

ipgl ppjl rpjl
= Vil = ViV Ty = ViV, Tty = Tyt B
— ViRicy — V0,0, — VN1 — ViV To — Toisg™ Ry

= VRic;; — H};Ric,; — V;0;0/F. + H},0,0;F.
V.Vl —ViVTq — Tpisg* R

plp — rpjls

= ViVl — Hp VT — H NV T, — Vil T
_H;lvlTpﬁ + H;lepTTJE + HSZHZprTS7

= V VJ plp — HZJ@TTI? HTV plr Vi Jp Aplr
_HT V Tplr + H]rp frTﬁ[s7

; 1 e
’v Tisg Y| < CSrot {IVHE,

. 1
‘v T g HY | < CSre + [V H

and

7 rs I ryid l e
)2Re(Tm-§g Ropig HY)| < CSr. 4+ |IVH?

for some constant C' > 0.
We also compute

Atrgg = —gMRicy
g”gkl (Fp vkgzp + Rklzququ] invl_gp] Fizrl]gIJQ>

—i—gijﬁklgpq (ngz‘q + Fzz'gsci) (vl—gpi + F;}‘gpm)

+g ((v )y + (Vi Tk)gpg)
§§kz<vi7}%—éﬂs§g8ﬁ>gkz) 9 g <V TZ’“ Ri[kqu(j)gpj
—gﬁ@ki(ﬁ@i%ﬁ + Tﬁc@l_gpﬁ
> Cl S (S%ﬁl)

for some sufficiently large 5 > (0 and for some constant C'; > 0. Note that we have

|Vtrgg|2

I\
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for some sufficiently large 5 > 0, and
VStely < 287 (IVH[, + [VH).

Let B, be a small ball centered at the origin in (Cﬁvith radius r > 0. Let p be a smooth
cut off function with suppp C B, and p = 1 on B; such that [Vp|2 + |Ap] < §. We

define K := , |2ﬁ for sufficiently large > 0 and for the constant C' > 0 in the 1nequahty
(#x) such that

K
> <K —trgg < K.
Additionally, for sufficiently large 8 > 0, we may assume that \s]iﬁ << 1 on B, and then
we have
<
9>=71
|5|hﬂ

VK|, < IAK

Ilw’

For ayp, ay > 0 sufficiently large with ag = 35 < a1, we define

2a 2a
fi= sl e e+ Alsltg

Note that we may suppose that we have for any sufficiently large oy > 0,
[Vislilg < Clsli®, Al < Clslp.

We may assume that f achieves its maximum at a point zo € B, \ {0}. Then, at z,
we compute

Sr. o VSr.
+ PPV (| = + s

0=V 2‘“— —

— try

S
201 T K A 2a0 A 2a0 R
5 @;ﬁﬁywmﬂ V) + AV ([sf)trgg + Al Vingg.

And then, with using this computation, we have at x,

St AS
0>Af = 20‘1— 20, 21 .20 Te
2 Af = Al g Alsh™ g —; +olst K — trg
+ps |2°‘1L<Atrgg AK) + AA([s]2)tr,g + Als|2 Atryg
(K — trgg)?
ST& _ | |2011
4 201 _ MteEe 4 .
+ Re(pV(P) V(s )K —tr§g> + Re(pV(p) VSTEK — trgg)

_ 1 _
2 201 2aq R
2 Re< (521 - VST,g—_trgg)HARe( (Js20) - Vtrgg)
Atrgg 200\) _ o Al [ >
—zRe( Tt (Viras = VE) V(|s[2 )) 2 Vgl
‘S’an B
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We estimate the each term above in the following ways:

a1 STE alsTa
|A(p?)]]s]5 K tra = 2| s
rgg ~ T
ST ST
A 201 C 200 M1,
PIA(s) e < Ol
AS 2[s|2er /1 = 1 C
2 1201 Te 14 ( 2 2 3 3 )
> —|\VH —|\VH S St.+ S
p|sh K—trgg - K—trgg 2| |g+2| ’g | |2ﬁ( T€+ T, + Te )
P’Sml = 7712 2 2a1-B) [ as 3
> COZ (19 + 19aE) - SO (sh + S+ 5h 4 D),

S
(p \s|20‘1¢ + Als 2°‘O>Atrgg

(K — trgg)?
St C
> 2001 2a0 2
el (p | | (K—trg ) | | ><| |255’ | |25(ST€ ))
4 o
> p |k2 S%,E‘FACl’S‘;QI( 0 B)ST,E
CpPlsfr

3 2(c0—B) [ o5
K2 (ST,E + STvE) CA’ | (ST,E + 1)7

AJA(Js[30)]trgg < CAls[ip ™™,

(671 S € C aq
A[Re(pV(p) - (sl e )| < sl S

trgg
4‘Re<pV(p)-VSTs&)] < | WV Sre|
"K —trgg - <1
< —[’Qsﬁalsis(wm%|VH\§)§
2
10 a v CST,E [}
< gl (a1 ) + g
2[Re (Vi) - FSnm—)| < S () (95
"K —tryg - o
Cp 1 % v 2 2 %
< b St (IVHE+|VH)
a — C
< 2K| s (IVHE + [V HI2) + 25,

24[Re(V(Is™) - Virzg )| < CAlsl;? [ Vtrggl, < CAlsf 7S]
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Atr; _ N wop ok .
2’R (__ gf _(Vtrgg VK) V(|3|i 0))‘ < CA| | ﬂS _+ CA| | 357
g

Alsfe

9%l 2<— 200-B) g, < CyA|s2* Sy,
K_tgg| a9l, Elhs T 5 A|5];,70 51,
5 Als |7 = 4A|s[300
R(VtA ~VK>‘
K—trgg ¢ tad

1
— | Vtrggly - VK|, < CAlsPor? =095

= CAls |465%57
and finally,
S C
201 T, )AK‘ 2a1 C 2a15«
P15l (K= ;)2 atin KQHM 0|83 S

for some constants C,Cy > 0, (s are different from each other in these estimates

Since we may assume that |s|? < 1, by choosing ag = 33 < ay, we obtain at zy,

4 21 o|2(@1—p)
0 Z —CA+ Olp |S|h

C .4 CK
02 ST,E<ST,E - 4—01(515 +1) — )

_52
10,
LACH S| S — CoA|s20 Sy, — C4AS2. — CiSre

for some constants C,C3, Cy > 0

We may assume that Sy, > 1 at 2y and then we may say that there exists a small
constant £ > 0 such that

C . CK 1
(ST,E — 4_6'1(57"5 + 1) — ES > >k > 0.

And also we can say that, for sufficiently large A, 5 > 0, we have at x,

C3A 1 C
|S|iﬁ <ACIST’5 - C2A|8‘i2zBST,s - | T4,8 Ste— —2.5 , )
h

sy
C C
> A/{’2<(/<” — _A/:’Z) Te — 351%6>
1
> AR” </</”ST,5 - %ST>

since 0 < & < |s|?’(x0) << 1 sufficiently small so that C

— Cy|s[2P(x0) > K" > 0 by
choosing a sufficiently large § for some small constant ", k" > 0 with k" —
sufficiently large A.. If &' S

S5 > K for
1
Te — %87215 < 0 at o, we obtain
1 Cs
ST%€ < " 127
c T KR
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hence we obtain the upper bound for Sr. at .

1
On the other hand, if &"' Sy, — %Sﬁg > 0 at xg, we then have

CAy  C
(51 (20) (AC1 81 = CoAlsly S - IS%ST - ﬁsﬂg) (w0) > 0.
h h

Therefore, at zg, in this case we have

2 201
K

for some constant C5 > 0. Putting these together, we have

C5A |8‘ia1< Cg

Fla) < Flao) < (20(e0) max { ==,

2
e )} Codlshi P (o)) < A(Cr+C)

KM /i/2
for some constant Cg, C'; > 0.

Hence, on B, we obtain

S < AGs

sl

for some uniform constants Cg, s := a3 + 8 > 0. With using this computation for Sp_,
we can obtain the upper bound for the curvature of wr. and then we also have bounds
on its all covariant derivatives by an analogue of [59, Proposition 4.2]. Additionally,
with using the Sobolev inequality and a bootstrap argument, we obtain the higher order
estimates. 0

We firstly show an estimate for its volume form and after that, with using the estimate,
we can show estimates for w. as in Lemma 4.2.2 by applying [59, Lemma 5.4] and |70,
Lemma 3.5] respectively.

Lemma 4.2.3. ([59, Lemma 5.4]) There exist positive constants o and C, independent of

g, such that
w? C
<

2
=

s[5
on [T, 7] x (N'\ {yo})-

Lemma 4.2.4. For all sufficiently small € > 0, there exist positive uniform constants C,
«, independent of ¢, such that on [T, 7"] x (N \ {}),

~ ~

El
wy Sw: < s 5a WN -
h

C

Fix a large positive integer L. Then for each integer 0 < k < L there exist Cy, ap > 0
such that

C

E 2 k

|(V]R) We WTe S |$|2ak
h

for t € (T,T’], where Vg is the Levi-Civita covariant derivative associated to the metric
Wre = 4.
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PROOF. We write w. = /—1(g.);5dz" A dZ7, oy = /—1G;dz" A dZ and @y =
V—1(g,n)i7dz" A dz? with local coordinates.
We define the quantity

Q. := log(|s[3trgg:) — Ape + G+ Cy
for sufficiently large a > 0, where @, := ¢. — % log|s[3* and choose a constant Cy such
that ¢. + Cy > 1, for A a large constant to be determined. Observe that Q. tends to
negative infinity as z € N tends to yo, for any ¢ € [T, T']. From Lemma 4.2.2, Q.|;—r is
uniformly bounded from above by choosing « sufficiently large.

We apply [72, Proposition 3.1] to log trzg., then we have

0 2 lkrp ¢ A
<§ — A€> logtrgg. < mRe (g6 Tka[trggg> + Ctry.g,
where A, is the Laplacian with respect to g., V is the covariant derivative with respect to
g, T is the torsion tensor of g, and assuming that we compute at a point where we have
trzg. > 1. Suppose that Q. achieves its maximum at zo € N \ {yo}. Then we have at z,

Vitrsge ~ Orpe
— Adp. + P
trsg. el (e + Co)?2

and with using this equality, we compute as in the estimate (U):

2 o Vitrsg 0@ |2 N try. g
Re( lk:Tp 1Y+g 5) ‘ < Je + CA2 + C 3 ge ‘
‘trgg6 9e Lhp trs9. ~ (P +Cp)3 (¢ 0) (trzg-)?

We compute
2

0 . w2 ) a
(57— 8e) e = los 5= — tra. (g — v + 5 )

where we used that /=190 log |s|? = /=109 log h away from .
Since we may assume that at the maximum of Q. we have (tryg.)? > A%(g. + Cp)?,
we have at z,

e @oa)e
= %—FC’U%Q—F <A+m><logi—g+2)
o 2005k

1
A+ ——Vtr, (Giy — —Rp) — ——19=
( " (¢E+CO)2> rgs(gt,N A h) (956+CO>3
2
[0

, R 1 Wy 1 .
C trggg + (A + m) 10g —_— — (A + m)trga (gtN — ZRh)

+(A+ (<,5e+—100)2> logg—%> +2(A+1)

for some uniform constant C’, C' > 0.

IN
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For an arbitrary fixed constant 1 > ¢y > 0, we have
a
gt N — —Rn > cog
9t,N 2t = 09t,N

for any ¢t € [T',T'] and for sufficiently large A > 0 and for all ¢ € [T, T']. If necessary, we
again choose a much larger constant A, and then we have

ACOJCI'gEgnN > (O, + 1)tr95§.

With using these estimates, we obtain at x,

A2

0 < Ctry.g+ <A + log — Acotry gen

1
Grap)
<A+(—365)kg%%+%A+n

~2
< C'trg.g+ (A +

1 w
— Nlog=X —(C"+ Dtr, g+ C
( CO) ) Og W? ( + ) rgsg +
Then at xgy, we have
2

1 ) w
) log & < C
(¢ + Co)? W
for some uniform constant C' > 0. Now we choose local coordinates around the point z
such that gzi(IO) = 5ij and (g‘g)ﬁ(l’o) = )\151] with Al, /\2 > 0. Then we have

2
XX%*(A+@Z%@?y%&>SG

=1

trg. g + (A +

Note that we have

A§<A+ >>§A+L

1
( + Co)?
For any A > 0, since the function A — < + (A+ m)
below for sufficiently large A, for each 2 we have
1

i

log A is uniformly bounded from

@+ )ﬁ%Mgc

1
(¢ + Co)?
for some uniform constant C' > 0. And then for each i, we obtain (A+ m) log\; < C,
which gives a uniform upper bound \; < C' for some uniform constant C' > 0. Therefore,
we have

tryge(xo) < C
and
QL < Ql(m) <C

since . is uniformly bounded for all sufficiently small ¢ > 0 as we see in Proposition 2.3.
Then we obtain, on [T,7"] x (N \ {vo}),




We can also obtain the bound of the Chern curvature tensor with respect to w., the
bound of its covariant derivatives and the higher order estimates with the application of
[45, Theorem 8.11.1&Theorem 8.12.1] by the same way as in [54].

O

Since ¢, = p(t) for t € [T,T"] is the limit of ¢. as € — 0, the metric
CL)(t) = (Ijt’N + v —185@,5
for t € [T,T"] is a solution of the Chern-Ricci flow on N:

0 w

ot
Lemma 4.2.4 gives estimates on w(t) for ¢t € [T,7"] on N \ {yo} and Proposition 4.2.3
gives us estimates on w(t) for ¢t € (0,7) on M \ E. We can show that the Chern-Ricci

flow can be smoothly connected at time T between [0,7) x M and (T,T’] x N, outside
T x {yo} =T x E via the map 7.

(t) = —Ric(w(t)) fort e (T,T'], w(T)=u'"

Theorem 4.2.1. The solution w(t) is a smooth solution of the Chern-Ricci flow in the
space-time region K.

PROOF. From Lemma 4.2.4 and Proposition 4.2.3, w(t) satisfies the Chern-Ricci flow
and is smooth at time 7" in the sense of Remark 4.1.1. ]

This completes the proof of (4) in Definition 1.2.5.
It remains to show that (N,w(t)) converges in the Gromov-Hausdorff sense to (N, dr)
as t — T. We obtain the following estimate by the same proof as in [59].

Proposition 4.2.4. ([59, Proposition 6.1]) There exist 6 > 0 and a uniform constant
C' > 0 such that for t € [T, T"],

(1) w(t) < &,

(2) w(t) < M%(WH;\E)*“}O?
where wy is the initial metric of the Chern-Ricci flow on M.

PRrROOF. We identify a coordinate chart U at yo € N via coordinates (z1, z2) with the
unit ball D in C?
D = {(21,2) € C?% |21 > + |2* < 1}.

Put 72 := |21|*> + |22/%. Let f. be a family of positive smooth functions on N of the form
f-(2) = e + 7% on D, which converges to a function f which is of the form f(z) = r? on
D and is positive on M \ D. By the definition of the blow-down map, there is a smooth
volume form €2y, on M such that 7*Qy = (7" ). Note that &y v — %@y is positive
definite for sufficiently small € > 0 on N for ¢ € [T, T"]. For such sufficiently small ¢ > 0,

we consider the following family of Monge-Ampere flows on M:

@ — 08 o+ + v/ T00p? )
EPE = log (7 £) Qs , Peli=r = p1—".
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Observe that at t =T,

. £ . €
<7T (@ n — m0N) + —w0>

N .. €
T T t:T:<1__>”“N+_“’0

T T

is equal to wr_., where @, is a family of reference metrics for ¢ € [0,7"), of form

1
G = (T = thwo + (o) € [wo] + 177 (Kyr)

since we have 7@y = wy — T Ric(wp) + v/—190u], for a smooth function uj, on M.

We can obtain a uniform bound for |p.| independent of € by considering p. £ AL (T —1t)
for sufficiently large uniform constants AL > 0 as in [61, Lemma 3.2]. For the upper bound
of p., we apply the maximum principle to

O = pe + AL (T — 1)
for A, > 0 a uniform constant to be determined later. Then we have

a (71'* (d)t,N — %(I)N) + %WO + vV —185057_;,_)2
—0., =log
815 ’ (W*fs)QM

Since M x [T, T’] is compact, 0. ;. attains a maximum at some point (xg,ty) € M x [T, T"].
We claim that if A, is sufficiently large we have t; = T'. Otherwise we have t; > T and
then by applying Proposition 1.6 in [61], at (zo, %),

— A,

(T*(Who,n — SON) + 2wp)?

(W*fa)QM

which is a contradiction, where we have chosen the uniform constant A so that

0
0 S aea,—&- § IOg

_A-l- S _17

£

T (e N — EON) + Swg)?
AL >1+ sup log< (@5 L v) A 0)
Mx[T,T"] (7 fo) Qs

Hence we have proved the claim that ¢y = T', which gives that

sup 0.4 < supb. |- =suppr_. < Cy
Mx[T,T"] M M

for some uniform constant C'; > 0 and therefore
pe(x,t) <AL(t—=T)+ Cyp < AT + Oy
for any (x,t) € M x [T, T"]. We apply a similar argument to
Oc— = p. — A_(T — 1)

for A_ > 0 a uniform constant with

w(A e EVRY)
A >1— inf log AN~ 1ON) ¥ i)

- Mx[T,T"] (7 f) Q01
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Assume that 6. _ attains a minimum at some point (zo, tg) € M x [T, 1] with ¢, > T and

then we have at (xg, o),

(T*(@ho,n — SWN) + Zwp)?
(W*fe)QM

which is a contradiction. Hence we obtain t; = T and

+A_>1,

0
0> 2o >1
=g e =08

inf 0._>infl. |,y =infor . > —-C_
Mx[T,T"] M M

for some uniform constant C_ > 0,
p(z,t) > —A T —C_

for any (z,t) € M x [T,T"], which gives the lower bound of p..
And also, by modifying the argument in [59, Lemma 2.5] to deal with the extra terms
coming from f., we obtain, for

) € . € -
Wy =" (me — Tuw) + ng + vV —100p-,

C
We < 5T WN, We < ——=Wp
S sl T s
on M\ E x [T,T'] and C*°-estimates for w. on compact subsets away from E. By letting
¢ — 0, and pushing forward to N, we obtain a smooth solution p of the following parabolic

complex Monge-Ampere equation

0 . on +V—100p)?
—p =log (©r.n p) s Pli=r = Yr
ot Qn

on N\ {yo} x [T, T"] with &; x + /=100 satisfying the estimates (1), (2). On the other
hand, p is equal to the solution ¢ on N in Proposition 4.2.2. Hence, the estimates (1),
(2) holds for w(t). O

Then we can obtain an analogue of [59, Lemma 2.6, Lemma 2.7] and then the conver-
gence in the Gromov-Hausdorff sense follows by the argument in [59, Section 3].

Theorem 4.2.2. (N,w(t)) converges in the Gromov-Hausdorff sense to (V, dr)
ast — T,

81



Chapter 5

C“-convergence of the solution
of the Chern-Ricci flow
on elliptic surfaces

5.1 A non-Kahler properly elliptic surface

The normalized Chern-Ricci flow is given by

%w(t) = —Ric(w(t)) — w(t),

w(t)|t=0 = wo,

where wy = v/—1(go);7dz" A dZ’ is a starting Gauduchon metric and the globally defined
smooth real (1, 1)-form locally given by

Ric(w) = —v/ =190 log det(g)

is the Chern-Ricci form of w.

A non-Kahler properly elliptic surface M is a compact complex surface with its first
Betti number b;(M) = odd and the Kodaira dimension Kod(M) = 1 which admits an
elliptic fibration # : M — S to a smooth compact curve S. The Kodaira-Enriques
classification tells us that properly elliptic surfaces are the only one case for minimal
non-Kéhler complex surfaces with Kod =1 (cf. [3, p.244]).

We assume that M is minimal, that is, there is no (—1)-curve on M. It has been
shown that the universal cover of M is C x H [38, Theorem 28], where H is the upper
half plane in C. Also, it is known that there is a finite unramified covering p : M’ — M
which is a minimal properly elliptic surface 7’ : M’ — S" and 7’ is an elliptic fiber bundle
over a compact Riemann surface S’ of genus at least 2, with fiber an elliptic curve E (cf.
[12, Lemmas 1, 2]). So we firstly assume that = : M — S is an elliptic bundle with fiber
E with genus ¢(S) > 2, with M minimal, non-Kéhler and Kod(M) = 1. That ¢g(5) > 2
implies that the universal cover of S is the upper half plane H in C and there exists a
metric on S with negative constant curvature induced by the Poincaré metric on H, then
we have ¢1(S) < 0. And also we have Kod(S) = 1.

82



It will be more convenient for us to work with C* x H, where C* := C\ {0}. We define
h:CxH—C"xH, h(z,2)=(e"32,2),

which is a holomorphic covering map. We will write (21, 22) for the coordinates on C* x H
and 2z, = x; + vV—1y;, i, y; € R for i = 1,2, which means that we have y, > 0.

It has been shown by Maehara (cf. [46]) that there exists a discrete subgroup I' C
SL(2,R) with H/T' = S, together with A € C* with || # 1 and C*/(\) = E and with
a character xy : I' — C* such that M is biholomorphic to the quotient of C* x H by the
I' X Z-action defined by

(2 8)n) v = (trar-awn( (3 ) E550)

for CCL 2) € I', n € Z, and then the map 7 : M — S is induced by the projection
C* x H — H (cf. [6, Proposition 2], [75, Theorem 7.4]). Note that all orientation
preserving isometries of the complex upper half plane H coincide with all linear fractional

transformations of the form

az+b
cz +

with ad —bc=1for z € H, a,b,c,d € R.

We define two forms on C* x H below:

v—1 2 v—1 2 v—1
Q= 3 dZQ A\ ng, Y i=V —1(——d21 + dZQ) VAN (—_—dil — d22>
2y; <1 Y2 21 Y2
The unique Kéhler-Einstein metric wg on S with Ric(wg) = —wg is induced by the form

«. Since we can check that the forms on C* x H; ‘/y—?lsz A dZy and —%dzl + ‘/y—?dz*g are
2

I' X Z-invariant, these forms « and v are invariant under the I' X Z-action. Hence they
descend to M and we define a Hermitian metric discovered by Vaisman in [74].:

wy = 2o+ 7,

which is a Gauduchon metric, i.e., wy is a d0-closed Hermitian metric. Indeed, it satisfies
that

VI
Y32
In [74, (2.9)], Vaisman introduced its pullback h*wy by the holomorphic covering map h
on C x H.

Note that we may work in a single compact fundamental domain for M in C* x H
using z1, 2o as local coordinates and we may assume that z1, zo are uniformly bounded
and that gy, is uniformly bounded from below away from zero.

Our main result is as follows:

Owy = — dzy Ndze AN dZ, 00wy = 0.
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Theorem 5.1.1. Let M be a minimal non-Kéahler properly elliptic surface and let w(t)
be the solution of the normalized Chern-Ricci flow starting at a Gauduchon metric of the
form

wo = wy + vV —190¢ > 0.
Then the metrics w(t) are uniformly bounded in the C'-topology, and as t — oo,

w(t) = mws,

in the C“-topology, for every 0 < o < 1, where wg is the orbifold Kéahler-Einstein metric
on S with Ric(wg) = —wg away from finitely many orbifold points induced by the form
%dz Adz on C* x H, H is the upper half palne in C, z € H is the variable, y = Imz.

5.2 Proof of Theorem 5.1.1

We define reference metrics
O=celwy+(1—eNa=c v+ (1+eHa,

which are Hermitian metrics for any ¢ > 0. We denote these metrics ¢ and also denote
quantities with respect to g with using a tilde such as the torsion tensor, the Chern
connection and the Chern curvature tensor.
We define a volume form €2 by
Q=2aNy

and we write Ric(€) for the globally defined real (1, 1)-form given locally by —/—100log (2.
Then we have
Ric(Q) = —a € PY(M) = —cPY(Kur), .

which implies that ¢P¢(M) = 7*c;(S). Since we have assumed that g(S) > 2, we have
c1(S) < 0. So we have ¢PY(K),) > 0, which means that the first Bott-Chern class of the
canonical bundle cPY(K),) is nef. Here, we say that cPC(K),) is nef if for any € > 0,
there exists a real smooth function f. on M such that — Ric(wg) + v/—109f. > —ewy,
or equivalently for any ¢ > 0, there exists a smooth Hermitian metric h. on the fibers
of the canonical bundle K); with its curvature form bigger than —ewy. Hence from [71,
Theorem 2.1], the normalized Chern-Ricci flow (equivalently the Chern-Ricci flow) has a
smooth solution defined for all ¢ > 0. For instance, the following time-metric scaling for
the solution of the Chern-Ricci flow

sre(t) = —Ric(w(1)),
w(t)]t=0 = wo,
allows us to transform a solution of the normalized Chern-Ricci flow:
w(t) =e’w(s), s(t) =log(t+ 1),
7W(s) = —Ric(a(s)) — @(s),

(S)|s:0 = Wo,

&
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where wy = wy + /—1901).
We can observe that the following normalized Chern-Ricci flow is equivalent to the
parabolic Monge-Ampere flow for ¢ € [0, 00)

t(> —100yp)? 2)
e(w+\/Q_188<,0) — o, O+ V=100p >0, ©(0) = 1.

(1) % = log

If o = () solves (1), then w(t) = @ + /=199y is the solution of the normalized Chern-
Ricci flow. On the other hand, given a solution w(t) of the normalized Chern-Ricci flow,
we can find a solution ¢ = ¢(t) of the equation (1) with w(t) = @ + /—190.

Here we let ¢ = (t) solves the equation above and we will write

w=w(t)=a+V—-100p

with wy = w(0) = wy + v/ —190.
We have the following lemma (cf. [22, Lemma 2.2], [71, Lemma 3.4]):

Lemma 5.2.1. There exists a uniform constant C' > 0 such that for all t > 0,
(1) el <CA+t)e
(2) [¢l<C
(3) C71o? <w? < C@.
Proor. We firstly observe that

20 Ay + e H(v2+ 2y A )
200 Ny

t~
t1. CW ot —t
e log o =€ log< ) =e'log(1+ O(e™)).

Hence we have )
et

Q

02| <

for uniform positive constant C;. Define
W= e — (C) + 1)t.

We assume that W achieves its maximum on M x [0,ty] for some to > 0 at (zg,ty) €
M x [0,tp]. Then we have at (zo, ),

eti?

OS%WSetlog —-C,—1<—1,

which is a contradiction. It follows that the maximum value of W on M must be bounded
from above by its value at time 0. This gives us ¢ < C(1+t)e~" for some uniform positive
constant C'. For the lower bound, we similarly consider

W' =ep+ (Cr + 1)t

and get a contradiction. Then by combining these, we obtain |p| < C(1 +t)e™" for some
uniform positive constant C'.
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We now choose a positive constant Cj so that Coww > « for all ¢ > 0. For the Laplacian
A of g = g(t), metrics corresponding to w(t), we compute

(2 -8)(G— (o -1)g) = trufa—8)+1-Cop+ (o~ Diru(w — )
< 1—00304—2(00—1)

By the maximum principle, we obtain the upper bound for . For the lower bound, we
compute

(2—A>(¢)+2g0) = try(a—@)+ 1+ ¢ —2tr,(w—w)

ot
> tr (@) — 3+ ¢
> Lo s
_6 —
z 5 ¢ —3,

for a uniform positive constant C', where we used the geometric-arithmetric means in-
equality and that e!@? and Q are uniformly equivalent. It follows that ¢ is bounded from
below by the maximum principle. O]

We can show the desired result by computing directly as in [22] and the following
estimates play the most important role in our argument.

Lemma 5.2.2. There exists a uniform constant C' > 0 such that
(1) |Tl; < C.
(2) 0T 15+ |VT5 + | Rl < C.
(3) [VRI; +[VVT]; + |[VVT|; < C,
where T is the torsion tensor of §, written locally as T} = T, — I'%, T,.;; = Tk, R
is the Chern curvature tensor of g, locally written as }N%ﬁk F= —83f’§k and V is the Chern

connection associated to g.

PRrOOF. Using the local coordinates (21, z2) as in the previous section, we will write

w=+/—1lg;dz' NdZ, & = /—1§;;dz" A dZ’ and we have

N 4 _, . 2 ., 2 _
g1 = 7. 3¢ ogz=vVol——e, = V-l
|21] <1Y2 21Y2
N 1+e?t et _ 2t (1+eh
923 = —, detg=———-—,
3 |211%y3

and

u_ d043emf Ve B VE I 203
=

Ttet 9 T1get
The Christoffel symbols f‘fj of the Chern connection of g are as follows:
f% = f%z = f‘%Q =0,
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~ 1 ~ 2
n -=--v-1i— 12 =-"-
2 +e 21 z1(1+e€t)’

z21(1+3e7) = 1+43e? 2

Too = =7 o 11T T e
dy3(1+e7?) z1(14+e7t)  z(l+4et)

and

Y 1 14 3e™t
IS = \/_1y2(1+ )+\/_ 0+ e )

Hence the torsion tensor T of § can be given by

1 2

Th=—v-1——", T,=—"_.
21 y2(1+et)’ 12 21(1+€t)

The Chern curvature tensor R of § can be computed in the following way:

~ 1 - 2+et
Ry ' = —5———, Ryp’=——g—r
2254ty 2y5(1 +ef)’
,—21(1 +3e7t)
o' e

I 1 1 2 D 2 D 1 2 D 1 2 D 2 D 2 D 2 D 1 1
Roo " Roty s Rygy 5 Ryqy *5 Byty s Roga * s Rysy 5 Byin ™5 Ryzg ™ Roty s Rogy °5 Ryge - Rysg

are all equal to zero.
We compute

1

T, = 05T, =0, Ty, =0, 9Ty = C2y3(1 + )

and o . o o
Vi 22 = 6)1T122 - Fi1T122 = O(e_t>» v1Tzl1 =0,
Vol = 05Ty, — T5,Tyy + L3, T5 = O(e™), VoIt = Iy T3 + 15,1, = O(e™).
By direct calculation, we have

@lﬁi 211 =0, @2@§T211 = 828§T211 + (fgz - ng)aQClel = O(eit)a
62@1 ~211 = _f_%laQT211 = O(‘fizt)a 6 @ ~21 = 8282 21 f_SQaQTN211 = O(‘fit)
and o ) 3 o
VoVsT?% =12,0,TL = O(e™), V,ViT%, =0, ViViT3 =0,
@162T122 = 81527?122 - f‘haQTfQ + f%lainQ =0.

For any 7,5 = 1,2, we have

@iﬁij& =0, @i@‘ 21 =
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and

We can also check that

are of order O(1),
@21%221 '
is of order O(e™"), and other components

Vleiz 27 v2R212 2’ @11552?2 ?

<
_
myfl
WS
=i
=

—
<
[N}
=
WS
-y
o
- -
<
_
mofl
WS
=
=
. [N}
[N}
S
-y
=
. no
<
_
oy
S
[\]]
N
. [N}
<
o
oy
WS
Do
N
. no

are all equal to zero. O

Using the estimates in Lemma 5.2.1, we can obtain the following estimates (cf. [22,
Theorem 2.4], [71, Section 5,6,7]):

Lemma 5.2.3. For ¢ = ¢(t) solving () on M, the estimates below hold.

(1) There exists a uniform constant C' > 0 such that
—w <w(t) <C
w w w.
oY s =

(2) There exists a uniform constant C' > 0 such that the Chern scalar curvature Scaly
of ¢(t) satisfies the bound
—C S Scalg(t) S C

(3) For any n,0 with 0 < n,o < %, there exists a constant ), , > 0 such that
—Choe™" < (t) < Cyoe™.

(4) For any € with 0 < ¢ < 1, there exists a constant C. > 0 such that

(1-Ce)o <w(t) < (14 Ce M.

Remark 5.2.1. Even if we choose initial Gauduchon metric wy arbitrary, we can have the
same estimates in Lemma 5.2.3 above except for the estimate in (2) by choosing 0 < o <
and 0 < ¢ < £ in (3) and (4) respectively [71, Lemma 6.4 & Theorem 7.1]. Speaking
of the estimate for the scalar curvature in (2), when choosing wy arbitrary, although the

lower bound can be chosen uniformly, the upper bound depends on ¢ [71, Theorem 6.1].

For proving these estimats above, we firstly require the following lemma.
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Lemma 5.2.4. For t > 0, the following evolution inequality holds:

(2 — A) log trpw <

5 Re (gﬂgqukiﬁqtr@w> + Ctr,w.

2
(trpw)?

PrROOF. Firstly we compute

~k] ~il~ki a ~
atr@w = gkl&ﬁ[log det(g) — trgw — ¢ lgkjglgagk[

ij =kl O ~kl ~ij 15 i 0
= ¢IGMVIVgi5 — 07 TGV k95 Vigps — 5757 Rygiz — traw — 675 955 S0k

From T}z = T,

iik> we have

@i@jgk[ = @i@z’gkg (V Tl)gkp (V Tl)gk:q T_ﬁ@igkq-
Switching covariant derivatives and arguing as above,
ViVigs = ViVigiy — Ringd"955 + Riti 7" 9k
= ViVigg + (Vilh)dys — (ViR 955 — ThVigy; — Rinad 9ps + Rty 9" 9nq
It follows we have
Atrgw = g75"V:Vigy
= gijgkl_@l’@kgij + gijgkl((@ T 1) Ikp + (ﬁfi?;e)gpi (@ T Rifpigpq)gk‘?
~(ViT} + Rigd™) 05 — T4V ighs — Tﬁﬁﬁ%)

Putting together, we obtain

0

<E — A) log tryw
1 S . 1

T tw ( B gmgzqgklvkgﬁvl_gpq + Tgklaktmwﬁz‘tmw

~2Re(g 73" T}V 10,7) — 995" T} T 00

+g TG VTY — Rigd ) gng — 97V Th — 975%5,ViT%,

(3 ~1 8
+gl T T " Gpg — trow — G g5 5 tgkl)

Note that we have T,z = T}j;

ik We observe that %Q = a — g > —g and then we have

—trpw — ¢* g’”gﬁagkl < 0. We can estimate

1 - s - 1 .
( - gmglqgklvkgﬁvl‘gpq + gklﬁktr@wal—tr@w
trow HW
_2Re<gij§klflfi@fgp3) -4 gleﬁchgpq)
2 -
< Re(”l M, i-@—tr@w)
T (trpw)? mil™a
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and

1 ikl S ~ s i T Gkl S
— (9 TGV = Rigyi 0 grg — 97 ViTh — 97 3% 5,5V T,

ij ~klp 7 ~ i O
+g7 G TE T Gy — traw — § lg’”ggagkﬁ
Ctr,w.

IN

5.2.1 Proof of Lemma 5.2.3

We consider the quantity

1
Q =logtrow — Ap + — ,
C+o
where C is a unform constant chosen so that C'+¢ > 1, and A ia a large constant too be
determined later. We assume that @) achives it maximum at a point (xg,tg) with tq > 0.
At the point (g, ty), we have

Then we have at (zg, to),

2 ~il kG _ ~
WRQ(Q g Tkil&itrww>
_ 2 ~il kg _ 1 -
= tr@wRe<g 9 Tkil<A+—(C~,+(p)2)aq90>
0l;

O €+ 0 T Ty g+
(trow)? ' (O + )3
CA? N |0p|?

trow (é’ + 90)3’

<

<

where we used that trzw and tr,w are uniformly equivalent. Since we have

2
<%—A)(—A¢+éiw) gCA—Atrww—%,

we obtain at the point (xg, ty),

(% _ A)Q < CA? + Ctr,w + CA — Atr,w,

where we are assuming without loss of generality we have tryw(zo,%9) > 1. By choosing
A sufficiently large so that A > C' + 1, we obtain at the point,

tr,0 < CA? + CA.
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It fllows taht tryw(zo,to) is uniformly bounded from above, and then we obtain the
uniform upper bound of trpw.
We put S; := Scalyyy = —g”0,;0; log det g. We compute

0 :
as’t = A5t+ |R1C|§+St

1
Z ASt + §St2 + St,

and then we obtain the lower bound for S;.
For the upper bound of S;, we require the following evolution inequalities.

Lemma 5.2.5. There exists a uniform constant such that for ¢ > 0, we have

0 1 <
_ ~ < [ — 2
( r A)trww O|Vg\g+07

and

0 - 1
o _ < 2 1 2. o
<8t A)trwa < |Vgl, C,|thrwoz|g +C

Combining these, there are uniform positive constants Cy, C such that for ¢t > 0,

0 - 1
(a — A) (troa 4+ Cotrgw) < —[Vg[2 — a|Vtrwalg + Ch.

Proor. For t > 0, we can compute

0
(E - A) trpw
= —0"9"5"V 495V i93 — 2Re( 975 T}, V1g,; )

~9" G TETgpq + 973" (ViT} = Ring ™) grq

—g"ViTl — g7 " 5,5 ViTh + g7 G T8 T pg — trow

—gilgkjgij(akz‘ — Gii)

< —% Vg|2+C.
The second inequality is a parabolic Schwarz Lemma for the map = : M — S. Since we
have showed that w and @ are uniformly equivalent, we obtain tr,a < C' for some uniform
positive constant C'. Given any point = € M, we choose local coordinates (z1, z9) centered
at x such that g is the identity at x, and a coodinate w on S near m(x) € S, which may
be assumed to be normal for gp, where gp is the Poincaré metric

1
wp =V —1gpd2’2 VAN dgg = ng VAN dgg

2
2
on the upper half plane H. In these coordinates, we can represent the map 7 as a local

holomorphic function f. We will write f; := V,f =0, f, fi; = V.V, f =0;fi — Ffi fr and
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we have f; = = 0. The pullback of the metric a = f*wp is given by f;fjgp. Put
hii = gilghi f, flgp, which is semipositive definite and satisfies |h[} := hihk ggs < C.
We have at the point x,

Atrya = ¢Y8;0; (gk’fkﬁgp)
= g9g" ffugp + 97 R, — g7 g" fifi f fiRp
Z g”gklszf_lng + gZJ hquszm

where Rp < 0 is the scalar curvature of gp. Note that we have at the point z,

ditr,o = Z Frifr-
k

Then we can compute at x,

Virgal? = Y frifuifol

i,k,p

< (SI(Z 1)’
< (Z1P) (X 154P)

= tr,ag”g" frifiygp
< Cg"g" frifiigp-

We need the following calculations for completing the proof.

Ripg = —9rq0;1,

J=ap

= grqa‘rm + grqa—T’F
Rypqz + 9:q05T;

J7p
- quij + gi§ap .+ grq&TT

i1, we differentiate both side

Since we have T;;; =

gkl_apTil;‘ + Tilj‘ﬁpgkl_ =V, Iy = @pTijl_ = grl_@pfirja

which is o
0,15 = g% 5.V, 5 — 9% 9" 6,51V g

With using this, we compute
0TS = Grsg 0,15 — Grsg™ 99TV 001 = 07V Tosr — 97099 TeV i,

0T = g 1554 — 9" T3V 5940 = 9"Vl — g7 T3 V594



Then we obtain

GIN (R — Rijpg) = —hP70,T3 — 09" hPIO5T,
= =GN T + W97 g TV pgas

—hPg N Tyig + P97 9" TV 3 ag.

ijpq )

Finally we have o )
|gl]hpq(qui3 - Rﬁptj” S |v9|g2; + C?

where we used that the metrics g and ¢ are uniformly equivalent and |h|, < C.
O

We consider the quality u := ¢ + ¢, we know that |u| < C for some uniform positive
constant C' and can compute —Au = S; 4 tr,a > S;. Hence, we require to get an upper
bound for —Aw in order to obtain the upper bound for S;. We compute

<% — A)u =troa—1,

0 iy,
(5 — &) Au = SPu; + Au+ Atrya.

0 o
<— — A) Au = —|Ric |3 — S — ¢"%g" Ryg — trya + Atr,o
= —|V?u|3 — giqujupqaﬁ + Au + Atr,«

> —g\V?ulz + Au + Atrya — C,

where we used that R; = —u;; — o5 and |af, < C.
From the second inequality in Lemma 5.2.5, we have

. 1 )
—Atya < C+ [Vl — 5| Viral) + 07 —g;
~ 1 -~
< C+|Vdlg = GIViealy + 17 (g + o)
- 1 1
< C+|Vygl2 - E|Vtrwa|3 + §|VVu|3.

ByCombining these inequalties, we have

) _ . 1
(E - A) (—Au) < 2|VVuf} - Au+ C + [Vgl2 - =[Vir.al.

93



We compute
AlVul?
= gijgkz<ViV3VkuVﬂL + ViuV;V;Viu + V,ViuV;Viu + VZ-VTLLV5VI€U>
= |VVul2 +|VVul2 + gijgkl_(VinVquﬂL + ViuV;ViViu — Vkuvi(T_ﬁV,—,u)>
= |VVu2 + |VVul + 2Re(VAu, Vu), — g7 ¢"T5V,V;uVu
+97 g" P RV quV u — g7 M TEV uV Vpu — 6 gM O, TV juV pu
= |VVul+ |VVu|? + 2Re(VAu, Vu), + g"g" R,V uVu
—2Re (gij gkiﬂivpV;quu> + gkl_gp‘jafT;di—quu — g gkiﬁiT_jprkuVﬁu

v

1 _ -
§va\§ + |V Vul? + 2Re(VAu, Vu), + g™ g" R,V quV pu
~C|Vuly — C|Vgly|Vul;
and
0 T
§|Vu|§ = g"g" R ViuVau + |Vu|§ + 2Re(VAu, Vu), + 2Re(Vtr, o, Vu),,.
Therefore we obtain

) 1 _
(5 . A) Vul2 < —5|VVul? = [VVul2 + 2Re(Viroa, Vu), + C|Vul2 + C|Vgl, | Vul?.

Now we fix a sufficiently large constant A so that |u|4+1 < A and compute the following
evolution inequality:

9, Vul? 1 0 ) Vul2 /0
<a_A><A—u> B A—u<§_A>|Vu|g+ (A—u)2<§_A>u
2 ) 2|Vulj
_mRe<V|VU|g, Vu>g - m
1 1 =
< _ 2 2
S ( 5 IVVul, — [VVul; + 2Re(Vir, a, Vu),
+C|Vuf2 + C|Vgly|Vul?)
|Vu]§ 2 ) 2|Vu|3
+—(A ) (troa—1) — A=y u)2Re<V|Vu|g, Vu), — A—up
For € > 0 small, we rewite a term in the evolution inequality above.
2 Re(V|Vu, V), = e—2Re(V|Vul2, Vu)
(A —wu)? 9’ 7 T (A —w)? 97 g
2(1 — ) Vul? 2(1 — ¢)|Vuly
L Re<V<A—u>’V“>g T T Ay
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Then the first term on the right hand side can be estimated in the following way.

2 2v/2
_g—zRe(V|Vu|§,Vu)g < ¢ \/;

A 2|Vu|§(|V?u]3~l— ]VVu|§)5

A—u) _
e |Vulj IVVul? + |VVul?

= 2A—w2 T (A—up
e |Vulj |V?u!f]~l—]VVu\§

1
S YA—w? 2 (A—wZ

where provided that ¢ < % and we now fix such €. By estimating

C|Vgly|Vul? -, e |Vl
- - I < _—g
A— _C’vg‘g+2(A—u)2’

C|Vul? .
1‘4 |9, we obtain
—Uu

u 2 .
and absorbing the term (LXV_JSQ (tr,a — 1) in the term

(% — A) (lei”i) < Yl i - (2Re(Vtrwa, Vu), + C\Vu|§> + C!@g@

—€ |Vu|3 — 2(1_8>Re<v<w>,VU> )
g

(A—wu)? A—-u A—u
We define
|Vl
H = T u + Co(trya + Cotrgw)

for a sufficiently large uniform positive constant C'y to be fixed later. Then we have

ot

e 2 (v () vy

C2 & 1 2
—7|Vg|g — 2|Vitr,al, + C.

(2 ~A)H < ﬁ(QRe(Vtrwa,ng +CIVul) + C|Vgl?

Note that we can show that |Vtrzw|2 < 2|Vg|2 by computing with local coordinates
around a point such that g is identity at the point, and since g and ¢ are uniformly
equivalent, we obtain

Virgw|? < C|@g|§.

If needed, we choose much larger Cy so that —%Wg@ < —|Vtrgwl|? and we fix such
constant Cy. By estimating

ClVulZ e |Vul;
< Z g
A—u —4(A—u) +C,

\V4 4
Re(Vitr,a, Vu), < |Viryal? + Zil(/‘l _u‘i)?, +0C,

—Uu
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and combining these, we have

(0-ayr < —5 - M py(v (1), o).

—|Vitrgw|? — [Virgal? + C
Vult 201 -
_ e v 2 E)Re(VH,Vu)g

2(A—u)® A-u
2(1 — 8)02 2(1 — 8)0002
+A—_UR6<VtI‘wOé, Vu>g + T A_a

—|Vitrgw|? — [Vtrgal? + C

e |Vul? 2(1 —¢)
< —= g _ _
< 1A= u) — Re(VH,Vu), + C,

Re(Vtrgw, Vu),

where we used the following bounds at the last line:

2(1 — £)Cy 2 & |Vulg
< € V7
. Re(Vtr,a, Vu), < |Viryal, + 8 (A—_u) +C
2(1 — S)C()CQ 2 € |VU|§
2(1 = €)CoCr i < |Vitrs s+ C
1—u Re(Vtryw, V), < |VtrWW|g+ 8 (A —u)3 +C

We may assume that H achieves its maximum at xy € M, ty > 0, and then at the point
we have
]Vu|3(x0,t0) S C

for some uniform constant C' > 0. Therefore, we conclude that H < C' uniformly bounded
and that |Vul> < C everywhere for some uniform positive constant C. It follows that we
have

0

1 _ ~
(& - A) IV} < =5 VVul} ~ [V + [Viral; + Vgl + C.

and then for sufficiently large constant C3 > 0, we obtain

) ,
<E - A) (—Au+6|Vu|? + Cy(troa + Cotraw)) < —|VVu2— Au+C
1

< —5(—Au)2 + (—Au) + C,
where we used the Cauchy-Schwarz inequalty at the last line. We may assume that
—Au+ 6|Vu|§ + Cs(tr,a + Cotrgw) achieves its maximum at xg € M, 3 > 0 and then we
have 1(—Au)*(zg,t0) < —Au(zo, to) + C. It follows that we have that —Au(zg,ty) < C
and

—Au+ 6|Vul2 + Cs(tr,o + Cotrgw) < C

for some uniform constant C' > 0 everywhere. Therefore, we conclude that we have the

uniform upper bound —Awu, which implies that we obtain the uniform upper bound also
for S;.
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Third, we observe that ¢ decays exponentially fast as ¢ — oco. Since we have

0
atgp St 907

and ||, |S¢| are uniformly bounded, we obtain
0
—p| < C
‘8#0‘ =0
for some uniform constant Cy > 0. Suppose that we do not have the bound ¢ < Ce™7*
for any constant C' > 0. Then there exists a sequence (xy,tx) € M x [0,00) with ¢, — oo
as k — oo such that
gb([tk, tk) Z ke_atk.
Define
k

Ve = 2—006

We work at the point x,. Then by %gb > —(, we obtain for any a € [0, v,

—oty

tr+a a

Otk +a) — o(ty) = / a%bdt > —Cov,

ty
which implies that we have for any t € [tx, t1 + V4],

k
2

e—O'tk )

p(t) =
Thus, we have

k2 —20ty, k —oty el . —tk
10,° = M5e < @dt = p(ty + ) — p(te) < C(1 +tx)e ™,
ti

which leads a contradiction for o < 1 when k — oo. The lower bound ¢ > —Ce™" for
any 0 <n < % and some uniform constant C' > 0 can be obtaind similarly.

Forth, we show that w(t) and @ approach each other exponentially fast as t — co. We
start with the evolution of tr,w. Firstly, we compute

a B 5 ~ = _
B e = M + tro(@ — &) + gV A" Rygs.

And we have, since we can compute

@iﬁjgpq = Vi<ajgpq_f;qu§)

= 0;0;9p5 — U'iy059:q — 9psOil’;, — 1'5,0i9ps + i, 1'5,9rs

= Rijrqgrgng - Riqu + grgﬁigzﬁﬁjgrtﬁ
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Atr,w = gﬁ@i@j(gkl_gkl_)
~g7V (6" 9" (V;9p0)G11)
979" 9" 9" G0V 19,5V 95 + 97 9" 0" 6" 90V 195V 950 — 97 6" 79" 511V iV i pq
= 979" 979" 5V i9:5V 3993 + 97 6"6" iR 700 — 97 9" Rz
By putting together, we obtain
<% — A) tr,o < C+ gijhpq(quij — Riqu—) — giigk[hpqﬁigkqﬁjgp[

1 -
< s 2

where we used that g and h are uniformly equivalent and the bounds
R ~ 1 -
— "7 g" WPV 1 giq Vg < —FOIVQI;

i q 1 =
197 WP (Rpgij — Rijpg)| < C + Q_COWQE'

For arbitrary given 0 < £ < %, we choose % > 71 > ¢ such that e + 7 < 1 and
2¢ < 0 < e+ . Define
Jy o= el (try@ — 2) — e

and compute the evolution of .Ji,

(2 - A) J < O+ ee(tr,w — 2) — 0ep — g — ¥ (tr,0 — 2)

ot
< Ot CelPME — Ot (tr,0 — 2),

where we used that ¢ > —Ce ™ and tr,o < C. Since § — 7 < &, at a maximum point of
Jla
e‘”(trwdz —2) < Ce

and hence
e (tr,& — 2) < CeE9t < ¢

since 2¢ < 9. Thus J; has the uniform upper bound everywhere. It follows that for any
0<e< %, there exists a uniform positive constant C' such that for ¢ > 0,

tr,0 — 2 < Ce .

Recall that for ¢t > 0,
0
(@ - A)trww <C.
Define
Jo = e (trgw — 2) — ey

and compute the evolution of Js,

0
- < et ot _ .
<8t A) Jo < Ce e (trpw — 2),
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where we used |p| < Ce ™ for 0 <e <n<3,and 6 —n <e < 5. We have

~2 ~2

~ w w
tr,w = —Qtr@w = trow + (—2 — 1) trow.
w w

Since we have ¢ = log f:”,—i + O(e™™), we obtain

~2
o 1‘ = [e9€T) — 1] < Ce™™.
w2
Since trgw is uniformly bounded, for ¢ > 0, we have
0
<§ - A) Jy < Cet — M (trpw — 2).

Then at a maximum point of J5, we have, since § > 2¢,
e (trgw — 2) < Ce=0t < .

It follows that for any 0 < € < %, there exists a uniform positive constant C' such that for
t>0,
trow — 2 < Ce .
Finally, by applying the following lemma, we conclude the forth inequality in Lemma
5.2.3.

Lemma 5.2.6. Let ¢ > 0 be small. Suppose that tr,0 — 2 < ¢ and trgw — 2 < e. Then
we have

(1-2ve)o <w < (1+2Ve)d.
PRrooOF. Choose local coordinates around a point at which g is the identity and g is
diagonal with eigenvalues A1, Ao > 0. From our assumption, we have

1 (24+e)\ —1

A <2 - A R A E—
1S2+4+¢€ 2, N N )
which imply (2+¢)A\; — 1 >0,
A1
Ay < -
2= (2+5>)\1—1
and \
M<2+4e——
1= ete <2+€))\1—1

Then, we obtain
M—24+eM+1<0
and by completing the square,

2

I, s €
— Z < -
()\1 (1+2)) <e+ A

Assuming that € > 0 is smaller that some universal constant, by symmetry, we obtain for
i=1,2,
1 -2 <)\ <1426
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5.2.2 A third order estimate

Denote by \If = Fk — F,’fj, the difference of the Christoffel symbols of g and g, which
satisfies S := |Vg|2 |¥|2. The quantity |Vg]2 is equivalent to \Vg|2 from the result (1)
in Lemma 5.2.3. Note that we will write locally o = v/—1q; dz AdZ.

Then we compute the evolution of S (cf. [52], [54]):

(%—A)S — S [VU] - |[VI]

g g gt (V Tyja + V3 am)‘lf’“ Wl g
+g7gr g <V Tyja + Vs arj>‘1/k U g g
—g7g"%g" (Vkasa + VbTaks> U g G
—9Re [[g’“ (ViV, Tur + ViViT,;
—T5 Ryspi + 9ui Ve stp )+ ka’gkgﬁi%s}‘l’lqg g

where V, A are the Chern connection and the Laplacian with respect to g, and in this

computation, we used especially that 2 gy = —gi + u and 215 = GV 0,

With using Tij,; = T.’;gkl— = T-';-gkl- = T,j5, we can compute as follows:

?, 2,

QTSTG Raspl_ = g gabﬂrg <Ra§p 6g5l_ - V§\nggél_) )

And we also can easily compute

D k _ v D a D a D k a
v”’RZEp - VTR@ p \DrzRasp \Ilrpsta + \Ijrastp )
and .
[Val; <C

since the only nonzero component of « is a3 = # and we can compute in the following:
2

@1060 = —ffl@ﬁ =0, 61042§ = _f‘%QO@Q =0,
. - 1 . .
Voays = —T5 a9 = ———< =0(e™"), Vaag = gy — [ayan = O(1).
20013 21022 21+ &) (e7), 2423 2023 220¥22 (1)
Therefore, with using the estimate in Lemma 5.2.2 and (1) in Lemma 5.2.3, we obtain

(2 —8)8 <O+ 1)~ L(TUE+ V)
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We also have the evolution of trzg (cf. [54]):
O A)irgg = PG G 900 — 2Re( G Vig,
ot g9 = g g9 Vikgi; Vidpg €\ 99 11;Vigpj
—g”" (@iT_P‘i‘ gl_k@l_fik_') +g7'g" (V Tq - éil’psgsﬁgqp>gkq

+9”9”“T”Tq(g 9)pg — 325 grross.

We use the fact that g and ¢ are uniformly equivalent in Lemma 5.2.3 (1). We compute
that

775" g < 095" guom = C§%am = 1= <

for some constant C' > 0 independent of ¢, then we again use the result in Lemma 5.2.2
and can obtain 5 .

(a - A)trgg <S-g S+ C(S2 + 1),
for a uniform constant Cy, C' > 0. Then we apply the way in [54, Section 3| and we have
the uniform estimate & < (': Since our estimates are local, we work in a small open
ball B, of radius r > 0 centered at the origin in C". Choose a smooth cutoff function p
supported in B, and which is identically 1 on Br. We may assume that [Vp|*, |Ap| are

bounded by T,% Let K be a large uniform constant, at least sufficiently large so that
K
> <K —tryg < K.

Let A be another sufficiently large constant to be determined later. Then we define

P = p? + Atryg.

K —tryg
Suppose that f achieves its maximum on B, x [0,7] at a point (z0,%0). We assume for
the moment that ¢ty > 0 and that xy does not lie on the boundary of B,.. We may assume
without loss of generality that S > 1 at (zg, ). At (z0,%o), we have

, VS , SVitryg

0=Ve= 2’OVK — trgg TP K —tryg TP (K —tryg)? AV,
Then we have at (o, to),
) 0 S 0
< (= -— = Syl g —A(p? ot
0< <at A)cb A(at A)trgg+( A(p ))K_trgg+ —trgg2< A)“f’g
9 o 9
PR "t <8t A)S 4Re( K— Ky " VS> K —trgg
A CcS Cp?
< (_ A Co 2
= ( 2COS+CA)+ K+( K2Cos K> 8>
P e 2 2 2 2
F(= LU+ V0P + 87 +.0p25)
2
Y 2y, © cA
(LT + VU2 + =58) + =28
A ' A
A sionsCsy Ol
2C)y
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Choose K > 4CyC so that at (xg, to),

A C’
< -8+ CA+ =S
0< —5eS+CA+ 35S

Then choose A = SCT# so that at (xg, o),

Cs<ca
.

It follows that @ is uniformly bounded from above by T% Thus, we conclude that S on
B_% is uniformly bounded from above by T% It remains to deal with the cases when £y = 0
or z lies on the boundary of B,. In either case, we obtain

C
@(l’o,to) S Atrgg(xo,to) S ﬁ

and the same bound holds.
Note that we write locally wy = v/—1(gv);dz' Adz’. As we confirmed in Lemma 2.1,
since all components of the Christoffel symbols of g are uniformly bounded as ¢ approaches

infinity, we have that 3
’F - I‘V|gv <C

for some uniform constant C' > 0, where I'y, are the Christoffel symbols of gy. Together
with the fact that g < Cgy for some uniform constant C' > 0, we finally obtain

Vyglg, < ’@g‘gv +C < C’@gb +C<C

for some uniform constant C' > 0.

Then it only suffices to apply the same way in the proof of [71, Corollary 1.2] and
the result holds also on a minimal non-Kahler properly elliptic surface: Considering the
general case when 7 : M — S is not a fiber bundle, it is known that 7 is a quasi-bundle
[12, Lemma 1] i.e., 7 has no singular fibers but it might have multiple fibers. Recall
that there exists a finite unramified covering p : M’ — M with a covering transformation
group I'(p) := Aut(p), where Aut(p) is the set of automorphisms of p, i.e., any 7 € Aut(p)
is biholomorphic 7 : M’ = M’ satisfies p o 7 = p and is called a covering transformation.
Here M’ is a minimal properly elliptic surface, n’ : M’ — S’ is an elliptic fiber bundle
over a compact Riemann surface S’ of genus at least 2 (since I'(p) acts also S, ©’ is I'(p)-
equivalent) and M is a non-K&hler minimal properly elliptic surface which admits an
elliptic fibration 7 : M — S to a smooth compact curve S. The curve S’ is a finite cover
of S ramified at the images of the multiple fibers of 7 (precisely equal to the image of the
quotient map ¢ : 8" — S of the set of finitely many fixed points under the I'(p)-action),
with quotient S = S’ /T'(p), m: M — S is equal to the I'(p)-quotient of 7’ : M’ — S” and
so that the map ¢ satisfies gon’ = 7o p.

Note that when 7 : M — S is not a fiber bundle, © has no singular fibers, but it
might have multiple fibers. Let D C M be the set of all multiple fibers of 7, so that = (D)
consists of finitely many orbifold points, which is precisely equal to the set of branch
points, also equal to the image of the map ¢ of fixed points under the I'(p)-action on S’.

102



Then from [6, Proposition 2|, [46] and [75, Theorem 7.4], we have that M is a quotient of
C* x H by a discrete subgroup I'" of SL(2,R) x C*, which acts by

(2 8) ) oz = (v w220

for ((OCL Z) ,t) € I, and the map 7 : M — S is induced by the projection C* x H — H.

The case we were considering in the previous section can be obtained by mapping
SL(2,R) X Z > (A,n) — (A, \"x(A)) € SL(2,R) x C*,

where A € C* with |A| # 1 and C*/()\) = E and with a character x : SL(2,R) — C*. If
we consider the projection I of T” to SL(2,R), the I-action on H is generally not free.
Note that I acts properly discontinuously on H. Hence the quotient S = H/I' is an
orbifold, especially it is called a good orbifold (cf. [75, p.139]), i.e., which is a global finite
quotient of a manifold.

Since the two forms « and v on C* x H are still invariant under the I''-action, they
descend to M. We can then define wy as in the case of the fiber bundle. The form
o= %d@ A dzy on C* x H induces the unique Kéhler-Einstein metric wg on S’ with

Ric(wg) = —wg and also induces the orbifold Kéhler-Einstein metric wg on S with
Ric(wg) = —wg away from finitely many orbifold points and we have ¢*wg = wg since «
is I-invariant and also I'”-invariant. Since we see that m*wg and 7"*wg  are induced by «,
we have that 7*wg is a smooth real (1,1)-form on M’ and that p*n*wg = 7*wg since «
is I' X Z-invariant and also I"-invariant.

Given any initial metric wy in the 90-class of the Vaisman metric on M, we denote
wh = p*wp, which is a I'(p)-invariant Gauduchon metric in the dd-class of the Vaisman
metric on M’. Then, let w(t), w'(t) be solutions of the normalized Chern-Ricci flow on
each surface M’ and M starting at wy, wy, respectively. Note that p*w(t) is equal to w’'(t),
which is also T'(p)-invariant, and T'(p) acts by isometries of p*w(t).

For a sufficiently small open set U C M so that p~(U) is a disjoint union of finitly
many copies U; of U. Then p : U; — U is a biholomorphism for each j and the I'(p)-action
on p~*(U) permutes the U;’s. Hence for each j, the map p : U; — U gives an isometry
between (Uj,w'(t)|y,) and (U, w(t)|r) and also between (Uy, (7"*wg)|v;) and (U, (m*ws)|v)
since we have that U; 2 s biholomorphic, w'(t) = p*w(t) and "*wg = p*1*wsg.

We now apply the argument we discussed above to the elliptic bundle " : M" — S’.
Since we have

1w v, — (7" ws) v, e w, g — 0

as t — oo, it follows that we have, as t — oo,

lw®lv = (7*ws)lullcew.g) = 0

for any o € (0,1) as t — oo, where we write locally wy = v/—1(g});5dz" A dz7 and wy =
vV —1(go)i7dz" A dz?. Hence, we conclude that the solution of the normalized Chern-Ricci
flow w(t) on a non-Kéahler minimal properly elliptic surface M starting at a Gauduchon
metric wy converges to m*wg in C*-topology for any « € (0,1) as t — oc.
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Chapter 6

Conclusion and research plan

In the setting of Theorem 3.1.1, we removed the condition (f) and completed the argument
for proving the correspondence between canonical surgical contraction (Definition 1.2.5)
and the blow-down of (—1)-curves Ej, ..., E, on M to points yi, ...,y € N. Additionally,
in order to say that the Chern-Ricci flow performs the canonical surgical contraction in
the sense of [70], we would like to prove that (N, dr) is the metric completion of (N, d,, ),
where dr is the distance function in Definition 1.2.6 and N = N\{y1, ..., yx}. We showed
that the normalized Chern-Ricci flow on non-Kéhler minimal properly elliptic surface
converges in C®-topology by choosing the initial metric from the d0-class of the Vaisman
metric. We would like to obtain much better convergence results on elliptic surfaces, Hopf
surfaces and Inoue surfaces. Moreover, we are interested in extending these results to the
higher-dimensional manifolds. In fact, there are higher-dimensional analogues of Inoue
surfaces, constructed by Oeljeklaus-Toma [51], and it is natural to conjecture that similar
behavior occurs. Similarly, there are non-Kéhler higher dimensional torus bundles with
c1 = 0 but with ¢P¢ # 0 over compact Riemann surfaces of genus at least 2 [66], and one
would expect that at least some of the results of [71] on elliptic bundles should generalize
to these higher-dimensional torus bundles. These researchs are useful to improve the
applicability of the Chern-Ricci flow. For instance, surfaces of class V11, with the second
Betti number by = 0 are classified completely and these are Hopf surfaces or Inoue surfaces.
In the case of b, = 1, Teleman proved the global spherical conjecture and these surfaces
are classified into Kato surfaces. On the other hand, class VI, surfaces with by > 1 are
still unclassified. It is known as Kato’s conjecture proven by Dloussky, Oeljeklaus and
Toma [20] that if surfaces of class V Iy with by > 0 have by-rational curves, then they
admit global spherical shells, which implies that they are classified into Kato surfaces
as well. We hope that eventually the Chern-Ricci flow will be applied to solving these
classification problems of minimal complex surfaces.

104



Bibliography

[10]

[11]

[12]

[13]

Adem, A., Leida, J., Ruan, Y. Orbifolds and Stringy Topology, Cambridge Tracts In
Mathematics 171, Cambridge University Press, 2007.

Andrews, B., Hopper, C. The Ricci Flow in Riemannian Geometry : A Complete
Proof of the Differentiable 1/4-Pinching Sphere Theorem, Lecture Notes in Mathe-
matics 2011, 2011.

Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A. Compact complex surfaces,
Springer-Verlag, Berlin, 2004.

Bedford, E., Taylor, B.A. The Dirichlet problem for a complex Monge-Ampére oper-
ator, Invent. math. 37 (1976), 1-44.

Bedford, E., Taylor, B.A. A new capacity for plurisubharmonic functions, Acta.
Math. 149 (1982), 1-40.

Belgun, F.A. On the metric structure of non-Kdhler complex surfaces, Math. Ann.
317 (2000) no. 1, 1-40.

Birkar, C., Cascini, P., Hacon, C. and McKernan, J. Ezistence of minimal models for
varieties of log general type, preprint, arXiv:math/0610203.

Blocki, Z. The complex Monge-Ampére operator in pluripotential theory, unfinished
lecture notes based on graduate course at Jagiellonian University, 1997, last modified:
November 2002.

Blocki, Z., Kolodziej, S. On regqularization of plurisubharmonic functions on mani-
folds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089-2093.

Bogomolov, F. A. Classification of surfaces of class VIIy with by = 0, Math. USSR
Izv. 40 (1976), 255-269 (1977).

Boucksom, S. On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10,
1043-1063.

Brinzanescu, V. Néron-Severi group for nonalgebraic elliptic surfaces. II. Non-
Kidhlerian case, Manuscripta Math. 84 (1994), no. 3-4, 415-420.

Buchdahl, N. On compact Kdhler surfaces, Ann. Inst. Fourier 49, no 1 (1999), 287-
302

105



[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Buchdahl, N. A Nakai-Moishezon criterion for non-Kdhler surfaces, Ann. Inst.
Fourier (Grenoble) 50, no 5, 1533-1538.

Cao, H.-D. Deformation of Kahler metrics to Kahler-FEinstein metrics on compact
Kahler manifolds, Invent. Math. 81 (1985), no. 2, 359-372.

Davis, M. Lectures on orbifolds and reflection groups, Transformation Groups and
Moduli Spaces of Curves (eds, L. Ji, S-T Yau) International Press, 2010, pp. 63-93.

Demailly, J.-P. Complex analytic and differential geometry, self published e-book.

Dinew, S. An inequality for mized Monge-Ampére measures, Math. Zeit. 262 (2009),
1-15.

Dinew, S., Kolodziej, S. Pluripotential estimates on compact Hermitian manifolds,
Advances in Geometric Analysis, 69-86, Advanced Lectures in Math. 21, Interna-
tional Press, 2012.

Dloussky, G., Oeljeklaus, K. and Toma, M. Class VII, surfaces with by curves,
Tohoku Math. J. 55 (2003), 283-309.

Essidieux, P., Guedj, V. and Zeriahi, A. Singular Kdhler-Einstein metrics, J. Amer.
Math. Soc. 22 (2009), no. 3, 607-639.

Fang, S., Tosatti, V., Weinkove, B. and Zheng, T. Inoue surfaces and the Chern-Ricci
flow, preprint, arXiv: 1501.07578v1.

Fong, T.-H. F., Zhang, Z. The collapsing rate of the Kdahler-Ricci flow with reqular
infinite time singularity, J. Reine Angew. Math. 2015(2015), Issue 703, 95-113.

Gauduchon, P. Le théoréme de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B
285 (1977), no. 5, A387-390.

Gilbarg, D., Trudinger, N. FElliptic Partial Differential Equations of Second order,
Springer, Paperback edition, 2001, MR 0473443.

Gill, M. Convergence of the parabolic complex Monge-Ampére equation on compact
Hermitian manifolds, Communications in Analysis and Geometry. 19 (2011), no. 2,
277-304.

Gill, M. Collapsing of products along the Kdahler-Ricci flow, Trans. Amer. Math. Soc.
19 366 (2014), 3907-3924.

Griffiths, P., Harris, J. Principles of Algebraic Geometry, Pure and Applied Mathe-
matics. Wiley-Interscience, New York, 1978.

Guan, B. Li, Q. Complex Monge-Ampeére equations and totally real submanifolds,
Adv. Math. 225 (2010), 1185-1223.

Guo, B., Song, J., Weinkove, B. Geometric convergence of the Kdhler-Ricci flow on
complex surfaces of general type, preprint, arXiv: 1505.00705v1.

106



[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

Hamilton, R. Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982),
255-306.

Inoue, M. On surfaces of class VIIy, Invent. Math. 24 (1974), 269-310.

Inoue, M. New surfaces with no meromorphic functions, Proc. Int. Congress of Math.
Vancouver (1974).

Kato, M. Compact complex manifolds containing ”global” spherical shells, Proceeding
of the Int. Symp. Alg. Geometry (Kyoto Univ., Kyoto, 1977), 45-84, Kinokuniya Book
Store, Tokyo,1978.

Kawamura, M. Convergence in the Gromov-Hausdorff sense and the Chern-Ricci flow
on complex surfaces, preprint, submitted to Osaka J. Math.

Kawamura, M. Continuity of the Chern-Ricci flow after the singular time on non-
Kahler compact complex surfaces, preprint.

Kawamura, M. On the C“-convergence of the solution of the Chern-Ricci flow on
elliptic surfaces, to appear in Tokyo J. Math.

Kodaira, K. On the structure of compact complex analytic surfaces, I1 ; Amer. J.
Math. 88 (1966), no. 3, 682-721.

Kolodziej, S. Some sufficient conditions for solvability of the Dirichlet problem for
the complex Monge Ampére operator, Ann. Polon. Math. 65 (1996), 11-21.

Kolodziej, S. The complex Monge-Ampére equation, Acta. Math. 180 (1998), 69-117.

Kolodziej, S. Equicontinuity of families of plurisubharmonic functions with bounds
on their Monge-Ampére masses, Math. Z. 240 (2002), 835-847.

Kolodziej, S. The complex Monge-Ampére equation on compact Kdhler manifolds,
Indiana Univ. Math. J. 52 (2003), no. 3, 667-686.

Kolodziej, S. Stability of solutions to the Monge-Ampere on compact Kdhler mani-
folds, Indiana Univ. Math. J. 52 (2003), no. 3, 667-686.

Kolodziej, S. The complex Monge-Ampére equation and pluripotential theory, Mem-
oirs Amer. Math. Soc. 178 (2005), pp. 64.

Krylov, N. V. Lectures on elliptic and parabolic equations in Holder spaces, Graduate
Studies in Mathematics, 12. American Mathematics society, Providence, RI, 1996.

Maehara, K. On elliptic surfaces whose first Betti numbers are odd, in Proceedings
of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977),
565-574, Kinokuniya Book Store, Tokyo, 1978.

Moichezon, B.G. On n-dimensional compact varieties with n algebraically independent
meromorphic functions, I, II and I, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966):
133174 345386 621656 English translation. AMS Translation Ser. 2, 63 51-177.

107



[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Nguyen, N.C, Kolodziej, S. Weak solutions to the complex Monge-Ampére equation
on Hermitian manifolds, preprint, arXiv: 1312.5491v1.

Nguyen, N.C. The complex Monge-Ampére type equation on compact Hermitian man-
ifolds and applications, preprint, arXiv: 1501.00891v1.

Nguyen, N.C, Kolodziej, S. Stability and reqularity of solutions of the Monge-Ampére
equation on Hermitian manifolds, preprint, arXiv: 1501.05749v2.

Oeljeklaus, K., Toma, M. Non-Kahler compact complex manifolds associated to num-
ber fields, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 161-171.

Phong, D. H., Sesum, N. and Sturm, J. Multiplier ideal sheaves and the Kdhler-Ricci
flow, Comm. Anal. Geom. 15 (2007), no. 3, 613-632.

Popovici, D. Sufficient bigness criterion for differences of two nef classes, Math. Ann.
DOI 10.1007/s00208-015-1230-z.

Sherman, M., Weinkove, B. Local Calabi and curvature estimates for the Chern-Ricci
flow, New York J. Math. 19 (2013), 565-582.

Song, J., Tian, G. The Kdhler-Ricci flow through singularities, preprint, arXiv:
0909.4898.

Song, J., Tian, G. Kdhler-Ricci flow on surfaces of positive Kodaira dimension, In-
vent. Math. 170 (2007), no. 3, 609-653.

Song, J., Tian, G. Canonical measures and Kdhler-Ricci flow, J. Amer. Math. Soc.
25 (2012), no. 2, 303353.

Song, J., Weinkove, B. The Kahler-Ricci flow on surfaces of positive Kodaira dimen-
tion, Invent. Math. 170 (2007), no. 3, 609-653.

Song, J., Weinkove, B. Contracting exceptional divisors by The Kdhler-Ricci flow,
Duke Math. J. 162 (2013), no. 2, 367-415.

Song, J., Weinkove, B. Contracting exceptional divisors by The Kahler-Ricci flow 11,
Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1529-1561.

Song, J., Weinkove, B. Lecture notes on the Kahler-Ricci flow, preprint, arXiv:
1212.3653.

Teleman, A. Projectively flat surfaces and Bogomolov’s theorem on class V1Iy-
surfaces, Int. J.Math. 5 (1994), 253-264.

Teleman, A. Donaldson theory on non-Kdhlerian surfaces and class VII surfaces
with by = 1, Invent. Math. 162 (2005), no. 3, 493-521.

Teleman, A. The pseude-effective cone of a non-Kdhlerian surface and applications,
Math. Ann. 335 (2006), no. 4, 965-989.

108



[65] Tian, G., Zhang, Z. On the Kdahler-Ricci flow on projective manifolds of general type,
Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179-192.

[66] Tosatti, V. Non-Kdhler Calabi- Yau manifolds, Contemp. Math. 644 (2015), 261-277.

[67] Tosatti, V. Weinkove, B. The Calabi-Yau equation, symplectic forms and almost
complex structures, in Geometry and Analysis, Vol. I, 475-493, Advanced Lectures in
Math. 17, International Press, 2010.

[68] Tosatti, V. Weinkove, B. The complex Monge-Ampeére equation on compact Hermitian
manifolds, J. Amer. Math. Soc. 23 (2010), no.4, 1187-1195.

[69] Tosatti, V. Weinkove, B. Plurisubharmonic functions and nef classes on compact
manifolds, Proc. Amer. Math. Soc. 140 (2012), 4003-4010.

[70] Tosatti, V. Weinkove, B. The Chern-Ricci flow on complex surfaces, Compos. Math.
149 (2013), no. 12, 2101-2138.

[71] Tosatti, V. Weinkove, B., Yang, X. Collapsing of the Chern-Ricci flow on elliptic
surfaces, Math. Ann. 362 (2015), no. 3-4, 1223-1271.

[72] Tosatti, V. Weinkove, B. On the evolution of a Hermitian metric by its Chern-Ricci
form, J. Differential Geom. 99 (2015), 125-163.

[73] Tosatti, V. Weinkove, B., Yau, S.-T. Taming symplectic forms and the Calabi-Yau
equation, Proc. London Math. Soc. 97 (2) (2008), 401-424.

[74] Vaisman, 1. Non-Kdhler metrics on geometric complex surfaces, Rend. Sem. Mat.
Univ. Politec. Torino 45 (1987), no. 3, 117-123.

[75] Wall, C.T.C. Geometric structure on compact complex analytic surfaces, Topology
25 (1986), no. 2, 119-153.

[76] Yau, S.-T. A general Schwarz lemma for Kdhler manifolds, Amer. J. Math. 100
(1978), no. 1, 197-203.

[77) Yau, S.-T. On the Ricci curvature of a compact Kdhler manifold and the complex
Monge-Ampére equation, Comm. Pure Appl. Math. 31 (1978), 339-411.

(78] Zhang, Z. On Degenerated Monge-Ampere Equations over Closed Kdihler Manifold.
Int. Math. Res. Not. 2006, Art. ID 63640, 18 pp.

[79] Zhang, Z. Scalar curvature bound for Kdhler-Ricci flows over minimal manifolds of
general type, Int. Math. Res. Not. 2009; doi: 1093/imrn/rnp073.

109



