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Chapter 1

Introduction

1.1 Overview

Recently, many geometric flows have been investigated energetically and they give us
some applications not only to differential geometry but also to other mathematical fields.
Especially, we would like to focus on the recent study on the Ricci flow. This flow suddenly
became famous after Perelman completed Hamilton’s program and proved Poincaré and
Thurston’s Geometrization conjecture. The biggest problem for completing Hamilton’s
program was the clarification of the structure of a neighborhood around a point where the
curvature is big just before showing up the singularity of the infinite curvature at finite
singular time for the Ricci flow. Perelman introduced the idea of the entropyW-functional
and showed the local non-collapsing theorem, which implies that we can positively solve
the non-appearance of the cigar soliton as Hamilton conjectured.

The Ricci flow’s first appearance was in Hamilton’s paper on 3-manifolds with positive
Ricci curvature in 1982 [31]. In the paper, he introduced the Ricci flow and showed the
short-time existence and its uniqueness on closed Riemannian manifolds. Hamilton devel-
oped powerful techniques such as the maximum principle for tensors and applied it to the
evolution equation which the curvature tensors of the Ricci flow satisfies. And by applying
this fundamental method for the Ricci flow, he proved that a closed 3-manifold equipped
with a Riemannian metric whose Ricci curvature is strictly positive is diffeomorphic to
a smooth quatient of 3-sphere. Hamilton established the foundation of the study of the
Ricci flow and which became a breakthrough of the differentiable sphere theorem. In
2007, Brendle and Schoen finally proved the differentiable pointwise 1/4-pinching sphere
theorem with using the Ricci flow (cf. [2]).

On compact Kähler manifolds, the Ricci flow starting at a Kähler metric is called
the Kähler-Ricci flow, which reduces to the parabolic complex Monge-Ampère equation.
The theory of the Kähler-Ricci flow has been developed drastically and it is known that
the behavior of the Kähler-Ricci flow reflects the complex structure of manifolds. Cao
[15] gave an alternative aproach to prove the existence of Kähler-Einstein metrics on
closed Kähler manifolds with negative or vanishing first Chern class by studying on the
convergence of the normalized Kähler-Ricci flow. On real 3-manifolds, Perelman and
Hamilton showed that we can use the Ricci flow with surgery to break up the manifold
into pieces. Since there exists a connection between Kähler manifolds and projective
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algebraic varieties, then naturally the similar question comes up for the Kähler-Ricci flow
on a projective algebraic variety, which is the one that whether the Kähler-Ricci flow will
give a geometric classification of algebraic varieties or not.

A minimal surface is a compact complex surface which has no special holomorphic
sphere called (−1)-curve. When considering a projective surface, we remove irreducible
disjoint finitely many (−1)-curves by blowing down. After blowing down finite times, the
surface reaches a minimal surface. Otherwise, it is minimal from the first, or classified into
a ruled surface or a rational surafce, whose Kodaira dimensions are negative. This process
is understood along the Kähler-Ricci flow analytically. In the case when the singular time
is infinity, it is minimal. When the solution of the Käler-Ricci flow is collapsing at the
finite singular time, it is classified into a ruled surface or a rational surface.

The Minimal Model Program (MMP) is known as a process of simplifying algebraic
varieties through algebraic surgeries in biratinal geometry. Before the appearance of
BCHM [7], Tsuji had advocated that MMP could be understood via Kähler-Einstein
geometry. After BCHM, Tian and Song discovered a complex analogue of Perelman’s
approach to Thurston’s Geometrization conjecture (cf. [55]). For instance, algebraic
operations such as flips and divisorial contractions assume the role of Perelman’s idea
”Surgery” and the Kähler-Ricci flow is considered to be the one of the few tools could be
used for the analytification of MMP. BCHM introduced the idea of the MMP with Scaling.
This idea describes a particular sequence of algebraic operations and takes a variety with
a polarization to a minimal model or a Mori fiber space (cf. [55]). This process actually
closely related to the Kähler-Ricci flow. The polarization corresponds to a choice of initial
Kähler metric. Song and Tian showed that the Kähler-Ricci flow starting at a Kähler
current can be continued through singularities in the weak sense related to the MMP
with Scaling [55]. After that, Song and Weinkove [59] showed that in the case of complex
dimension two, the algebraic procedure of blowing down (−1)-curves is corresponding to
a geometric canonical surgical contraction for the Kähler-Ricci flow. Our one of main
interests is that whether this correspondence is true also in the non-Kähler case.

The Chern-Ricci flow is analogue of the Kähler Ricci flow and starting at a Hermitian
metric. If the initial metric is Kähler, the Chern-Ricci flow coincides with the Kähler-Ricci
flow. Its study was started by Gill [26] in the setting of compact Hermitian manifolds
with vanishing first Bott-Chern class. He showed that a solution of the Chern-Ricci flow
converges smoothly to a unique Chern-Ricci flat metric, which can be said that this is a
generalization of Cao’s results in 1985 for the case of vanishing first Chern class. Tosatti
and Weinkove investigated the Chern-Ricci flow in more general cases and studied the
behavior of the solution on some compact complex surfaces such as Hopf surfaces, Inoue
surfaces, non-Kähler properly elliptic surfaces (cf. [70], [71], [72]). They showed that
for Hopf surfaces, there exists an explicit solution of the Chern-Ricci flow which collapse
to a circle in the Gromov-Hausdorff sense in finite time. For Inoue surfaces, they also
discovered that there exists an explicit solution of the Chern-Ricci flow and the solution
devided by t collapses in infinite time to a circle in the Gromov-Hausdorff sense and for
non-Kähler properly elliptic surfaces, there also exists an explicit solution of the Chern-
Ricci flow and the solution devided by t collapses in infinite time to a compact Riemann
surface with the distance function induced by an orbifold Kähler-Einstein metric on the
surface in the Gromov-Hausdorff sense, and moreover, the solution devided by t converges
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smoothly to the pullback of the orbifold Kähler-Einstein metric. These investigations
tell us that the Chern-Ricci flow is a natural geometric flow whose behavior reflects the
underlying geometry of manifolds. By investigating the behavior of the Chern-Ricci flow
on compact complex surfaces, we may expect that we can extract some fresh topological
or complex-geometric information.

Especially, the Class V II surfaces are interesting objects since their classification has
not yet completely done. Note that the Class V II surfaces are compact complex surfaces
with the Kodaira dimension−∞ and the first Betti number one. Fang and Zheng analyzed
the behavior of the Chern-Ricci flow on Inoue surfaces [22], well-known Class V II surfaces,
which come in three families. Tricerri and Vaisman constructed an explicit homogeneous
Gauduchon metric ωTV on each Inoue surfaces, which is strongly flat along the leaves.
Fang and Zheng proved that the solution of the Chern-Ricci flow starting the initial metric
in the ∂∂̄-class of ωTV converges in the Cα-topology for every 0 < α < 1. We focus on
the convergence of a solution of the normalized Chern-Ricci flow on minimal non-Kähler
properly elliptic surfaces. In the case of the unnormalized Chern-Ricci flow on minimal
non-Kähler properly elliptic surfaces, a smooth solution of the flow divided by t converges
to an orbifold Kähler-Einstein metric smoothly as t goes to infinity [67]. It also has been
shown that the solution of the normalized Chern-Ricci flow converges to a Kähler-Einstein
metric in C0-topology on minimal non-Kähler properly elliptic surfaces [68].

1.2 Motivations

1.2.1 Canonical surgical contraction and blow-down of (−1)-curves

There are some investigations on the relationship between the Kähler-Ricci flow and
algebraic geometry, especially MMP with Scaling. The definition is stated formally as
follows:

Definition 1.2.1. (MMP with Scaling (cf. [55, Definition 5.2]))

(1) We start with a pair (X,H), where X is a normal Q-factorial projective variety X
with log terminal singularities and H is a big and semi-ample Q-divisor on X.

(2) Let λ0 := inf{λ > 0|λH +KX is nef} be the nef threshold. If λ0 = 0, then we stop
since the canonical divisor KX is already nef.

(3) Otherwise, there is an extremal ray R of the cone of curves NE(X) on which KX is
negative and λ0H +KX is zero. So there exists a contraction π : X → Y of R:

(a) If π is a divisorial contraction, we replace X by Y and HY be the strict trans-
formation of λ0H +KX by π. Then we return to (1) with (Y,HY ).

(b) If π is a small contraction, we replace X by its flip X+ and let HX+ be the strict
transformation of λ0H +KX by π. Then we return to (1) with (X+, HX+).

(c) If dimY < dimX, then X is a Mori fibre space, i.e., the fibers of π are Fano.
Then we stop.
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A variety X is called normal if a local ring OX,x is a normal ring for each x ∈ X and
X is said Q-factorial if any Q-divisor on X is Q-Cartier. It is known that Q-factoriality is
preserved after divisorial contractions and flips. A normal Q-factorial projective variety
X is said to have log terminal singularities if ai > −1 for all i, where ai ∈ Q is a unique
collection satisfying

KX̃ = π∗KX +

p∑
i=1

aiEi,

π : X̃ → X is a resolution and {Ei}pi=1 is the irreducible components of the exceptional
locus Exc(π) of π, where π is not isomorphic.

Let X be a normal projective variety and H be a Cartier divisor on X. For m ∈ Z>0,
if H0(X,mH) 6= 0, then there exists a rational map

Φ|mH| : X −− → P(H0(X,mH))

associated to the linear system |mH|. We define the Iitaka-Kodaira dimension of (X,H)
in the following:

κ(X,H) := max
m∈Z>0

{dim Im(Φ|mH|)}.

A Cartier divisor H is called big when κ(X,H) = dimX and H is said nef if the inter-
section number (H · C) ≥ 0 for any curve C on X. We say that X is of general type
if the canonical divisor KX is big. When KX is nef, X is called a minimal model. A
Cartier divisor H is called semi-ample if the associated invertible sheaf OX(H) satisfies
that OX(H)⊗m is globally generated for some m ∈ Z>0.

In Definition 1.2.1, NE(X) is the set of classes of effective 1-cycles in N1(X)R, where
N1(X)R = N1(X)Z ⊗Z R and N1(X)Z is the group of numerically equivalent 1-cycles,
NE(X) is the closure of NE(X) in the Euclidean topology. Two 1-cycles are said numeri-
cally equivalent if they have the same intersection number with every Cartier divisor (i.e.
the same intersection number with every invertible sheaf associated to Cartier divisor).
Let L be a nef Q-Cartier divisor but not ample, with L− aKX ample for some a ∈ R>0.
Then the divisor L is called a supporting divisor. We define an extremal face F by

F = {[C] ∈ NE(X)|(L · C) = 0},

where (L · C) = (OX(L) · C) is the intersection number with the invertible sheaf OX(L)
associated to the supporting divisor L. When [L] = 0 ∈ N1(X)R, where N1(X)R is the
set of numerically equivalent classes of R-invertible sheves, then we have F = NE(X).
Additionally when F is a ray, which is called an extremal ray and written by R. By
applying the base point free theorem, we see that there exists a contraction morphism
φF : X → Y associated to an extremal face F . Note that φF (C) = {1pt} for any curve C
if and only if we have [C] ∈ F . For the contraction φF associated to F , −KX is φF -ample.
Especially, a contraction morphism associated to an extremal ray is called an elementary
contraction. Notice that a contraction morphism is determined by only an extremal face,
that is to say, it is independent of a suppoting divisor.

Note that projective varieties X, Y and X+ are bimeromorphic (equivalently we can
say ”birational” since they are projective) each other. When a morphism µ : V1 → V2 is
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bimeromorphic between analytic spaces V1. V2, then there exist closed subsets W1 ⊂ V1,
W2 ⊂ V2 with codimW2 ≥ 2 such that

µ|V1\W1 : V1 \W1

∼=→ V2 \W2

is biholomorphic (cf. [3, p.89]).
Let D be a Cartier divisor on V2 and let µ : V1 → V2 be a morphism between analytic

spaces. Since D is Cartier, there exist an open set U ⊂ V2 and a meromorphic function
fU on U such that D ∩ U = (fU), where (fU) is a divisor of a meromorphic function.
On µ−1(U), we define µ∗D ∩ µ−1(U) = (µ∗fU). Then we can define a Cartier divisor
µ∗D on V1 by varying U . The divisor µ∗D is called a total transform by µ of D. On
the other hand, when µ is bimeromorphic, there exist closed subsets W1 ⊂ V1, W2 ⊂ V2

with codimW2 ≥ 2 such that µ|V1\W1 : V1 \W1 → V2 \W2 is biholomorphic. So then we
define a divisor (µ−1)∗(D) on V1 by the closure of (µ|V1\W1)

∗(D ∩ (V2 \W2)) in V1. The
divisor (µ−1)∗(D) is called a strict transform of D (cf. [3, p.75]). In this sense, the strict
transformations HY , HX+ in Definition 1.2.1 are given by

HY = π∗(λ0H +KX), HX+ = ((π+)−1 ◦ π)∗(λ0H +KX).

Note that the divisor HY is ample, the divisor HX+ is semi-ample and big and HX++εKX+

is ample for sufficiently small ε > 0 since KX+ is π+-ample, hence we can go back to the
first step (1) in MMP with Scaling. In the notations of Definition 1.2.1, we say that π is
a divisorial contraction in the case when the exceptional locus Exc(π) is a divisor whose
image of π has codimension at least 2. In this case, Y is still Q-factorial and has at worst
log terminal singularities. We say that π is a small contraction in the case when Exc(π)
has codimension at least 2. In this case, Y have rather bad singularities and the canonical
divisor KY is no longer a Q-Cartier divisor. Hence we need to repalce X by a birationally
equivalent variety which is called a flip, with singularities milder than those of Y . The
definition of a flip is as follows (cf. [55, Definition 5.4]):

Definition 1.2.2. Let X be a normal Q-factorial projective variety with log terminal
singularities and let π : X → Y be a small contraction such that −KX is π-ample. A
variety X+ together with a proper bimeromorphic morphism π+ : X+ → Y is called a flip
of π if π+ is also a small contraction and KX+ is π+-ample. The morphism (π+)−1 ◦ π :
X → X+ is bimeromorphic. The variety X+ is Q-factorial and has at worst log terminal
singularities.

Notice that since the small contraction π : X → Y is a contraction of the extremal
ray R in the case (3)-(b) in Definision 1.2.1, −KX is then π-ample.

In 2006, there was a breakthrough in algebraic geometry:

Theorem 1.2.1. (cf. [7], [55, Theorem 5.1])If X is a normal Q-factorial projective variety
of general type with log terminal singularities, then the MMP with Scaling terminates in
finite steps.

Theorem 1.2.1 means that there exist some flips needed, and does not exist infinite
sequence of flips.
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Let H be a big and semi-ample Q-divisor on X and Ω be a smooth volume form on
X. Then we define

PSHp(X,ω0,Ω) := {ϕ ∈ PSH(X,ω0) ∩ L∞(X)|(ω0 +
√
−1∂∂̄ϕ)n

Ω
∈ Lp(X,Ω)}

and
KH,p(X) := {ω0 +

√
−1∂∂̄ϕ|ϕ ∈ PSHp(X,ω0,Ω)}

for p ∈ (0,∞], ω0 ∈ c1([H]) a smooth closed (1, 1)-form, where [H] is the associated
holomorphic line bundle, c1([H]) is the first Chern class and PSH(X,ω0) denotes the set
of all upper semi-continuous functions ϕ : X → [−∞,∞) such that ω0 +

√
−1∂∂̄ϕ ≥ 0 as

a current.
We introduce the definition of the weak Kähler-Ricci flow on projective varieties with

singularities:

Definition 1.2.3. (Weak Kähler-Ricci flow (cf. [55, Definition 4.3]))Let X be a normal
Q-factorial projective variety with log terminal singularities and ω0 ∈ c1([H]) be a smooth
closed (1, 1)-form on X associated to a big and semi-ample Q-divisor H on X. Suppose
that

T0 = sup{t > 0|H + tKX is nef}.

A family of closed positive (1, 1)-current ω(t, ·) on X for t ∈ [0, T0) is called a solution of
the unnormalized weak Kähler-Ricci flow if the following conditions hold.

(1) ω ∈ C∞((0, T0)× (X \D)), where D is a subvariety of X. Let ω̂t ∈ c1([H + tKX ])
be a smooth family of smooth closed (1, 1)-forms on X for t ∈ [0, T0) such that

ω̂0 = ω0 ∈ c1([H]).

Then
ω = ω̂t +

√
−1∂∂̄ϕ

for ϕ ∈ C0([0, T0)×(X\D))∩C∞((0, T0)×(X\D)) and ϕ(t, ·) ∈ PSH(X, ω̂t)∩L∞(X)
for all t ∈ [0, T0) with ϕ(0, ·) = ϕ0(·) ∈ PSH(X,ω0) ∩ L∞(X). Especially,

ω′0 := ω(0) = ω0 +
√
−1∂∂̄ϕ0

is a closed positive (1, 1)-current on X.

(2) 
∂
∂t
ω(t) = −Ric(ω(t)), on (0, T0)× (X \D),

ω(t)|t=0 = ω′0, on X.

In the case when the Q-divisor H is ample, T0 is always positive and X \D = Xreg.
Since the contraction of the extremal ray and the contraction induced by the semi-

ample divisor λ0H+KX might be different, we need to choose a special ample divisor called
a good initial divisor, so that at each step, there is only one extremal ray contracted by
the morphism induced by λ0H+KX . The definition of a good initial divisor is as follows:
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Definition 1.2.4. ([55, Definition 5.3])Let X be a normal Q-factorial projective variety
with log terminal singularities. An ample Q-divisor H on X is called a good initial divisor
H if the following conditions are satisfied.

(1) Let X0 = X and H0 = H. The MMP with scaling terminates in finite steps by
replacing (X0, H0) by (X1, H1), . . . , (Xm, Hm) until Xm+1 is a minimal model or Xm

is a Mori fiber space.

(2) Let λi be the nef threshold for each pair (Xi, Hi) for i = 1, . . . ,m. Then the
contraction induced by the semi-ample divisor λiHi + KXi contracts exactly one
extremal ray.

Note that a good initial divisor always exists if dimX = 2 and Kod(X) ≥ 0, and then
the normalized Kähler-Ricci flow with a good initial divisor converges to the canonical
model or the minimal model of X coupled with a generalized Kähler-Einstein metric.

From the important result in Theorem 1.2.1, Song and Tian established the follow-
ing analytification of MMP as a Kähler analogue of Perelman’s approach to Thurston’s
Geometrization Conjecture.

Theorem 1.2.2. ([55, Theorem 5.7]) Let X be a normal Q-factorial projective variety
with log terminal singularities. If there exists a good initial divisor H on X, then either X
does not admit a minimal model or the unnormalized weak Kähler-Ricci flow has long time
solution for any Kähler current ω0 ∈ KH,p(X) with p > 1, after finitely many surgeries
through divisorial contractions and flips.

Importantly, Song and Tian showed the smoothing property of the Kähler-Ricci flow
with rough initial data away from singularities. That is, the associated parabolic Monge-
Ampère flow is starting at a bounded plurisubharmonic function. Since the flow goes to a
degenerate positive (1, 1)-current as time goes to a finite singular time through such as flips
and divisorial contractions, so it is inevitable to start with a Kähler current. But thanks
to this smoothing effect, the flow becomes smooth all at once away from singularities and
if a given variety has a minimal model, in this sense we see that the flow has a long time
solution through finitely many flips and divisorial contractions.

It is conjectured in [55] that the Kähler-Ricci flow will either deform a projective
variety X to its minimal model via finitely many divisorial contractions and flips in
the Gromov-Hausdorff sense, and then converge to a generalized Kähler-Einstein metric
on the canonical model of X, or collapse in finite time. This process is the analytic
analogue of Mori’s minimal model program. Although the existence and uniqueness was
proven for the weak Kähler-Ricci flow through divisorial contractions and flips in [55], the
convergence in the Gromov-Hausdorff sense at the finite singular time was still largely
open. After that, Song and Weinkove [59] showed that on a smooth projective algebraic
surface X with a Kähler metric ω0 satisfying [ω0] ∈ H1,1(X,Q), which indicates that
there exists an ample holomorphic line bundle such that c1(L) = [ω0], there exists a
unique maximal Kähler-Ricci flow ω(t) with canonical surgical contractions starting at
(X,ω0) on X0 = X,X1, . . . , Xk on maximal intervals [0, T = T0), (T0, T1), . . . , (Tk−1, Tk)
such that ω(t) performs a canonical surgical contraction at T0, T1 . . . , Tk−1 but not at Tk
(possibly Tk = ∞), and each canonical surgical contraction corresponds to a blow-down
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map πi : Xi → Xi+1 of a finite number of disjoint exceptional curves on Xi. Then, along
the flow we see that either Tk <∞ and then Xk is CP2 or a ruled surface, or Tk =∞ and
Xk has no exceptional curves. We state this formally in the following:

Theorem 1.2.3. ([59, Theorem 1.2])Let X be a projective algebraic surface and ω0 a
Kähler metric with [ω0] ∈ H1,1(X,Q). Then there exists a unique maximal Kähler-Ricci
flow ω(t) on X0, X1, . . . , Xk contraction corresponds to a blow-down π : Xi → Xi+1 of a
finite number of disjoint exceptional curves on Xi. In addition we have:

(1) Either Tk < ∞ and the Kähler-Ricci flow ω(t) collapses Xk, in the sense that the
volume of Xk with respect to ω(t) tends to zero as t→ T−k :

Volω(t)Xk → 0, as t→ T−k .

in this case Xk is a Fano surface or a ruled surface.

(2) Or Tk =∞ and Xk has no exceptional curves of the first kind.

We expect that this process can be proceeded along also the Chern-Ricci flow, that is,
if the Chern-Ricci flow is non-collapsing in finite time, then it blows down finitely many
(−1)-curves and continues in a unique way on a new complex surface. Then we need
global Gromov-Hausdorff convergence of the metrics and smooth convergence away from
the (−1)-curves. With the terminology of the Kähler case, we say the solution g(t) of the
Chern-Ricci flow performs a canonical surgical contraction if the following occurs:

Definition 1.2.5. (Canonical surgical contraction (cf. [59, Definition 1.1])) Let M be
a compact complex surface, and let g0 be a Gauduchon metric on M . Suppose that the
Chern-Ricci flow is non-collapsing at time T <∞, that is, the volume of M with respect
to the smooth solution of the Chern-Ricci flow ω(t) = g(t) starting at the metric g0 stays
positive as t → T−. Then there exist finitely many disjoint (−1)-curves E1, . . . , Ek on a
compact complex surface M giving rise to a surjective holomorhic map π : M → N on
to a compact complex surface N blowing down each Ei to a point π(Ei) = yi ∈ N and
π|M\∪ki=1Ei

a biholomorphic onto N ′ := N \ {y1, . . . , yk} such that

(1) As t→ T−, on M ′ := M \∪ki=1Ei, the metrics g(t) converge to a smooth Gauduchon
metric gT in C∞loc(M

′). Using π, we may regard gT as a Gauduchon metric on N ′.

(2) Let dgT be the distance function onN ′ given by gT . Then there exists a unique metric
dT on N extending dgT such that (N, dT ) is a compact metric space homeomorphic
to N .

(3) (M, g(t)) converges to (N, dT ) in the Gromov-Hausdorff sense as t→ T−.

(4) There exists a smooth maximal solution g(t) of the Chern-Ricci flow on N for
t ∈ (T, TN) with T < TN ≤ ∞ such that g(t) converges to gT as t→ T+ in C∞loc(N

′).

(5) (N, g(t)) converges to (N, dT ) in the Gromov-Hausdorff sense as t→ T+.
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We extend gT to a nonnegative (1, 1)-tensor g̃T on the whole space Y by setting

g̃T |yi(·, ·) = 0 for i = 1, . . . , k.

Notice that g̃T may be discontinuous at y1, . . . , yk. Then we define the distance function
dT appeared in the definition above with using g̃T :

Definition 1.2.6. ([59, Definition 3.1])Define a distance function dT : Y × Y → R by

dT (y1, y2) := inf
γ

∫ 1

0

√
g̃T (γ′(s), γ′(s))ds,

where the infimum is taken over all piecewise smooth paths γ : [0, 1]→ Y with γ(0) = y1,
γ(1) = y2 for y1, y2 ∈ Y .

In the Kähler case, a smooth solution of the Kähler-Ricci flow performs a canonical
surgical contraction.

Theorem 1.2.4. ([57, Theorem 1.1])Let ω(t) be a smooth solution of the Kähler-Ricci
flow starting at an arbitrary fixed Kähler metric ω0 on a compact Kähler manifold for
t ∈ [0, T ) and assume T < ∞. Suppose there exists a blow-down map π : X → Y
contracting disjoint irreducible exceptional divisors E1, . . . , Ek on X with π(Ei) = yi ∈ Y ,
for a smooth compact Kähler manifold (Y, ωY ) such that the limiting Kähler class satisfies

[ω0] + Tc1(KX) = [π∗ωY ].

Then the Kähler-Ricci flow ω(t) performs a canonical surgical contarction with respect to
the data E1, . . . , Ek, Y and π.

This holds also for a map π : X → Y blowing down the (−k)-exceptional divisors
of the Zk-orbifold points under the same cohomology condition for some smooth orbifold
Kähler metric ωY on Y [60].

Recently, Guo, Song and Weinkove [30] established the global geometric convergence
for the normalized Kähler-Ricci flow on all minimal surfaces of general type, not only the
ones include only distinct irreducible (−2)-curves, starting with any initial Kähler metric.
By definition, a minimal surface of general type is a smooth complex surface X whose
canonical bundle KX is nef and big, and then X is projective. So by the base point free
theorem, KX is actually semi-ample and then Km

X is globally generated for sufficiently
large positive integer m, so given an ordered basis (s0, . . . , sN) of the holomorphic sections
of Km

X induce a well-defined holomorphic map Φ : X → PN by Φ(x) = [s0(x), . . . , sN(x)]
for x ∈ X with image Xcan, the canonical model of X, which is an algebraic surface with
at worst finitely many orbifold A-D-E -singularities and which admits a unique orbifold
Kähler-Einstein metric since KXcan is ample. The map Φ contracts (−2)-curves on X to
orbifold points on Xcan. A surface of general type is a complex surface whose minimal
model is a minimal surface of general type, which means that a surface of general type can
be obtaind by finitely many blow-ups of a minimal model of general type. By putting all
together, Theorem 1.2.3 and the contraction of (−2)-curves along the normalized Kähler-
Ricci flow in the Gromov-Hausdorff sense, we obtain the following convergence result:
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Theorem 1.2.5. ([30, Corollary 1.1])Let X be a compact complex surface of general
type. Then the normalized Kähler-Ricci flow on X starting with any initial Kähler metric
g0 is continuous through finitely many contraction surgeries in the Gromov-Hausdorff
topology for t ∈ [0,∞) and converges in the Gromov-Hausdorff topology to (Xcan, gKE).
The convergence is smooth away from the (−2)-curves, where gKE is the unique orbifold
Kähler-Einstein metric on Xcan.

The condition (1) in the conditions of the canonical surgical contraction in Definition
1.2.5 has proven by Tosatti and Weinkove in the non-Kähler case:

Theorem 1.2.6. ([70, Theorem 1.1])Let M be a compact complex surface and let ω0 be
a Gauduchon metric on M . Suppose that the Chern-Ricci flow ω(t) starting at ω0 is non-
collapsing at time T <∞. Then there exist finitely many disjoint (−1)-curve E1, . . . , Ek
on M giving rise to a map π : M → N onto a complex surface N blowing down each Ei to
a point yi ∈ N for i = 1, . . . , k. Write M ′ = M \

⋃k
i=1Ei and N ′ = N \{y1, . . . , yk}. Then

the map π gives an isomorphism from M ′ to N ′. As t → T−, the metrics ω(t) converge
to a smooth Gauduchon metric ωT on M ′ in C∞loc(M

′).

Notice that the finite time non-collapsing for the Chern-Ricci flow occurs commonly.
For instance, whenever M is a non-minimal compact complex surface with the Kodaira
dimension Kod(M) 6= −∞, there will be the finite time non-collapsing for any initial
Gauduchon metric ω0. Remark that before that Theorem 1.2.6 was proved by applying
the Buchdahl’s Nakai-Moishezon criterion, this result in general dimensions above had
been proved under the condition (1.5) in [72, Theorem 1.6].

If we impose the condition (∗) in Theorem 1.3 in [70]: (∗) there exist a smooth function
f and a smooth real (1, 1)-form β with

ω0 − T Ric(ω0) +
√
−1∂∂̄f = π∗β,

we have already known that we have (2) and (3) in the definition of the canonical surgical
contraction. Note that after replacing f by another smooth function, we may assume
that β is a Gauduchon metric by applying Buchdahl’s Nakai-Moishezon criterion (cf.
[70, Lemma 3.2]). We will observe that (4) and (5) in Definition 1.2.5 hold under the
assumption (∗) in Chapter 4. When it comes to the Kähler case, as considering the
contraction of (−1)-curves on a Kähler surfaces, such a surface has the Kodaira dimension
Kod = 2 and then its algebraic dimension is equal to 2, which is equivalent to that the
surface is projective. Since we see that for a projective Kähler surface by choosing a initial
Kähler metric, the condition (∗) holds automatically. For this reason, we can repeatedly
observe that the contraction of (−1)-curves can be understood by the canonical surgical
contraction for the Kähler-Ricci flow analytically. Although we can construct an initial
Gauduchon metric satisfying the condition (∗) artificially for the Chern-Ricci flow, it is
not enough to interpret the contraction of (−1)-curves repeatedly as in the Kähler case.
For these reason, removing the assumption (∗) is essential for improving the results in the
case of the Chern-Ricci flow as in the Kähler case. We will observe that even a compact
complex surface is non-Kähler, the condition (∗) can be actually removed and we can
show the convergence in the Gromov-Hausdorff sense alonf the Chern-Ricci flow without
any special assumptions in Chapter 3.
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1.2.2 Hölder convergence of the Chern-Ricci flow
on elliptic surfaces

Gill [28] showed that a suitably normalized solution of the parabolic Monge-Ampère flow
converges to Hermitian metrics with vanishing Chern -Ricci form in the C∞-topology on
a compact Hermitian manifold with its first Bott-Chern class is equal to zero. It was the
beginning of the investigation of the Chern-Ricci flow. After that, Tosatti and Weinkove
(cf. [70], [71], [72]) started to study on the Chern-Ricci flow on some complex surfaces
such as properly elliptic surfaces, Hopf surfaces and Inoue surfaces. We would like to
especially focus on the convergence of a solution of the normalized Chern-Ricci flow on
minimal non-Kähler properly elliptic surfaces.

In the Kähler case, Song and Tian [56] investigated the Kähler-Ricci flow on a general
minimal Kähler elliptic surface, and they showed that the flow converges at the level of
potentials to a generalized Kähler-Einstein metric on the base Riemannian surface. Since
generally, the fibration structure on a Kähler elliptic surface is not locally trivial and may
have singular fibers, the generalized Kähler-Einstein equation involves the Weil-Petersson
metric and singular currents. It has been studied on the behavior of the Kähler-Ricci
flow in the case of a product elliptic surface M = E ×S, where E is an elliptic curve and
S is a compact Riemann surface of genus at least 2 by Song and Weinkove [61]. In this
case, the solution of the normalized Kähler-Ricci flow on E × S conveges to a Kähler-
Einstein metric on S in Cα-topology for any 0 < α < 1 and Gill developed this result
into the C∞-convergence [27]. Fong and Zhang [23] showed the C∞ convergence result
for the Kähler-Ricci flow on more general elliptic bundles with using the idea established
by Gross, Tosatti and Zhang.

In the case of (unnormalized) Chern-Ricci flow on a minimal non-Kähler properly
elliptic surface π : M → S, there exists an explicit solution ω(t) of the Chern-Ricci flow
on M for t ∈ [0.∞) and the solution ω(t) divided by t converges smoothly to π∗ωKE on
M as t→∞, where ωKE is an orbifold Kähler-Einstein metric on S. And also, with the
normalized metrics ω(t)

t
, we have that(

M,
ω(t)

t

)
GH→ (S, dKE), as t→∞

in the Gromov-Hausdorff sense, where dKE is the distance function induced by ωKE (cf.
[70]). And also for an elliptic bundle over a compact Riemann surface S of genus at least
2 with fiber an elliptic curve, it has shown that the solution of the normalized Chern-
Ricci flow converges to a pull-backed Kähler-Einstein metric on S exponentially fast in
C0-topology [71]. By essentially using the fact that any minimal non-Kähler properly
elliptic surface is covered by an elliptic fiber bundle, this convergence result for an elliptic
fiber bundle can be applied to the case considering a minimal non-Kähler properly elliptic
surface. Formally, which is stated as follows: Let π : M → S be firstly an elliptic bundle
over a compact Riemann surface S of genus at least 2, with fiber an elliptic curve E. And
let ωflat,y be the unique flat metric on the fiber π−1(y) for each point y ∈ S in the Kähler
classs [ω0|π−1(y)]. Let ωS be the unique Kähler-Einstein metric on S with Ric(ωS) = −ωS
and ω0 be a Gauduchon metric on M .
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Then we investigate the normalized Chern-Ricci flow

∂

∂t
ω(t) = −Ric(ω(t))− ω(t), ω(t)|t=0 = ω0.

With this flow above, we can observe that elliptic fibers collapse along the flow, on the
other hand, the volume of the base surface S remains positive and bounded. Under the
setting above, the convergence result as t→∞ can be shown:

Theorem 1.2.7. ([71, Theorem 1.1])Let ω(t) be a solution of the normalized Chern-Ricci
flow on M starting at ω0. Then as t → ∞, ω(t) converges to π∗ωS exponentially fast in
the C0(M, g0) topology. In particular, the diameter of each elliptic fiber tends to zero
uniformly exponentially fast and (M,ω(t)) converges to (S, ωS) in the Gromov-Hausdorff
topology. Furthermore, etω(t)|π−1(y) converges to the flat metric ωflat,y exponentially fast
in the C1(π−1(y), g0) topology, uniformly in y ∈ S.

Then we apply the key fact that for any minimal non-Kähler properly elliptic surface
M , there always exists a finite unramified covering p : M ′ →M , which is also a minimal
properly elliptic surface, π′ : M ′ → S ′ is an elliptic fiber bundle with S ′ a compact
Riemann surface of genus at least 2, and obtain the following convergence result:

Theorem 1.2.8. ([71, Corollary 1.2]) Let π : M → S be any minimal non-Kähler properly
elliptic surface. Then given any initial Gauduchon metric ω0 on M we have that (M,ω(t))
converges to (S, dS) in the Gromov-Hausdorff topology. Here dS is the distance function
induced by an orbifold Kähler-Einstein metric ωS on S, whose set Z of orbifold points is
precisely the image of the multiple fibers of π. Furthermore, ω(t) converges to π∗ωS in the
C0(M, g0) topology, and for any y ∈ S \Z the metrics etω(t)|π−1(y) converge exponentially
fast in the C1(π−1(y), g0) topology and uniformly as y varies in a compact set of S \Z to
the flat Kähler metric π−1(y) cohomologous to [ω|π−1(y)].

Our aim is to show that the smooth solution the normalized Chern-Ricci flow ω(t)
converges to π∗ωS as t→∞ for some orbifold Kähler-Einstein metric ωS is possible in Cα-
topology for any 0 < α < 1. We will observe that this Cα-convergence can be realized by
choosing an initial Gauduchon metric from the ∂∂̄-class of the Vaisman metric in Chapter
5. If we let z ∈ H be the variable in the upper half plane H in C, w ∈ C∗ := C \ {0}, and

y = Imz, then we observe that the form π∗ωS is induced from the form
√
−1

2y2
dz ∧ dz̄ on

C∗×H. This study is the one which was stimulated by the investigation of the normalized
Chern-Ricci flow on Inoue surfaces (cf. [22]).
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1.3 Summary of new results

In Chapter 3, we will show that we can remove the condition (†) with using some tools in
pluripotential theory. We consider a map π : M → N blows down the only one (−1)-curve
E on M to the point y0 ∈ N for simplicity.

Theorem 1.3.1. ([35, Theorem 1.1])Let M be a non-Kähler compact complex surface
and π : M → N be a blow-down map of the (−1)-curve E on M to the point y0 ∈ N ,
where N is a compact complex surface. Let ω0 be a Gauduchon metric on M . Suppose
that we have ∫

M

(ω0 − T Ric(ω0))2 > 0, and

∫
D

(ω0 − T Ric(ω0)) > 0

for all irreducible curves D on M with D2 = (D ·D) < 0 different from E, where T is a
finite singular time of the Chern-Ricci flow ω(t) starting at ω0 for t ∈ [0, T ), 0 < T <∞.
Then there exist a smooth real function u′0 on M and a Gauduchon metric ω̂N on N such
that

ω0 − T Ric(ω0) +
√
−1∂∂̄u′0 = π∗ω̂N .

From the result of Theorem 1.3.1, we can show that the convergence in the Gromov-
Hausdorff sense holds without the cohomology condition (†):

Theorem 1.3.2. ([35, Theorem 1.2])Let M be a non-Kähler compact complex surface
and π : M → N be a blow-down map of finitely many disjoint (−1)-curves on M onto a
complex surface N . Let ω0 be a Gauduchon metric on M . We assume that the Chern-Ricci
flow ω(t) starting at ω0 is non-collapsing at a singular time T < ∞. Then there exists
a distance function dT on N such that (N, dT ) is a compact metric space and (M,dω(t))
converges in the Gromov-Hausdorff sense to (N, dT ) as t → T−, where dω(t) are distance
functions induced from the metrics ω(t).

Under the assumption that the theorem above holds, we will prove the solution of the
Chern-Ricci flow peforms a canonical surgical contraction (Definition 1.2.5) in Chapter 4.

Theorem 1.3.3. ([36, Theorem 1.1])Let M be a non-Kähler compact complex surface
and π : M → N be a blow-down map of the (−1)-curve E on M to the point y0 ∈ N ,
where N is a compact complex surface. Let ω0 be a Gauduchon metric on M . Suppose
that we have ∫

M

(ω0 − T Ric(ω0))2 > 0, and

∫
D

(ω0 − T Ric(ω0)) > 0

for all irreducible curves D on M with D2 = (D ·D) < 0 different from E, where T is a
finite singular time of the Chern-Ricci flow ω(t) starting at ω0 for t ∈ [0, T ), 0 < T <∞.
Then the Chern-Ricci flow ω(t) performs a canonical surgical contraction with respect to
the data E, N and π.

In Chapter 5, we will observe Cα-convergence of the solution of the normalized Chern-
Ricci flow starting at the initial metric in the ∂∂̄-class of the Vaisman metric ωV [74] on
a minimal non-Kähler properly elliptic surface.
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Theorem 1.3.4. ([37, Theorem 1.1])Let M be a minimal non-Kähler properly elliptic
surface and let ω(t) be the solution of the normalized Chern-Ricci flow starting at a
Hermitian metric of the form

ω0 = ωV +
√
−1∂∂̄ψ > 0,

where ωV is the Vaisman metric and ψ is a smooth function on M . Then the metrics ω(t)
are uniformly bounded in the C1-topology, and as t→∞,

ω(t)→ π∗ωS,

in the Cα-topology, for every 0 < α < 1, where ωS is the orbifold Kähler-Einstein metric
on S with Ric(ωS) = −ωS away from finitely many orbifold points induced by the form√
−1

2y2
dz ∧ dz̄ on C∗ ×H, H is the upper half palne in C, z ∈ H is the variable, y = Imz.
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Chapter 2

Background

2.1 Notations

Let M be a differentiable manifold and g be a Riemannian metric on M . Let J ∈
Γ(End(TM)) be the endomorphism J satisfies J2 = −idTM , where Γ(End(TM)) is the
space of all sections of End(TM) = T ∗M ⊗ TM . Then J is called the almost complex
structure and (M,J) is called an almost complex manifold. Additionally, if J is integrable,
J is called the complex structure and then (M,J) is a complex manifold. That the almost
complex structure J is integrable is equivalent to that the Nijenhuis tensor ≡ 0.

Let (M,J) be an almost complex manifold. A Riemannian metric g on M is called
J-invariant if J is compatible with g, i.e., for any X, Y ∈ Γ(TM),

g(X, Y ) = g(JX, JY ).

The fundamental 2-form ω associated to a J-invariant Riemannian metric g is determined
by, for X, Y ∈ Γ(TM),

ω(X, Y ) = g(JX, Y ).

Indeed we have, for any X, Y ∈ Γ(TM),

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X, Y )

and ω ∈ Γ(
∧2 T ∗M). A J-invariant Riemannian metric g on a complex manifold (M,J)

is called Kähler if the fundamental 2-form ω associated to g is d-closed and then ω is
called a Kähler form.

We write TRM for the real tangent space of M . Then its complexifieid tangent space
is given by

TCM = TRM ⊗R C.
By extending J linearly in C and g, ω bilinearly in C to TCM , they are also defined on
TCM and we observe that the complexified tangent space TCM can be decomposed as

TCM = T ′M ⊕ T ′′M,

where T ′M and T ′′M are the eigenspaces of J corresponding to eigenvalues
√
−1 and

−
√
−1 respectively. Extending J to forms, we can uniquely decompose m-forms into

(p, q)-forms for each p, q with p+ q = m.

18



Now, let (M,J) be a complex manifold of dimension n and let g be a J-invariant
Riemannian metric on M . Then we define a Hermitian metric h by

h(X, Y ) = g(X, Y )

for X, Y ∈ Γ(TCM). The decomposition TCM = T ′M ⊕ T ′′M is orthogonal with respect
to h. Indeed, for X ∈ Γ(T ′M), Y ∈ Γ(T ′′M), we have Y ∈ Γ(T ′M) and

h(X, Y ) = g(X, Y ) = g(JX, JY ) = −h(X, Y ).

It follows that we have h(X, Y ) = 0 for any X ∈ Γ(T ′M), Y ∈ Γ(T ′′M).
Let ∇ be the Chern connection of h, which satisfies for any X, Y, Z ∈ Γ(T ′M),

∇X(h(Y, Z)) = h(∇XY, Z) + h(Y,∇XZ).

The torsion T and curvature R of ∇ are defined by, for X, Y, Z ∈ Γ(TCM),

T (X, Y ) = ∇XY −∇YX − [X, Y ], R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Since ∇J = 0, we obtain for X, Y, Z,W ∈ Γ(TCM),

T (JX, JY ) = JT (X, Y ), R(X, Y )JZ = JR(X, Y )Z

and it follows that

g(T (JX, JY ), JZ) = g(T (X, Y ), Z) =: T (X, Y, Z)

and
g(R(X, Y )JZ, JW ) = g(R(X, Y )Z,W ) =: R(X, Y, Z,W ).

Hence we have R(X, Y, Z,W ) = 0 unless Z,W are of different type. In local coordinates
(z1, . . . , zn), we have

g(
∂

∂zi
,
∂

∂zj
) = 0, g(

∂

∂z̄i
,
∂

∂z̄j
) = 0

since we have

J
( ∂

∂zi

)
=
√
−1

∂

∂zi
, J

( ∂

∂z̄i

)
= −
√
−1

∂

∂z̄i

and we write

gij̄ = g
( ∂

∂zi
,
∂

∂z̄j

)
,

(gij̄)
−1 = (gij̄), which denotes its inverse matrix, i.e., we have gij̄gkj̄ = δik. The Christoffel

symbols Γkij, torsion tensor T and Chern curvature tensor R of g are defined by

∇ ∂
∂zi

∂

∂zj
= Γkij

∂

∂zk
,

T kij = Γkij − Γkji = gkl̄
(∂gjl̄
∂zi
− ∂gil̄
∂zj

)
,
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Rij̄kl̄ ≡ R
( ∂

∂zi
,
∂

∂z̄j
,
∂

∂zk
,
∂

∂z̄l

)
= −gml̄

∂Γmik
∂z̄j

= − ∂2gkl̄
∂zi∂z̄j

+ gpq̄
∂gkq̄
∂zi

∂gpl̄
∂z̄j

,

Rijkl̄ = gml̄

(∂Γmjk
∂zi
− ∂Γmik

∂zj
+ ΓmiqΓ

q
jk − ΓmjqΓ

q
ik

)
,

Rij̄kl̄ −Rkj̄il̄ = gml̄
∂Tmki
∂z̄j

= gml̄∇j̄Γ
m
ki

and the traces of the curvature tensor

Rkl̄ = gij̄Rij̄kl̄, Ricij̄ = gkl̄Rij̄kl̄ = − ∂2

∂zi∂z̄j
log det gkl̄

are called the first and second Ricci tensors, respectively. The second Ricci tensor Ricij̄
is often called the Chern-Ricci tensor. We also define the scalar curvature

R = gij̄gkl̄Rij̄kl̄.

The covariant derivatives of a = ajdz
j and X = Xj ∂

∂zj
are defined in components as

∇iaj = ∂iaj − Γkijak, ∇iX
j = ∂iX

j + ΓjikX
k.

Then the Chern connection ∇ can be extended naturally to any tensors.
We can choose the following special local coordinates (cf. [29]):

Lemma 2.1.1. Around a point p ∈ M , there exist local coordinates such that, for any
i, j,

gij̄(p) = δij,
∂gīi
∂zj

(p) = 0.

Lemma 2.1.2. Around a point p ∈ M , there exist local coordinates such that, for any
i, j, k,

gij̄(p) = δij,
∂gij̄
∂zk

(p) +
∂gkj̄
∂zi

(p) = 0.

Especially we have

T kij(p) = 2
∂gjk̄
∂zi

(p).

Remark 2.1.1. It is impossible to choose local coordinates satisfying both in Lemma 2.1
and Lemma 2.2 simultaneously in general.

Let Λp,q denote differential (p, q)-forms on M . The exterior differential d has a decom-
position d = ∂ + ∂̄ where

∂ : Λp,q → Λp+1,q, ∂̄ : Λp,q → Λp,q+1.

Note that we have ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0 and by the Stokes theorem,∫
M

∂α =

∫
∂M

α

for any α ∈ Λn−1,n.
In local coordinates, ∂∂̄u for a function u ∈ C2(M) is locally given by

∂∂̄u =
∂2u

∂zi∂z̄j
dzi ∧ dz̄j.
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2.2 Holomorphic line bundles and divisors

Let X be a compact complex manifold. A holomorphic line bundle L over X is given by an
open cover {Uα} of X with collection of transition functions {tαβ} which are holomorphic
maps tαβ : Uα ∩ Uβ → C∗ satisfying

(T ) tαβtβα = 1, tαβtβγ = tαγ.

If there exist holomorphic functions fα : Uα → C∗ such that t′αβ = fα
fβ
tαβ, we identify

collections of transition functions {tαβ} and {t′αβ}. Given two holomorphic line bundles
L and L′ with transition functions {tαβ} and {t′αβ} respectively, we write LL′ for the
new holomorphic line bundle with transition functions {tαβt′αβ}. We define holomorphic
line bundles Lm = mL by {tmαβ} for m ∈ Z. Let L be a holomorphic line bundle over
X. A holomorphic section s of L is a collection {sα} of holomorphic maps sα : Uα → C
satisfying the transformation rule

sα = tαβsβ on Uα ∩ Uβ.

A Hermitian metric h on L is a collection {hα} of smooth positive functions hα : Uα → R
satisfying the transformation rule

hα = tβαt̄βαhβ on Uα ∩ Uβ.

We define the curvature Rh of a Hermitian metric h on L to be the closed (1, 1)-form on
X locally given by

Rh = −
√
−1∂∂̄ log hα

on Uα, which is well-defined. Note that we omit a factor of 2π. We also define the first
Chern class c1(L) of L to be the cohomology class c1(L) = [Rh]. Since any two Hermitian
metrics h, h′ on L are related by h′ = e−ϕh for some smooth function ϕ, we have

Rh′ = Rh +
√
−1∂∂̄ϕ

and hence c1(L) is well-defined. If h is a Hermitian metric on L, then hm is a Hermitian
metric on Lm and we have c1(Lm) = mc1(L).

We say that L is positive if c1(L) > 0. We write H0(X,L) for the vector space of
holomorphic sections of L, whose dimension is finite if it is not empty. We say that L is
very ample if for any ordered basis (s0, . . . , sN) of H0(X,L), the map ι : X → PN given
by

ι(x) = [s0(x), . . . , sN(x)],

well-defined and an embedding. We say that L is ample if there exists a positive integer
m0 such that Lm is very ample for all integer m ≥ m0. The Kodaira Embedding Theorem
states as follows:

Theorem 2.2.1. Let X be a compact complex manifold and let L be a positive holomor-
phic line bundle over X. Then there exists a positive integer m0 such that for all integer
m ≥ m0, Lm is very ample.
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A holomorphic line bundle L is called globally generated if for each x ∈ X, there exists
a holomorphic section s of L such that s(x) 6= 0. We say that L is semi-ample if there
exists a positive integer m0 such that Lm0 is globally generated.

A subset D ⊂ X is called an analytic hypersurface if D is locally given as the zero
set {f = 0} of a locally defined one holomorphic function vanishing of order 1. Denote
Dreg the set of points p ∈ D for which D is a submanifold of X near p. An analytic
hypersurface D is called irreducible if Dreg is connected. A divisor D on X is a formal
finite sum

∑
i diDi where di ∈ Z and each Di is an irreducible analytic hypersurface of

X. Suppose that a given divisor D =
∑k

i=1 diDi, each irreducible analytic hypersurface
Di ∩ Uα is given by a holomorphic function fiα = 0 vanishing on D to order 1 over a
sufficiently small open cover Uα. The support of D Supp(D) is the union of the Di for
each i with di 6= 0. Then the divisor D is given by a meromorphic function

fα =
k∏
i=1

fdiiα in Uα.

Define transition functions tαβ = fα
fβ

on Uα ∩ Uβ, which are holomorphic functions and

nonvanishing on Uα ∩ Uβ and satisfy the conditions (T ). We write [D] for the associated
holomorphic line bundle, which is independent of choice of local defining functions. Sup-
pose that f ′iα is another locally defined holomorphic function which gives Di ∩ Uα. Then
there exists a holomorphic function hiα which does not have any zero in Uα such that
f ′iα = fiαhiα. By defining

f ′α =
k∏
i=1

f ′iα, hα =
k∏
i=1

hiα in Uα,

we have f ′α = fαhα and the transition function t′αβ = f ′α
f ′β

on Uα ∩ Uβ is related to tαβ

by t′αβ = hαtαβh
−1
β , which means that two transition functions {tαβ}, {t′αβ} define an

equivalent holomorphic line bundle, so the associated holomorphic line bundle [D] is well-
defined independent of choice of local defining functions.

Let f be a meromorphic function on a complex manifold X. Write Zero(f) as the set
of zeros of f , where zeros of f means zeros of g locally given by f = g

h
for relatively prime

holomorphic functions g, h. And we define Pole(f) = Zero( 1
f
). For an irreducible analytic

hypersurface D in a complex manifold X, we choose local coordinate chart (U, (z1, . . . , zn))
around a non-singular point p ∈ D with D∩U = {zn = 0}. In the case of D∩U ⊂ Zero(f),
we define an integer νD(f) by choosing maximum of a positive integer m satisfying

g(z1, . . . , zn) = zmn g
′(z1, . . . , zn),

where g is the holomorphic function appeared in f = g
h

above and g′ is another holo-
morphic function. Here, note that the definition of νD(f) is independent of choice of a
point p since νD(f) is constant in a neighborhood of p and the set of non-singular points
is connected. In the case of D ∩ U ⊂ Pole(f), we define νD(f) = −νD( 1

f
).

Define the following two effective divisors

(f)0 =
∑

D⊂Zero(f)

νD(f)D, (f)∞ =
∑

D⊂Pole(f)

(−νD(f))D,
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and then we define a principal divisor (f) of f by

(f) = (f)0 − (f)∞.

A divisor D is called a Cartier divisor if there exists for any x ∈ Supp(D), a open
neighborhood U of x and a meromorphic function f such that

D|U = (f).

Two divisors D,D′ ∈ Div(X), Div(X) is an Abelian group called a divisor group, are
called linearly equivalent if there exists a meromorphic function f 6= 0 such that

D −D′ = (f).

The set of all principal divisors is subgroup of Div(X) and we write it Divl(X). All
equivalence classes of holomorphic line bundles on a complex manifold X is an Abelian
group with tensor product as an operation. We write it Pic(X) and call a Picard group.
By applying Theorem 2.1.1, we have the following result:

Theorem 2.2.2. Let X be a compact complex manifold. If there exists a positive holo-
morphic line bundle L over X, we have the isomorphism

Div(X)/Divl(X)
∼=→ Pic(X).

Let C be a curve on X, which means that it is an analytic subvariety of dimension 1.
If C is smooth, then we define the intersection number

(L · C) =

∫
C

Rh,

where h is any Hermitian metric on L. By Stokes’ Theorem, (L · C) is independent of
choice of h. Since Stokes’ Theorem still holds for analytic subvarieties (cf. [28, p.33]),
even if C is not smooth, we integrate over Creg and we can define (L ·C) as well. We say
that a holomorphic line bundle L is nef if (L ·C) ≥ 0 for all curves C on X. For a divisor
D, we define the intersection number by (D · C) = ([D] · C).
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2.3 Minimal non-Kähler compact complex surfaces

The Kodaira-Enriques classification (cf. [3, p.244]) tells us that minimal non-Kähler
compact complex surfaces fall into one of the followings: When the Kodaira dimension
Kod = 1, they are minimal non-Kähler properly elliptic surfaces. If the Kodaira dimension
Kod = 0, then they are primary or secondary Kodaira surfaces. Compact complex surfaces
with Kod = −∞ and the first Betti number b1 = 1, they are called class V II surfces.
Minimal surfaces in this class are called class V II0 surfaces. In the case of Kod = −∞,
then they are of class V II0. Class V II0 surfaces are classified into three cases by the
second Betti number b2 as follows.

(1) b2 = 0 : Hopf surfaces or Inoue surfaces (cf. [10], [32], [62]).

(2) b2 = 1 : These are classified into Kato surfaces (cf. [63]).

(3) b2 > 1 : Still unclassified (cf. [20]).

A properly elliptic surface is an elliptic surface with its Kodaira dimension 1. A simple
example is the product of two curves, one elliptic and the other of genus at least 2. A
primary Kodaira surface is a surface with b1 = 3, admitting a holomorphic locally trivial
fibration over an elliptic curve with an elliptic curve as typical fibre. A secondary Kodaira
surface is a surface admitting a primary Kodaira surface as unramified covering. They
are elliptic fibre spaces over rational curves with b1 = 1.

Speaking of the classification of class V II0 surfaces, the only compact complex surfaces
known with Kod = −∞, b1 = 1 were the Hopf surface for ages. In 1972, Inoue introduced
the example which now called Inoue surfaces [32], whose second Betti number vanish. In
1976, Bogomolov claimed that class V II0 surfaces with b2 = 0 are completely classified
under the additional condition that they do not contain curves [10]. After that, finally
Teleman completed the classification in the case b2 = 0 [62]. In 1974, Inoue constructed
examples with b2 > 0 in [33], which are called the Inoue-Hirzebruch surfaces.

Hopf surfaces are defined by H = C2\{0}/ ∼, where (z1, z2) ∼ (αz1, βz2) for α, β ∈ C∗
with |α| = |β| 6= 1. The Hopf surface H is diffeomorphic to S1×S3. The diffeomorphism

H
∼=→ S1 × S3 is realized by sending a representative z = (z1, z2) ∈ C2 \ {0} to (r, z

r
),

where r =
√
|z1|2 + |z2|2 and note that S1 ∼= R+/(r ∼ |α|r).

Inoue surfaces were firstly introduced by Inoue in [32]. They form three families, SM ,
S+
N,p,q,r;t and S−N,p,q,r. First of all, we construct the Inoue surface SM . Let M ∈ SL(3,Z) be

a matrix with one real eigenvalue λ > 1 and two complex conjugate eigenvalues µ 6= µ̄. Let
(l1, l2, l3) be a real eigenvector for M with eigenvalue λ and (m1,m2,m3) be an eigenvector
with eigenvalue µ. Let GM be the group of automorphisms of C × H, where H is the
upper half plane in C generated by

f0(z1, z2) = (µz1, λz2), fi(z1, z2) = (z1 +mi, z2 + li)

for (z1, z2) ∈ C ×H, 1 ≤ i ≤ 3. We define SM to be the quatient surafce (C ×H)/GM ,
which is a T 3-torus bundle over a circle. We consider the subgroup G̃M ⊂ GM generated
by f1, f2 and f3, which is isomorphic to Z3 and acts on C×H properly discontinuous and
freely, with quotient the product T 3×R>0. The projection π : T 3×R>0 → R>0 is induced
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by (z1, z2) 7→ Imz2 for (z1, z2) ∈ C×H. Since f0 descends to a map T 3×R>0 → T 3×R>0,
we obtain that

SM = (T 3 × R>0)/〈f0〉,

and since α ∈ R>1, f0 maps Ty = π−1(y) to Tαy = π−1(αy). Especially, we have a
diffeomorphism F0 : T1 → Tα induced by f0. Then we have that SM is diffeomorphic to
the quotient space (T 3 × [1, α])/ ∼, where (p, 1) ∼ (F0(p), α).

We next construct S+
N,p,q,r;t. Let N = (nij) ∈ SL(2,Z) with two real eigenvalues α > 1

and 1
α

. Let (a1, a2) and (b1, b2) be two real eigenvectors for N with eigenvalues α and 1
α

,
respectively. Fix integers p, q, r ∈ Z with r 6= 0 and a complex number t ∈ C. Define

ei :=
1

2
ni1(ni1 − 1)a1b1 +

1

2
ni2(ni2 − 1)a2b2 + ni1ni2b1a2

for i = 1, 2. Using N , ai, bi, p, q, r, one gets two real numbers (c1, c2) as solutions of the
linear equation

(c1, c2) = (c1, c2) ·N t + (e1, e2) +
b1a2 − b2a1

r
(p, q).

Let G+
N be the group of automorphism of C×H generated by

f0(z1, z2) = (z1 + t, αz2), fi(z1, z2) = (z1 + biz2 + ci, z2 + ai)

for i = 1, 2 and

f3(z1, z2) = (z1 +
b1a2 − b2a1

r
, z2)

for (z1, z2) ∈ C×H. We define S+
N,p,q,r;t to be the quatient surface (C×H)/G+

N , which is
diffeomorphic to a bundle over a circle with fiber a compact 3-manifold X. We consider
the subgroup G̃+

N ⊂ G+
N generated by f1, f2 and f3. Write zi = xi +

√
−1yi for i = 1, 2.

For fixed y2 = Imz2, the group G̃+
N acts on {(x2, y2, z1)|x2 ∈ R, z1 ∈ C} ∼= R3 properly

discontinuous and freely, with quotient a compact 3-manifold Xy2 . Compact 3-manifolds
Xy for different values of y are all diffeomorphic to a fixed compact 3-manifold X. We
may consider that the group G̃+

N acts on C × H with the quotient diffeomorphic to the
product X × R>0 with the projection π : X × R>0 → R>0 induced by (z1, z2) 7→ y2 and
with Xy2 = π−1(y2). Since f0 descends to a map X × R>0 → X × R>0, we have that

S+
N,p,q,r;t = (X × R>0)/〈f0〉.

Since α ∈ R>1, f0 maps X1 to Xα and then induces a diffeomorphism F0 of X such that
S+
N,p,q,r;t is diffeomorphic to the quotient space (X × [1, α])/ ∼, where (p, 1) ∼ (F0(p), α).

We finally construct S−N,p,q,r. Let N = (nij) ∈ GL(2,Z) with detN = −1 and with

two real eigenvalues α > 1 and − 1
α

. Let (a1, a2) and (b1, b2) be two real eigenvectors for
N with eigenvalues α and − 1

α
, respectively. Fix integers p, q, r ∈ Z with r 6= 0. One gets

two real numbers (c1, c2) as solutions of the following linear equation

−(c1, c2) = (c1, c2) ·N t + (e1, e2) +
b1a2 − b2a1

r
(p, q),
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where ei for each i = 1, 2 is defined as in the case S+
N,p,q,r;t. Let G−N be the group of

automorphism of C×H generated by

f0(z1, z2) = (−z1, αz2), fi(z1, z2) = (z1 + biz2 + ci, z2 + ai)

for i = 1, 2 and

f3(z1, z2) = (z1 +
b1a2 − b2a1

r
, z2)

for (z1, z2) ∈ C×H. We define S−N,p,q,r to be the quatient surface (C×H)/G−N . Note that

every surface S−N,p,q,r has as an unramified double cover an Inoue surface S+
N2,p′,q′,r;0 for

suitable integers p′, q′. In fact, we have the involution of S+
N2,p′,q′,r;0: ι(z1, z2) = (−z1, αz2)

satisfies ι2 = Id and
S−N,p,q,r = S+

N2,p′,q′,r;0/ι.

A Kato surface is a minimal compact complex surface S with b2(S) > 0 containing a
global spherical shell. Kato showed that Kato surfaces have small analytic deformations
that the blow-ups of primary Hopf surfaces at a finite number of points. Note that
a compact complex surface S is said to be a primary Hopf surface if and only if its
fundamental group π1(S) ∼= Z and b2(S) = 0 (cf. [3, (18.4) Theorem.]). In particular,
they have an infinite cyclic fundamental group, and are non-Kähler [34]. Note that they
are not always a modification of a Hopf surface. Indeed, none of compact complex sufaces
constructed by Inoue in [33], which are class V II0 surfaces with b2 > 0 containing global
spherical shells is a modification of a Hopf surface. Cosequently, we have that all compact
complex surfaces constructed by Inoue in [33] are deformations of modification of primary
Hopf surfaces. Examples of Kato surfaces include Inoue-Hirzebruch surfaces and Enoki
surfaces. Kato surfaces always admit exactly b2-rational curves.

A spherical shell in a compact complex surface S is an open subset V ⊂ S biholomor-
phic to a neighborhood U of 3-sphere S3 ⊂ C2. A spherical shell V in S is said to be global
if S \ V is connected. Otherwise, V is said to be local. Any complex manifolds contain
local spherical shells. But global spherical shells can be contained in only special types
of manifolds. A class V II0 surface S with b2(S) > 0 has at most b2(S)-rational curves.
All compact complex surface containing a global spherical shell may be constructed by a
procedure due to Kato [34]. As a result, if a class V II0 surface S with b2(S) > 0 admits
a global spherical shell exactly b2(S)-rational curves. In the classification of class V II0

surfaces with b2 = 1 above (2), they are classified into Kato surfaces since the global
spherical shell conjecture was proven by Teleman in the case b2 = 1 [63, Corollary 1.3].
The global spherical shell conjecture claims that all class V II0 surfaces with b2 > 0 have
a global spherical shell. Kato surfaces are reasonably well understood, therefore a proof
of this conjecture lead to a classification of the class V II0 surfaces.

Since all known examples of class V II surfaces with b2 > 0 have global spherical shells,
Kato conjectured that any class V II0 surface with b2 > 0 which has b2-rational curves,
contains a global spherical shell. By Doloussky-Oeljeklaus-Toma, the proof of Kato’s
conjecture was given in [20]. It follows that it is classified into Kato surfaces. Hence the
classification problem for class V II0 surfaces reduces to the existence of sufficiently many
rational curves.
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2.4 The Chern-Ricci flow

Let M be a compact complex surface. We introduce the definition of the Gauduchon
metric in the following.

Definition 2.4.1. A metric g0 is called a Gauduchon metric on a compact complex
manifold of complex dimension n if g0 is a Hermitian metric whose associated (1, 1)-form
ω0 =

√
−1(g0)ij̄dzi ∧ dz̄j satisfies

∂∂̄(ωn−1
0 ) = 0.

We will also refer to the associated (1, 1)-form ω0 as a Gauduchon metric. The following
states that there are lot of Gauduchon metrics on any compact complex manifold X of
complex dimension n.

Proposition 2.4.1. (cf. [24], [62, Proposition 1.1])Any Hermitian metric on X is confor-
mally equivalent to a Gauduchon metric. If n ≥ 2, then this Gauduchon metric is unique
up to a positive factor.

Now let ω0 be a Gauduchon metric on M . The Chern-Ricci flow ω(t) starting at ω0 is
the flow of Gauduchon metrics 

∂
∂t
ω(t) = −Ric(ω(t)),

ω(t)|t=0 = ω0,

for t ∈ [0, T ) where T = T (ω0) is a finite singular time with 0 < T ≤ ∞ stated by

T = sup{t ≥ 0|∃ψ ∈ C∞(M,R) with ω0 − tRic(ω0) +
√
−1∂∂̄ψ > 0}

and Ric(ω0) is the Chern-Ricci curvature of ω0, given locally by

Ric(ω0) = −
√
−1∂∂̄ logω2

0,

which determines the Bott-Chern cohomology class denoted by cBC1 (M) ∈ H1,1
BC(M,R),

where

H1,1
BC(M,R) =

{d-closed real (1, 1)-forms}
{
√
−1∂∂̄ψ|ψ ∈ C∞(M,R)}

.

. We call the cohomology class cBC1 (M) the first Bott-Chern class of M . It is independent
of the choice of Hermitian metrics. Here we have omitted a factor of 2π.

Note that a compact complex manifold is said be in Fujiki’s class C if it is bimero-
morphic to a Kähler manifold. Class C includes all Moishezon manifolds since they are
bimeromorphic to projective manifolds. If a compact complex manifold M is in C, then
the first Bott-Chern class cBC1 (M) = 0 if and only if the first Chern class c1(M) = 0 in
H2(M,R) (cf. [66]).

According to [72, Theorem 1.2], there exists a unique maximal solution to the Chern-
Ricci flow ω(t) for t ∈ [0, T ). Note that if ω0 is Kähler, this flow is exactly a Kähler Ricci
flow. Since the Kähler-Ricci flow preserves the Kähler condition, a solution of the Kähler
Ricci flow starting at a Kähler metric is a family of Kähler metrics. If the volume of M
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with respect to ω(t) tends to zero as t → T , we say that the Chern-Ricci flow ω(t) is
collapsing at T . Otherwise, we say that the Chern-Ricci flow ω(t) is non-collapsing at
T . And [72, Theorem 1.3] tells us that on compact complex surface M equipped with a
Gauduchon metric ω0, T can be rewritten as

T = sup
{
T0 ≥ 0

∣∣∣ ∀t ∈ [0, T0],

∫
M

(ω0 − tRic(ω0))2 > 0,

∫
D

(ω0 − tRic(ω0)) > 0,

for all irreducible effective divisors D with D2 < 0
}
.

Notice that for t ∈ [0, T ), the quantity
∫
M

(ω0 − tRic(ω0))2 =
∫
M
ω(t)2 is the volume of

M with respect to ω(t) and
∫
D

(ω0 − tRic(ω0)) =
∫
D
ω(t) is the volume of D. Note that

since a curve C is an analytic subset with its codimension is 1, C is given locally by the
set of zero points of one holomorphic function. So there is a natural 1 : 1 correspondence
between curves and effective divisors and which tells us that saying that ”irreducible
effective divisor D with D2 < 0” is the same as that ”irreducible curves C with C2 < 0”.

The behavior of the Chern-Ricci flow on Hopf surfaces, Inoue surfaces and properly
elliptic surfaces that Weinkove and Tosatti found is similar to the behavior of the Ricci
flow on geometric 3-manifolds. We introduce thier discovery in the following:

Theorem 2.4.1. ([70, Theorem 1.6])We have

(1) Let H be the Hopf surface. Then there exists an explicit solution ω(t) of the Chern-
Ricci flow on H for t ∈ [0, 1

2
) with

(H,ω(t))
GH→ (S1, d), as t→ 1

2
,

where d is the standard distance function on the unit circle S1 ⊂ R.

(2) Let S be any Inoue surface. Then there exists an explicit solution ω(t) of the
Chern-Ricci flow on S for t ∈ [0,∞) with(

S,
ω(t)

t

)
GH→ (S1, d), as t→∞,

where d is the standard distance function on the unit circle S1 ⊂ R.

(3) Let π : S → C be any non-Kähler minimal properly elliptic surface. Then there
exists an explicit solution ω(t) of the Chern-Ricci flow on S for t ∈ [0,∞) with(

S,
ω(t)

t

)
GH→ (C, dKE), as t→∞,

where dKE is the distance function on the Riemann surface C induced by an orbifold
Kähler-Einstein metric ωKE on C which satisfies Ric(ωKE) = −ωKE away from the
images of the multiple fibers of π. We also have that π∗ωKE is a smooth form on S
and ω(t)

t
→ π∗ωKE smoothly on S.
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Remark that it is not difficult to write down explicit solutions of the Chern-Ricci
flow on also the Kodaira surfaces. In fact, there are explicit Chern-Ricci flat Gauduchon
metrics on all these manifolds [74, (1.3)] and these give trivial solutions to the Chern-Ricci
flow. Generally, Gill showed that on a compact Hermitian manifold M , whenever the first
Bott-Chern class cBC1 (M) = 0 (if M is in Fujiki’s class C, equivalently c1(M) = 0 in
H2(M,R)), the Chern-Ricci flow converges to a Chern-Ricci flat metric in any dimension
(cf. [26]).

2.5 Pluripotential theory

Recent years, by mainly Kolodziej, the Pluripotential theory has been developed on Her-
mitian manifolds. The important tool in this theory, so called modified comparison principle,
is a generalized version of the comparison principle of Bedford and Taylor. Let (X,ω) be

a compact Hermitian manifold of complex dimension n. We set dc =
√
−1

2π
(∂̄ − ∂), ddc =

√
−1
π
∂∂̄. We consider the ”curvature” constant of the metric ω denoted by B = B(ω) > 0

and it satisfies

−Bω2 ≤ 2nddcω ≤ Bω2, = Bω3 ≤ 4n2dω ∧ dcω ≤ Bω3.

Definition 2.5.1. A function u : X → [−∞,+∞) is ω-plurisubharmonic (ω-psh for
short) if it is upper semi-continuous, u ∈ L1(X,ωn) and ω + ddcu ≥ 0 on X as a current.
The set of all ω-psh functions on X is denoted by PSH(ω).

With using partition of unity, we can define the Monge-Ampère operators ωnu for
u ∈ PSH(ω) ∩ L∞(X) by applying the local argument in Cn. We start with a local
argument in a open set Ω ⊂ Cn.

Definition 2.5.2. Let ω be a Hermitian metric in Cn and u : Ω→ [−∞,+∞) be a upper
semi-continuous function. Then u is called ω-psh if u ∈ L1

loc(Ω, ω
n) and ω + ddcu ≥ 0 in

Ω as a current. We denote the set of these functions on Ω by PSH(Ω, ω).

According to Bedford and Taylor, we can define ωv1 ∧ · · · ∧ ωvk for v1, . . . , vk ∈
PSH(Ω, ω) ∩ L∞(Ω), 1 ≤ k ≤ n − 1. This is shown by proceeding induction over k.
When k = 1, the definition is given by classical distribution theory. Suppose that for
1 ≤ k ≤ n − 1, the current T := ωv1 ∧ · · · ∧ ωvk is well defined. We fix a small ball
B ⊂ Ω and a strictly psh function ρ such that ddcρ ≥ 2ω in B. Set γ := ddcρ − ω and
ul := ρ + vl ∈ PSH(B) ∩ L∞(B), then T can be written in B as a linear combination of
positive currents

(♠) ddcuj1 ∧ · · · ∧ ddcujl ∧ γk−l,

for 1 ≤ j1 < · · · < jl ≤ k, 1 ≤ l ≤ k. By Demailly’s regularization theorem for quasi-psh
functions (cf. [11, Theorem 2.3), there are sequences of smooth ω-psh function {vjl }∞j=1

which decrease to vl for 1 ≤ l ≤ k. Since T is a linear combination of positive currents of
the form (♠), we obtain from the result of Bedford and Taylor,

T = lim
j→∞

Tj = lim
j→∞

ωvj1
∧ · · · ∧ ωvjk weakly.
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It follows that T is a positive current and we obtain the following well defined formulas;

dT =
k∑
l=1

dω ∧ ωv1 ∧ · · · ∧ ω̂vl ∧ · · · ∧ ωvk ;

ddcT = 2
k∑

1≤l≤m≤k

dω ∧ dcω ∧ ωv1 ∧ · · · ∧ ω̂vl ∧ · · · ∧ ω̂vm ∧ · · · ∧ ωvk

+
k∑
l=1

ddcω ∧ ωv1 ∧ ωv1 ∧ · · · ∧ ω̂vl ∧ · · · ∧ ωvk ,

where ω̂vl implies that the term does not appear in the wedge product. So now we can
define

ddcu ∧ T := ddc(uT )− du ∧ dcT + dcu ∧ dT − uddcT
for u ∈ PSH(Ω, ω) ∩ L∞(Ω). Let {uj}∞j=1 be a sequence of smooth ω-psh functions
decreasing to u. Then we have ddcuj ∧ Tj converges weakly to ddcu ∧ T as j → ∞.
For any test form ϕ of bidegree (n− k − 1, n− k − 1), we have

du ∧ dcT ∧ ϕ = −dcu ∧ dT ∧ ϕ.

Hence
ωu ∧ T := ω ∧ T + ddc(uT )− 2du ∧ dcT − uddcT

is a positive current of bidegree (k + 1, k + 1). When v1 = · · · = vn = v ∈ PSH(Ω, ω) ∩
L∞(Ω), we obtain the definition of the Monge-Ampère operator ωv := ωv ∧ · · · ∧ωv. Then
the Bedford-Taylor convergence theorem on Ω can be stated as follows:

Theorem 2.5.1. (Bedford-Taylor [5])Let v1, . . . , vk ∈ PSH(Ω, ω) ∩ L∞(Ω), 1 ≤ k ≤ n.
Suppose that the sequences of bounded ω-psh functions {vj1}∞j=1, . . . , {v

j
k}∞j=1 decrease (or

uniformly converge) to v1, . . . , vk respectively. Then

lim
j→∞

ωvj1
∧ · · · ∧ ωvjk = ωv1 ∧ · · · ∧ ωvk weakly.

In particular, if {uj}∞j=1 ⊂ PSH(Ω, ω) ∩ L∞(Ω) decreases (or uniformly converges) to
u ∈ PSH(Ω, ω) ∩ L∞(Ω), then

lim
j→∞

ωnuj = ωnu weakly.

The same statement holds for functions in PSH(ω)∩L∞(X) on a compact Hermitian
manifolds with arbitrary fixed Hermitian metric ω. Note that u ∈ PSH(ω) if and only if
u ∈ PSH(Ω, ω) for any coordinate chart Ω ⊂⊂ X.

We introduce the L1-Chern-Levine-Nirenberg (CLN) inequality:

Proposition 2.5.1. (L1-CLN inequality (cf. [17, Proposition 3.11])) Let K,L ⊂ X be
compact subsets with L ⊂ K◦. For any plurisubharmonic functions V, u1, . . . , uq on X
such that u1, . . . , uq are locally bounded, there is an inequality

||V ddcu1 ∧ · · · ∧ ddcuq||L ≤ CK,L||V ||L1(K)||u1||L∞(K) · · · ||uq||L∞(K).
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We notice that all functions u in PSH(ω) normalized by the condition supX u = 0 are
uniformly integrable.

Proposition 2.5.2. ([19, Proposition 2.1])Let u ∈ PSH(ω) be a function with supX u = 0.
Then there exists a constant C dependent only on X, ω such that∫

X

|u|ωn ≤ C.

We need the following two lemmata, which can be given by the proof in [2, Theorem
3.1] and the regularization result in [6], for proving the modified comparison principle:

Lemma 2.5.1. For T := ωv1 ∧ · · · ∧ ωvn−1 , where v1 . . . , vn−1 ∈ PSH(ω)∩L∞(X) and for
ϕ, ψ ∈ PSH(ω) ∩ L∞(X) we have∫

{ϕ<ψ}
ddcψ ∧ T ≤

∫
{ϕ<ψ}

ddcϕ ∧ T +

∫
{ϕ<ψ}

(ψ − ϕ)ddcT.

The following is a weaker version of the comprison principle.

Lemma 2.5.2. Let ϕ, ψ ∈ PSH(ω)∩L∞(X). Then there exists a constant Cn = C(n) > 0
such that, for B sup{ϕ<ψ}(ψ − ϕ) ≤ 1,

∫
{ϕ<ψ}

ωnψ ≤
∫
{ϕ<ψ}

ωnϕ + CnB sup
{ϕ<ψ}

(ψ − ϕ)
n−1∑
k=0

∫
{ϕ<ψ}

ωkϕ ∧ ωn−k.

Theorem 2.5.2. (Modified comparison principle (cf. [48, Theorem 2.3])) Let (X,ω) be
a compact Hermitian manifold and suppose that ϕ, ψ ∈ PSH(ω)∩L∞(X). Fix 0 < δ < 1
and set m(δ) = infX(ϕ− (1− δ)ψ). Then, for any 0 < s < δ3

16B
, we have∫

{ϕ<(1−δ)ψ+m(δ)+s}
ωn(1−δ)ψ ≤

(
1 +

Cs

δn

)∫
{ϕ<(1−δ)ψ+m(δ)+s}

ωnϕ,

where C is a uniform constant depending only on n, B.

We use the notation Volω(E) :=
∫
E
ωn for any Borel set E ⊂ X, and we write Lp(ωn)

for Lp(X,ωn). We denote for a Borel set E,

capω(E) := sup
{∫

E

(ω + ddcρ)n : ρ ∈ PSH(ω), 0 ≤ ρ ≤ 1
}
.

From the argument in [41, Lemma 4.], [42, Lemma 4.3], we obtain the following result:

Proposition 2.5.3. ([19, Corollary 2.4])There are a univarsal number 0 < α = α(X,ω)
and a uniform constant 0 < C = C(X,ω) such that for any Borel subset E ⊂ X

Volω(E) ≤ C exp
( −α

cap
1
n
ω (E)

)
.
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Let h : R+ → (0,∞) be an increasing function such that∫ ∞
1

dx

xh(x)
1
n

< +∞.

In particular, limx→∞ h(x) = +∞. We call such a function h admissible. If h is admissible,
then so is Ah for any number A > 0. Define

Fh(x) :=
x

h(x−
1
n )
.

For such Fh, we consider the family of bounded ω-psh functions such that their Monge-
Ampère measures satisfy

(♣)ω

∫
E

ωnϕ ≤ Fh(capω(E)),

for any Borel set E ⊂ X, where ωϕ = ω + ddcϕ. From Proposition 2.4.3, it follows that

Corollary 2.5.1. Let ϕ ∈ PSH(ω) ∩ L∞(X). If ωnϕ = fωn for 0 ≤ f ∈ Lp(ωn), p > 1,

then ωnϕ satisfies (♣)ω for the admissible function hp(x) = C||f ||−1
Lp(ωn) exp(ax) with some

universal number a > 0.

Thanks to the modified comparison principle (Theorem 2.4.2), we can prove the fol-
lowing crucial lemma:

Lemma 2.5.3. ([48, Lemma 5.4])Fix 0 < δ < 1. Let ϕ, ψ ∈ PSH(ω) ∩ L∞(X) be such
that −1 ≤ ψ ≤ 0. Set m(δ) = infX(ϕ−(1−δ)ψ) and U(δ, s) = {ϕ < (1−δ)ψ+m(δ)+s}.
For any 0 < s, t ≤ 1

3
min{δn, δ3

16B
}, one has

(1− δ)ntncapω(U(δ, s)) ≤ (1 + C)

∫
U(δ,s+4(1−δ)t)

ωnϕ.

Remark 2.5.1. By rescalimg t, the statement above can be restated in the following
way: For any 0 < s ≤ 1

3
min{δn, δ3

16B
}, 0 < t ≤ 4

3
(1− δ) min{δn, δ3

16B
}, we have

tncapω(U(δ, s)) ≤ 4nC

∫
U(δ,s+t)

ωnϕ,

where C is a dimensional constant.

Then the next essential statement can be proven with using the result in Remark 2.4.1.

Proposition 2.5.4. ([48, Theorem 5.3])Fix 0 < δ < 1. Let ϕ, ψ ∈ PSH(ω) ∩ L∞(X) be
such that ϕ ≤ 0, and −1 ≤ ψ ≤ 0. Set m(δ) = infX(ϕ− (1− δ)ψ), and

δ0 :=
1

3
min{δn, δ3

16B
, 4(1− δ)δn, 4(1− δ) δ3

16B
}.

Suppose that ωnϕ satisfies (♣) for an admissible function h. Then, for 0 < D < δ0,

D ≤ κ(capω(U(δ,D))),

32



where U(δ,D) = {ϕ < (1− δ)ψ+m(δ) +D}, and the function κ is defined on the interval
(0, capω(X)) by the formula

κ(s
1
n ) := 4Cn

( 1

h(s)
1
n

+

∫ ∞
s

dx

xh(x)
1
n

)
,

with a dimensional constant Cn.

Then we obtain the following a priori estimate.

Corollary 2.5.2. ([48, Corollary 5.6])Suppose that ϕ ∈ PSH(ω) ∩ L∞(X), supX ϕ = 0
satisfies

ωnϕ = fω,

where 0 ≤ f ∈ Lp(ωn), p > 1. Then there exists a constant 0 < H = H(h), depending
only on h, X, and ω such that

−H ≤ ϕ ≤ 0.

We finally obtain the existence of continuous solutions to the complex Monge-Ampère
equation ωnϕ = fωn, where 0 ≤ f ∈ Lp(ωn), p > 1, and understood in the weak sense of
currents.

Theorem 2.5.3. ([48, Theorem 0.1])Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫
X
fωn > 0.

There exist a constant c > 0 and a function PSH(ω) ∩ C0(X) satisfying the equation

ωnu = cfωn,

in the weak sense of currents.

Notice that one can get a weak stability statement from the argument in the proof of
the theorem above:

Corollary 2.5.3. ([48, Corollary 5.10])Let {uj}∞j=1 ⊂ PSH(ω) ∩ C0(X) be such that
supX uj = 0. Suppose that for every j ≥ 1,

ωnuj = fjω
n,

where fj’s are uniformly bounded in Lp(ωn), p > 1. If {uj} is Cauchy in L1(ωn), then it
is Cauchy in PSH(ω) ∩ C0(X).

We can obtain the stability theorem for strictly positive Lp-function f :

Theorem 2.5.4. ([50, Theorem A.])Let 0 ≤ f, g ∈ Lp(ωn), p > 1, be such that
∫
X
fωn >

0,
∫
X
gωn > 0. Consider two continuous ω-psh solutions of the Monge-Ampère equation

ωnu = fωn, ωnv = gωn,

with supX u = supX v = 0. Assume that

f ≥ c0 > 0

for some constant c0 > 0. Fix 0 < α < 1
n+1

. Then, there exists C = C(c0, α, ||f ||Lp , ||g||Lp)
such that

||u− v||L∞ ≤ C||f − g||αLp .
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Then we can develop the statement in Theorem 2.4.3 as follows:

Corollary 2.5.4. ([50, Corollary 3.9])Suppose that 0 < c0 ≤ f ∈ Lp(ωn), p > 1. Then
there is a unique u ∈ PSH(ω) ∩ C0(X), supX u = 0, and unique c > 0 such that

ωnu = cfωn.

At the last of this section, we introduce that in the case of the right hand side of the
Monge-Ampère equation is smooth, Weinkove and Tosatti proved the following theorem:

Theorem 2.5.5. (Weinkove, Tosatti [68, Corollary 1.])Let (X,ω) be a compact Hermitian
manifold of complex dimension n ≥ 2. For every smooth real-valued function F on X,
there exist a unique real number b and a unique real valued function u on X solving

(ω + ddcu)n = eF+bωn, with

ω + ddcu > 0, sup
X
u = 0.

2.6 Orbifolds

An orbifold is a space locally modelled on the quotients of Euclidean space by finite
groups. These local models are glued together by maps compatible with the finite group
actions. Let X be a Hausdorff topological space. For an open set U ⊂ X, we define an
n-dimensional orbifold chart on X (cf. [1], [16]).

Definition 2.6.1. An n-dimensional orbifold chart is a 3-tuple (Ũ ,Γ, π), where

(1) Ũ is a connected open subset of Rn,

(2) Γ is a finite group of homeomorphisms of Ũ ,

(3) π : Ũ → U is a map defined by π = π̄ ◦ p, where p : Ũ → Ũ/Γ is the orbit map and
π̄ : Ũ/Γ→ X is a map that induces a homeomorphism of Ũ/Γ onto an open subset
U ⊂ X.

Define an embedding λ : (Ũ ,Γ1, π1) ↪→ (Ṽ ,Γ2, π2) between such orbifold charts is a
smooth embedding λ : Ũ ↪→ Ṽ with π1 = π2 ◦ λ. Note that given two embeddings of
orbifold charts λ, µ : (Ũ ,Γ1, π1) ↪→ (Ṽ ,Γ2, π2), there exists a unique γ ∈ Γ2 such that
µ = γ · λ. As a result, an embedding of orbifold charts λ : (Ũ ,Γ1, π1) ↪→ (Ṽ ,Γ2, π2)
induces an injective group homomorphism λ : Γ1 ↪→ Γ2.

Soppose that (Ũi,Γi, πi) with πi(Ũi) = Ui for open sets Ui ⊂ X are orbifold charts
on X for i = 1, 2. We say the charts are compatible if given a point x ∈ U1 ∩ U2, there
exist an open neighborhood U3 ⊂ U1 ∩U2 of the point x and an orbifold chart (Ũ3,Γ3, π3)
with π3(Ũ3) = U3 such that there are two embeddings λi : (Ũ3,Γ3, π3) ↪→ (Ũi,Γi, πi) for
i = 1, 2.

Now we define an n-dimensional orbifold atlas U on a Hausdorff topological space X.

Definition 2.6.2. An n-dimensional orbifold atlas onX is a collection U = {(Ũj,Γj, πj)}j∈J
of compatible n-dimensional orbifold chart which cover X.
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Definition 2.6.3. An n-dimensional orbifold Q consists of a paracompact Hausdorff
topological space XQ together with an n-dimensional orbifold atlas of charts UQ.

Every orbifold atlas for X is contained in a unique maximal atlas, and two orbifold
atlases are equivalent if and only if they are contained in the same maximal atlas.

An orbifold atlas U is said to refine another orbifold atlas V if for every orbifold chart
in U there exists an embedding into some orbifold chart of V . Two orbifold atlasses
are said to be equivalent if they have a common refinement. A paracompact Hausdorff
space equipped with an equivalence class [U ] of n-dimensional orbifold atlases is called an
effective orbifold.

Remark that an orbifold is smooth if the finite groups Γ act via diffeomorphisms and
the charts are compatible via diffeomorphisms h.

Example 2.6.1. A manifold X is an orbifold where each Γj is the trivial group, so that
we have that πj : Ũj → Uj is homeomorphic.

Definition 2.6.4. Let Q1 = (XQ1 ,UQ1), Q2 = (XQ2 ,UQ2) be two orbifolds. A map
f : XQ1 → XQ2 is a smooth map between orbifolds if for any point x ∈ XQ1 , there are
charts (Ũ1,Γ1, π1) around x and (Ũ2,Γ2, π2) around f(x) such that f maps π1(Ũ1) into
π2(Ũ2) and f can be lifted to a smooth map f̃ : Ũ1 → Ũ2 such that π2 ◦ f̃ = f ◦ π1.

Definition 2.6.5. Two orbifolds Q1 = (XQ1 ,UQ1) and Q2 = (XQ2 ,UQ2) are diffeomorphic
if there are smooth maps of orbifolds f1 : XQ1 → XQ2 and f2 : XQ2 → XQ1 with
f1 ◦ f2 = idXQ2

and f2 ◦ f1 = idXQ1
.

If Γ is a discrete group and X is a Hausdorff topological space such that Γ acts on
X, we say that this action is properly discontinuously if given two points x, y ∈ X, there
are open neighborhoods Ux of x and Uy of y for which (γUx) ∩ Uy 6= ∅ for only finitely
many γ ∈ Γ, which is equivalent to that X/Γ is Hausdorff, or equivalent to that for given
x ∈ X, each isotropy subgroup Γx = {γ ∈ Γ|γx = x} is finite. We have the following
propositions for a group acting properly discontinuously (cf. [16]):

Proposition 2.6.1. If X is a manifold and Γ is a group acting properly discontinuously
on X, then X/Γ has the structure of an orbifold.

Proposition 2.6.2. If a group Γ acts properly discontinuously on a manifold X and
Γ′ ⊂ Γ is a subgroup, then X/Γ′ → X/Γ is an orbifold covering projection.

The condition that an orbifold Q is covered by a manifold is equivalent to that Q is
the quotient of a group acting properly discontinuously on a manifold. Then Q is also
said a good orbifold. Notice that not every orbifold is covered by a manifold.

Example 2.6.2. Let H be the complex upper half plane. The projective special linear
group PSL(2,Z) is the quotient of SL(2,Z) by its center {I,−I}. The group PSL(2,Z)
is isomorphic to the group of linear fractional transformations of H of the form z 7→ az+b

cz+d

with ad − bc = 1 for z ∈ H, a, b, c, d ∈ Z. Let Γi be the isotropy group of i ∈ H. Then
we have Γi = SO(2). By considering the map ξ : SL(2,R)/Γi → H defined by ξ(γ) = γi,
we have that H is homeomorphic to SL(2,R)/SO(2). In addition to it, since PSL(2,Z)
is a discrete subgroup of SL(2,R), we have that PSL(2,Z) acts properly discontinuously
on H. Then by applying Proposition 2.6.1, we have that H/PSL(2,Z) has the structure
of an orbifold.
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Chapter 3

Convergence
in the Gromov-Hausdorff sense
and the Chern-Ricci flow
on complex surfaces

3.1 On the Kähler case and other classifications

In [70], Weinkove and Tosatti showed the convergence result in the Gromov-Hausdorff
sense for the Chern-Ricci flow ω(t) starting at a Gauduchon metric ω0 on a compact
complex surface M when ω(t) is non-collapsing at a singular time T < ∞ with the
assumption that

(†) there exists f ∈ C∞(M,R) and a smooth real (1, 1) form β on N such that

ω0 − T Ric(ω0) +
√
−1∂∂̄f = π∗β,

where π : M → N is the blow-down map of finitely many disjoint (−1) curves, N is
a complex surface. The non-collapsing condition to ω(t) at a singular time T < ∞ is
equivalent to the condition

∫
M

(ω0 − T Ric(ω0))2 > 0. As we see in [70, Remark 1.4], the
condition (†) holds automatically in the projective Kähler case with a Kähler metric ω0:
Denote by X the blow-up of CPn at the point y0. Let π : X → CPn be the blow-down map,
which sends the exceptional divisor E to y0 ∈ CPn. Kähler classes on X can be written as
α = bπ∗[H]− a[E] for 0 < a < b, where H is a hyperplane in CPn and [H] = c1(OCPn(1)).
We consider a solution of the Kähler-Ricci flow starting at a form ω0 in a Kähler class
α0 = b0π

∗[H]− a0[E] where a0 and b0 satisfy the condition a0(n + 1) < b0(n − 1). Since
we have KX

∼= π∗KCPn ⊗ Ln−1, where KX , KCPn are the canonical line bundles on X
and CPn respectively and L is the holomorphic line bundle associated to the divisor E,
we have c1(KX) = (n − 1)c1(L) + c1(KCPn) = (n − 1)[E] − (n + 1)π∗[H], where we used
that c1(L) = [E] and c1(KCPn) = −c1(CPn) = −(n + 1)c1(OCPn(1)). Then the singular
time of the Kähler-Ricci flow T is equal to a0

n−1
, and for κ := b0 − n+1

n−1
a0 > 0, we obtain

[ω0] + Tc1(KX) = [κπ∗ωFS], where ωFS is the Fubini-Study metric on CPn (cf. [59,
Example 1.1.2]). If M is projective, the complex surface N in (†) is also projective (cf.
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[3, IV(6.7)Corollary]) and imbedded into CPl for some integer l > 0. Then, from the
observation above, the condition (†) holds with β = ωFS|N multiplied by some positive
constant, where ωFS|N is the Fubini-Study metric on CPl restricted to N . On the other
hand, the condition (†) does not hold automatically in the non-Kähler case in general. But
in the special case, we do not need to assume the condition (†). Actually, we can artificially
construct such initial data ω0 on M satisfying the condition (†) (cf. [70, Remark 3.1]):
For a constant C > 0 sufficiently large, there exists a smooth real function f̃ on M so
that ω0 := Cπ∗ωN + T Ric(ωM) +

√
−1∂∂̄f̃ is Gauduchon, where ωM , ωN are Gauduchon

metrics on M and N respectively. We can check that the Chern-Ricci flow starting at ω0

is non-collapsing at T and satisfying the condition (†) with β = CωN . However, it is not
enough since we would like to continue the Chern-Ricci flow on new surfaces and repeat
contractions of exceptional divisors along the flow until we reach to the minimal model.
Hence, it is necessary for us to remove the condition (†).

We hope that the condition (†) holds automatically on any non-Kähler compact com-
plex surfaces contain some disjoint (−1)-curves. For simplicity, we consider a map π blows
down the only one (−1)-curve E on M to a point y0 ∈ N . Then we have a biholomorphism

π|M\E : M \ E
∼=→ N \ {y0}. Our main results are as follows:

Theorem 3.1.1. Let M be a non-Kähler compact complex surface and π : M → N be
a blow-down map of the (−1)-curve E on M to the point y0 ∈ N , where N is a compact
complex surface. Let ω0 be a Gauduchon metric on M . Suppose that we have∫

M

(ω0 − T Ric(ω0))2 > 0, and

∫
D

(ω0 − T Ric(ω0)) > 0

for all irreducible curves D on M with D2 = (D ·D) < 0 different from E, where T is a
finite singular time of the Chern-Ricci flow ω(t) starting at ω0 for t ∈ [0, T ), 0 < T <∞.
Then, there exist a smooth real function u′0 on M and a Gauduchon metric ω̂N on N such
that

ω0 − T Ric(ω0) +
√
−1∂∂̄u′0 = π∗ω̂N .

Note that the first condition
∫
M

(ω0 − T Ric(ω0))2 > 0 implies that the volume of M
with respect to the Chern-Ricci flow ω(t) stay strictly positive as t → T , that is, ω(t)
is non-collapsing at T , and that the second condition

∫
D

(ω0 − T Ric(ω0)) > 0 for all
irreducible curves D on M with D2 = (D ·D) < 0 different from E means that there is
no other (−1)-curve on M except for E. This is from the following proposition:

Proposition 3.1.1. (cf. [3, (2.2)Proposition])Let X be a compact complex surface. An
irreducible curve D ⊂ X is a (−1)-curve if and only if

D2 < 0 and (KX ·D) < 0.

If there exists an irreducible curve D with D2 < 0 such that
∫
D

(ω0 − T Ric(ω0)) = 0,
then we have (KX ·D) < 0. Then D must be another (−1)-curve on M , which contradicts
to our assumption that E is the only one (−1)-curve on M . Hence, under the condition
that there is an only one (−1)-curve, the second condition always holds. Here, ”M is
non-Kähler” means that there is no Kähler metric on M . The condition (†) is not always
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true when only M is Kähler. The condition (†) holds if M is Kähler and the initial metric
ω0 is Kähler. Note that there are examples when M is projective, ω0 is not Kähler, and
(†) fails (cf. [70, Remark 3.7]). That is why we assume that M is non-Kähler in the
statements above.

In the case of Kod(M) = 1 with the first Betti number b1(M) = even, or the case of
Kod(M) = 2, then the surface M is projective and Kähler. So the condition (†) holds
automatically with ω0 Kähler as we confirmed. Plus, the surface M with Kod(M) = 0,
or with Kod(M) = −∞ and b1(M) 6= 1, and the surface of class V II with the second
Betti number b2(M) ≥ 0 can be excluded as well. Hence our interest inclines only to the
surface with Kod(M) = 1 and b1(M) = odd. Remark that their first Betti numbers are
odd. We will see more specific reasons in Remark 3.1.2.

We here note the definition of the Kodaira dimension. In our case, it is stated in the
following way:

Kod(M) := lim sup
m→∞

log dimH0(M,mKM)

logm
∈ {−∞, 0, 1, 2},

where KM =
∧n T ∗M is the canonical line bundle of M and H0(M,mKM) is the vector

space of holomorphic sections of the holomorphic line bundle Km
M = mKM .

We introduce the Buchdahl’s Nakai-Moishezon criterion.

Lemma 3.1.1. (Buchdahl’s Nakai-Moishezon criterion [14, Theorem.])Let M be a com-
pact complex surface equipped with a Gauduchon metric ωG and let ψ be a smooth real
∂∂̄-closed (1, 1)-form satisfying∫

M

ψ2 > 0,

∫
M

ψ ∧ ωG > 0,

∫
D

ψ > 0

for every irreducible effective divisor D ⊂M with D2 = (D ·D) < 0. Then there exists a
smooth real function f on M such that

ψ +
√
−1∂∂̄f > 0.

Remark 3.1.1. In the condition (†), a smooth real (1, 1) form β is not supposesed to be
positive definite. But since β is then ∂∂̄-closed and we actually may apply the Buchdahl’s
Nakai-Moishezon criterion. We obviously have

∫
N
β2 =

∫
M

(ω0 − T Ric(ω0))2 > 0 and for
any irreducible curve C ⊂ N with C2 < 0, we have

∫
C
β =

∫
π∗C

(ω0 − T Ric(ω0)) > 0,
where note that we have π∗C 6= E and (π∗C)2 < 0 for curves C with C2 < 0. Let ωG be
a Gauduchon metric on N . Then we have∫
N

β ∧ ωG =

∫
M

π∗β ∧ π∗ωG =

∫
M

(ω0 − T Ric(ω0)) ∧ π∗ωG = lim
t→T−

∫
M

ω(t) ∧ π∗ωG ≥ 0.

For δ > 0 sufficiently small, ωG + δβ is positive definite and becomes Gauduchon, then∫
N

β ∧ (ωG + δβ) ≥ δ

∫
N

β2 > 0.
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Therefore, all assumptions in Lemma 1.1 are satisfied and there exists a smooth real
function hN on N such that ωN := β +

√
−1∂∂̄hN > 0, which is a Gauduchon metric on

N , and then we have
ω0 − T Ric(ω0) +

√
−1∂∂̄f = π∗ωN

where f := f ′0 + π∗hN is a smooth real function on M .

Then we see that ω0 − π∗ωN is d-closed and which tells us that we obtain

(T0)pjl(ω0)pk̄ = (π∗TN)pjl(π
∗ωN)pk̄,

where T0 and π∗TN are torsion tensors with respect to ω0 and π∗ωN respectively. This is
used crucially in the argument of [72, Proposition 3.1].

Remark 3.1.2. The followings are the reasons that we may exclude the cases of the
surface M with Kod(M) = 2, 0 and −∞ from our concern. All notations and settings
are the same as in Proposition 3.1.1.

(1) There is a possibility that the surface M with Kod(M) ≥ 0 has some (−1)-curves
since M with Kod(M) ≥ 0 and (KM ·D) < 0 for the canonical divisor KM and an
effective divisor D ⊂ M , where (KM ·D) indicates their intersection number, then
D contains a (−1)-curves (cf. [3, III(2.3)Proposition.]).

(a) In the case of Kod(M) = 2, if the surface M does not have any (−1)-curves,
then M is projective since its algebraic dimension is equal to 2; the complex
dimension of M (cf. [3, IV(6.5)Corollary]). And its blow-ups are also projective
(cf. [3, IV(6.7)Corollary]). Hence the surface M with Kod(M) = 2 can be
excluded from our concern since the condition (†) is satisfied automatically
with ω0 Kähler.

(b) In the case of Kod(M) = 0, they are divided into five cases (cf. [3, p.244]):
Enriques surfaces, bi-elliptic surfaces, Kodaira surfaces, K 3-surfaces and tori.
Firstly, Enriques surfaces and bi-elliptic surfaces are projective Kähler since
their algebraic dimensions are equal to 2. Then, they can be excluded from
our concern as in the case (a) above. If the surface M is a primary or secondary
Kodaira surface, it has torsion canonical bundle, which means that some power
lKM , l ≥ 1 is holomorphically trivial. Then we have cBC1 (M) = 0 and T =∞
(cf. [28, Theorem 1.1], [72]). And if the surface M is a K 3-surface or torus,
we have c1(M) = 0 and T = ∞. Note that a complex torus does not contain
any rational curves. These are in the case (1) of Proposition 3.2.1.

(2) If Kod(M) = −∞ and b1(M) = 1, then the surface M is called a surface of class
V II. Surfaces of class V II with b2(M) = 0 are completely classified and they are
either Inoue surfaces or Hopf surfaces.

(a) An Inoue surface, which is a T 3-torus bundle over S1, does not have any curves
and then we have T =∞.
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(b) On a Hopf surface H, diffeomorphic to S1×S3, we have
∫
H
ω0∧cBC1 (H) > 0 for

any Gauduchon metric ω0 on H. It implies that
∫
H

(ω0−T Ric(ω0))2 = 0. Note
that (H,ω(t)) converges to S1 in the Gromov-Hausdorff sense, where ω(t) is a
solution of the Chern-Ricci flow on H. Since every curve on H is homologous
to zero, the flow exists precisely as long as the volume stays positive and then
it collapses. Hence this is included in the case (2) of Proposition 3.2.1 (cf. [70,
Theorem 1.6], [72]).

(c) If the surface M of class V II has b2(M) =: n > 0, then we can observe that
we have

∫
M
cBC1 (M)2 = −n (cf. [63, p.494]) and then we obtain

∫
M
ω(t)2 → 0

as t → T for some 0 < T < ∞, where ω(t) is the solution of the Chern-Ricci
flow starting from a Gauduchon metric. There might be some (−1)-curves on
M but as we see that ω(t) is collapsing, we may exclude this case from our
concern. There are lots of examples of minimal surfaces in this case and a
complete classification has not been done yet except for the case b2(M) = 1
(cf. [63]).

(3) When Kod(M) = −∞ with b1(M) 6= 1, and if M is additionally minimal, it is
limited to be a ruled surface of genus g ≥ 1 or a minimal rational surface. They
both are projective Kähler since their algebraic dimensions are equal to 2 (cf. [3,
p.244]).

Here we recall the definition of the convergence in the sense of Gromov-Hausdorff.
Then we need to define the Gromov-Hausdorff distance dGH((M,dM), (N, dN)) between
two metric spaces (M,dM), (N, dN). Which is defined to be the infimum of all ε > 0 such
that the following holds: there exist maps F : M → N and G : N →M such that

|dM(x1, x2)− dN(F (x1), F (x2))| ≤ ε, for all x1, x2 ∈M

and
dM(x,G ◦ F (x)) ≤ ε, for all x ∈M

and the two symmetric properties for N also hold. We do not require the maps F and G
to be continuous. In this sense, we say that (M,dω(t)) converges to (N, dT ) as t→ T− in
the Gromov-Hausdorff sense if we have

dGH((M,dω(t)), (N, dT ))→ 0

as t→ T−, where dω(t), dT are distance functions induced from ω(t) and ω(T ) respectively.
From the result of Theorem 3.1.1, we can restate [70, Theorem 1.3] as follows:

Theorem 3.1.2. Let M be a non-Kähler compact complex surface and π : M → N
be a blow-down map of finitely many disjoint (−1)-curves on M onto a complex surface
N . Let ω0 be a Gauduchon metric on M . We assume that the Chern-Ricci flow ω(t)
starting from ω0 is non-collapsing at a singular time T <∞. Then there exists a distance
function dT on N such that (N, dT ) is a compact metric space and (M,dω(t)) converges
in the Gromov-Hausdorff sense to (N, dT ) as t → T−, where dω(t) are distance functions
induced from the metrics ω(t).

The way of the proof for Theorem 3.1.2 is totally the same as in [70] except for the
results in Proposition 3.1.1 and Theorem 3.1.1.
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3.2 The Chern-Ricci flow

and some convergence results

Let M be a compact complex surface and g0 be a Gauduchon metric on M . In local com-
plex coordinates, the associated (1, 1)-form is given by ω0 =

√
−1(g0)ij̄dzi ∧ dz̄j, which

we will also often refer to as a Gauduchon metric. A Gauduchon metric on M is a Her-
mitian metric g whose associated (1, 1)-form ω satisfies ∂∂̄ω = 0. Note that Gauduchon
showed that every Hermitian metric on a compact complex surface is conformal to a
unique Gauduchon metric [24].

The Chern-Ricci flow ω(t) starting at ω0 is the flow of Gauduchon metrics
∂
∂t
ω(t) = −Ric(ω(t)),

ω(t)|t=0 = ω0,

for t ∈ [0, T ) where T = T (ω0) is a finite singular time with 0 < T ≤ ∞ stated by

T = sup{t ≥ 0|∃ψ ∈ C∞(M,R) with ω0 − tRic(ω0) +
√
−1∂∂̄ψ > 0}

and Ric(ω0) is the Chern-Ricci curvature of ω0, given locally by Ric(ω0) = −
√
−1∂∂̄ logω2

0,
which determines the Bott-Chern cohomology class denoted by cBC1 (M) ∈ H1,1

BC(M,R).
We call it the first Bott-Chern class of M . Note that we omit a factor of 2π in this paper,
and it is independent of the choice of Hermitian metrics. There exists a unique maximal
solution to the Chern-Ricci flow on [0, T ) [72, Theorem 1.2].

There is a strong relationship between the Kähler-Ricci flow and the minimal model
program. A minimal surface is a surface with no (−1)-curves. A (−1)-curve is defined
to be smooth rational curves with self-intersection −1. In [59, Theorem 1.2], Song and
Weinkove showed that along the Kähler-Ricci flow starting at a Kähler metric ω0 with
[ω0] ∈ H1,1(X,Q) on projective algebraic surfaces X = X0, X1, . . . , Xk, algebraic contrac-
tions can be proceeded along the flow and in the end of this process, which tells us that
Xk is Fano or ruled surface, or the singular time Tk of the Kähler-Ricci flow on Xk is
infinite and Xk has no exceptional curves of the first kind, i.e, no (−1)-curves. As we
confirmed, we do not need to assume the condition (†) in this case since it automatically
holds in the projective Kähler case with an initial Kähler metric ω0. In [72], Weinkove
and Tosatti conjectured that this algebraic procedure can be proceeded along also the
Chern-Ricci flow on any compact comple surfaces. They showed the following result:

Proposition 3.2.1. ([72, Theorem 1.5])Let M be a compact complex surface with a
Gauduchon metric ω0, and let [0, T ) be the maximal existence time of the Chern-Ricci
flow starting from ω0. Then

(1) If T =∞ then M is minimal

(2) If T <∞ and
∫
M

(ω0−T Ric(ω0))2 = 0, then M is either birational to a ruled surface
or it is a surface of class V II (and in this case it cannot be an Inoue surface)

(3) If T <∞ and
∫
M

(ω0 − T Ric(ω0))2 > 0, then M contains (−1)-curves.
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Furthermore, if M is minimal then T = ∞ unless M is CP2, a ruled surface, a Hopf
surface or a surface of class V II with b2(M) > 0, in which cases (2) holds.

When M is not minimal and (3) occurs, we expect that the Chern-Ricci flow will
contract finitely many (−1)-curves and can be uniquely continued on a new surface.
They conjectured that this process can be repeated until one obtains a minimal surface,
or ends up in the case (2). It is crucial to show that we can remove the condition (†) for
proving this conjecture. Additionally, they have proved in any complex dimension, the
following result can be realized under the condition (†):

Proposition 3.2.2. ([72, Theorem 1.6])Assume that there exists a holomorphic map be-
tween compact Hermitian manifolds π : (M,ω0)→ (N,ωN) blowing down the exceptional
divisor E on M to a point y0 ∈ N . In addition, we suppose the condition (†) with T <∞.
Then the solution ω(t) to the Chern-Ricci flow starting at ω0 converges in C∞ on compact
subsets of M \ E to a smooth Hermitian metric ωT on M \ E.

They also showed the convergence in the Gromov-Hausdorff sense under the assump-
tion (†) on a compact complex surface with a Gauduchon metric ω0 with using some
arguments in [59] (cf. [70, Theorem 1.3]).

As we stated ”finitely many disjoint (−1)-curves” in Theorem 3.1.1 and other parts,
we can check that (−1)-curves E1, . . . , Ek on M are finite and disjoint each other, giving
rise to a map π : M → N onto a complex surface N , blowing down each Ei to a point
yi ∈ N . Now we assume that E1, E2 are irreducible distinct (−1)-curves with (E1 ·E2) ≥ 0
and

∫
E1

(ω0 − T Ric(ω0)) =
∫
E2

(ω0 − T Ric(ω0)) = 0, then we show that they are disjoint.
The Poincaré-Lelong formula tells us that we have an expression of the divisor E1 + E2

in the sence of currents:

(sE1+E2) = η +
√
−1∂∂̄ log |sE1+E2|2hE1+E2

,

where sE1+E2 is a holomorphic defining section of holomorphic line bundle [E1 + E2]
associated to the divisor E1 +E2. sE1+E2 goes to zero of order 1 along E1 +E2. (sE1+E2)
denotes its principal divisor corresponding to E1 + E2. hE1+E2 is a smooth Hermitian
metric on [E1 + E2] and η := chE1+E2

is the Chern form, which is a smooth d-closed
real (1, 1)-form represents c1([E1 + E2]). We here introduce an important lemma for our
argument:

Lemma 3.2.1. ([13, Lemma 4.])Let M be a compact complex surface and let ψ, ω be
smooth real ∂∂̄-closed (1, 1)-forms on M . Assume that

∫
M
ω2 > 0.Then we have(∫

M

ω ∧ ψ
)2

≥
(∫

M

ω2
)(∫

M

ψ2
)

with equality if and only if ψ = cω +
√
−1∂∂̄ϕ for some constant c and a smooth real

function ϕ on M .
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Since ω0 − T Ric(ω0), η are ∂∂̄-closed and
∫
M

(ω0 − T Ric(ω0))2 > 0, we may apply
Lemma 2.1 and obtain

0 =
(∫

E1

(ω0 − T Ric(ω0)) +

∫
E2

(ω0 − T Ric(ω0))
)2

=
(∫

(sE1+E2
)

(ω0 − T Ric(ω0))
)2

=
(∫

M

η ∧ (ω0 − T Ric(ω0))
)2

≥
(∫

M

η2
)(∫

M

(ω0 − T Ric(ω0))2
)
.

Then, since
∫
M

(ω0 − T Ric(ω0))2 > 0, we have

(E1 + E2)2 =

∫
M

η2 ≤ 0.

If
∫
M
η2 = 0 holds, then we have(∫

M

η ∧ (ω0 − T Ric(ω0))
)2

=
(∫

M

η2
)(∫

M

(ω0 − T Ric(ω0))2
)

= 0

and η =
√
−1∂∂̄ϕ for some smooth real function ϕ.

Recall the fact that an irreducible curve C on M is a (−1)-curve if and only if C2 < 0
and (KM · C) < 0 (cf. [1, III(2.2)Proposition.]). Combining these, we have

0 > (KM · (E1 + E2)) = −
∫

(sE1+E2
)

cBC1 (M) = −
∫
M

η ∧ cBC1 (M) = 0,

which is a contradiction. Hence, we conclude that (E1 + E2)2 < 0, which gives us that
0 ≤ (E1 · E2) < 1. Therefore, we have (E1 · E2) = 0, that is to say E1, E2 are disjoint
each other. Additionally, the set of all these (−1)-curves is finite, for instance E1, . . . , Ek,
because they give linearly independent classes in homology.
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3.3 Proof of Theorem 3.1.1

Since the condition (†) holds automatically in the projective Kähler case with an initial
Kähler metric ω0 as we see in Section 1, our concern is only for non-Kähler surfaces
contain some (−1)-curves. For giving a proof in the non-Kähler case, we crucially use
[64, Remark 3.3], which says that a complex surface with its first Betti number b1 = odd
has only finitely many irreducible curves with negative self-intersection. We can confirm
that the non-Kähler compact complex surfaces M contain some (−1)-curves is only the
case of the surfaces M with Kod(M) = 1 and b1(M) = odd. The reason is as follows: In
[13], Buchdahl showed that a compact complex surface with its first Betti number b1 ≡ 0
(mod 2) admits a Kähler metric. Moishezon showed that a smooth Moishezon variety is
projective if and only if it admits a Kähler metric (cf. [47]). By applying Riemann-Roch
theorem formula and Grauert’s ampleness criterion for surfaces, we obtain the fact that
a compact complex surface is projective if and only if there exists a line bundle L with
c1(L)2 > 0 (cf. [3, IV(6.2)Theorem.]), which indicates that a compact complex surface
is projective if and only if it has algebraic dimension 2, i.e., it is Moishezon (cf. [3,
IV(6.5)Corollary]). When the dimension is more than 2, it does not hold in general.

Note that a Moishezon manifold is a compact complex manifold which is bimero-
morphic to a projective manifold. Equivalently, it is defined to be that it is a compact
complex manifold admitting a big line bundle (cf. [69]). This gives us that if M is a
minimal complex surface with Kod(M) = 2, then it is a Moishezon surface whose first
Betti number is even, and the surface M is a projective Kähler surface. So, its blow-ups
are also projective (cf. [3, IV(6.7)Corollary]). When Kod(M) = 1 with b1(M) = even,
then the surface M admits a Kähler metric. In this case, its minimal model is a minimal
properly elliptic surface and whose algebraic dimension must be equal to 2 since it also
has a Kähler metric, which means that it is Moishezon and then it is projective. So its
blow-ups are also projective. As we see in Remark 3.1.2, we do not need to consider the
case of Kod(M) = 0, an Inoue surface, a Hopf surface or the case of Kod(M) = −∞ with
b1(M) 6= 1, the case of Kod(M) = −∞ with b1(M) = 1 and b2(M) > 0.

For these reasons, the remaining case is of the surfaces M with Kod(M) = 1 and
b1(M) = odd. Hence if it is additionally minimal, the surface M is limited to be a non-
Kähler minimal properly elliptic surface. Therefore, we may assume that M has only
finitely many irreducible curves with negative self-intersection. Let C be any such curve.
The notations and settings are the same as in the previous sections such as that E is the
only one (−1)-curve contained in M which is blown down to the point y0 ∈ N . Then we
have either C = E or

∫
C

(ω0−T Ric(ω0)) > 0, since E is the only curve whose intersection
with ω0 − T Ric(ω0) is zero. Let h be a smooth Hermitian metric on the holomorphic
line bundle [E]. Since [E] has self-intersection −1, its curvature Rh, locally given by
Rh = −

√
−1∂∂̄ log h, satisfies

∫
E
Rh = −1.

When we take ε > 0 sufficiently small, then we claim that we have∫
M

(ω0 − T Ric(ω0)− εRh)
2 > 0,

∫
M

(ω0 − T Ric(ω0)− εRh) ∧ ωG > 0

for any Gauduchon metric ωG. The first one is easy because we have assumed that

44



∫
M

(ω0 − TRic(ω0))2 > 0. The second can be showed since we have∫
M

(ω0 − T Ric(ω0)) ∧ ωG = lim
t→T−

∫
M

ω(t) ∧ ωG ≥ 0

and if we have
∫
M

(ω0 − T Ric(ω0)) ∧ ωG = 0, then we have
∫
M
ω2
G ≤ 0 from Lemma 2.1,

which is a contradiction. Therefore we have∫
M

(ω0 − T Ric(ω0)) ∧ ωG > 0

for any Gauduchon metric ωG and we obtain∫
M

(ω0 − T Ric(ω0)) ∧ ωG − ε
∫
M

Rh ∧ ωG > 0

for sufficiently small ε > 0.
In the case of C = E, we have∫

E

(ω0 − T Ric(ω0)− εRh) = −ε(E · E) = ε > 0,

and if C is different from E then∫
C

(ω0 − T Ric(ω0)− εRh) =

∫
C

(ω0 − T Ric(ω0))− ε(C · E).

Since there are only finitely many such curves C, it follows that we can choose ε > 0
sufficiently small so that ∫

C

(ω0 − T Ric(ω0)− εRh) > 0,

for all such C.
Therefore, we can apply the Buchdahl’s Nakai-Moishezon criterion (Lemma 3.1.1) to

ω0 − T Ric(ω0)− εRh for sufficiently small ε > 0 and then we obtain the following result:
For a smooth Hermitian metric h′ on [E] and for each sufficiently small ε > 0, there exists
a smooth function f ′ε on M such that

ω0 − T Ric(ω0)− εRh′ +
√
−1∂∂̄f ′ε > 0

where Rh′ is the curvature of h′.
Additonally, we need the following Lemma for proving our result.

Lemma 3.3.1. (cf. [28, p.187]) Let π : M → N be a blow-down map of the (−1)-curve
E on M and let ωN be a Hermitian metric on N . We can choose a smooth Hermitian
metric h on the holomorphic line bundle [E] associated to E with its curvature Rh such
that

π∗ωN − εRh > 0

for any sufficiently small ε > 0.
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From these results, for our Hermitian metric ωN on N and for any sufficiently small
ε > 0, we have the equivalence depends on ε between the metrics

π∗ωN − εRh > 0

and
ω0 − T Ric(ω0)− εRh′ +

√
−1∂∂̄f ′ε > 0.

Hence, there exists a positive constant Cε > 1 depends on ε such that

(‡) 1

Cε
(π∗ωN − εRh) ≤ ω0 − T Ric(ω0)− εRh′ +

√
−1∂∂̄f ′ε ≤ Cε(π

∗ωN − εRh)

for any ε > 0 sufficiently small.
We will choose a sequence {εj}∞j=1 such that εj → 0 as j → ∞. The inequality (‡)

replaced ε with εj holds for j chosen sufficiently large since sufficiently small ε was chosen
arbitrary.

Set ω̃εj := ω0 − T Ric(ω0) − εjRh′ +
√
−1∂∂̄f ′εj and then it is a Hermitian metric for

each j ≥ j0 for some sufficiently large j0. We fix such a large number j0. By applying
the Tosatti-Weinkove theorem (Theorem 2.5.5 [68, Corollary 1]), the Hermitian version
of Yau’s theorem, for each j ≥ j0, there exist a unique smooth function uεj on M and a
unique positive constant cεj such that

([)j (ω̃εj +
√
−1∂∂̄uεj)

2 = cεj(π
∗ωN − εjRh)

2

with ω̃εj +
√
−1∂∂̄uεj > 0 and supM(f ′εj + uεj) = 0 (cf. [67, Section 2], [69, Section 3]).

Set u′εj := f ′εj + uεj . By applying Proposition 2.5.2, we see that the set

{u′εj ∈ PSH(ω0 − T Ric(ω0)− εjRh′); sup
M

u′εj = 0}

is compact in L1(M,ω2
0), since u′εj ∈ PSH(Cω0) for some uniform constant C > 0. Hence,

after passing a subsequence, still writing uεj and εj → 0 as j →∞, we may assume that
{u′εj}j is Cauchy in L1(M,ω2

0), that is, we have that

u′εj → u′0 ∈ L1(M,ω2
0)

in L1(M,ω2
0)-toplology as j →∞.

We may normalize f ′εj by supM f ′εj = 0 after subtraction of fixed constants for each j ≥
j0. Since we have f ′εj ∈ PSH(Cω0) for some uniform constant C > 0, thanks to Proposition

2.5.2, after passing a subsequence, f ′εj converges to f ′0 in L1(M,ω2
0)-topology as j → ∞.

So we have f ′0 ∈ L1(M,ω2
0) and then also we have u0 := limj→∞ uεj ∈ L1(M,ω2

0) since
u′0 ∈ L1(M,ω2

0). The following lemma will be used crucially in our argument.

Lemma 3.3.2. For any Borel set D ⊂ M and any j ≥ j̃0 for some sufficiently large
number j̃0 > 0, we have

capω0
(D) ≤ Ã0capω̃εj (D)

for some sufficiently large constant Ã0 > 0 depends only on ω0 independent of εj.
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Proof. We arbitrary fix a function v ∈ PSH(M,ω0), 0 ≤ v ≤ 1.
For proving the lefthand side of the inequality, we use the fact that for any Borel set

D ⊂M , we have for any j ≥ j0,∫
D

(ω0 − T Ric(ω0) +
√
−1∂∂̄f ′εj)

2 > 0.

Indeed, if there exists a Borel set D ⊂M such that
∫
D

(ω0−T Ric(ω0) +
√
−1∂∂̄f ′εj)

2 = 0,
then for any open set U ⊂ D we have∫

U

(ω0 − T Ric(ω0) +
√
−1∂∂̄f ′εj)

2 =

∫
U

(ω0 − T Ric(ω0))2 = 0

and U is birational to a ruled surface or it is a surface of class V II (Proposition 3.2.1).
Then we must have Kod(U) = −∞, which contradicts to that surfaces in our concern
are limited to the blow-ups of non-Kähler minimal properly elliptic surfaces: Since the
Kodaira dimension is biholomorphic invariant, we may assume that M is a non-Kähler
minimal properly elliptic surface by choosing sufficiently small open set U ⊂ D which does
not intersect any finitely many (−1)-curves. Then, there always exists a finite unramified
covering p : M ′ → M which is also a minimal properly elliptic surface π′ : M ′ → S ′ and
π′ is an elliptic fiber bundle over a compact Riemann surface S ′ of genus at least 2, with
fiber an elliptic curve E (cf. [12, Lemmas 1, 2]). If needed, by choosing sufficiently small
open set U ⊂ D, we have that p−1(U) is a disjoint union of finitly many copies Uj of U .
Then p : Uj → U is a biholomorphism for each j. Since π′ is an elliptic bundle, we can
choose a sufficiently small open set U ′ ⊂ S ′ satisfying π′−1(U ′) is inclueded in Uj for some
j and that we have the biholomorphism

U ′ × E ∼= π′−1(U ′) ⊂ Uj

at the same time, where E is an elliptic curve, i.e., 1-dimensional complex torus. Then
we obtain

Kod(U ′) = Kod(U ′) + Kod(E) = Kod(U ′ × E) = Kod(π′−1(U ′)) ≤ Kod(Uj) = Kod(U),

where we used that Kod(E) = 0, that the Kodaira dimension is a biholomorphic invariant
and additionally it requires the following two lemmas:

Lemma 3.3.3. ([3, (7.3)Theorem.])If X1 and X2 are connected compact complex mani-
folds, then

Kod(X1 ×X2) = Kod(X1) + Kod(X2).

Lemma 3.3.4. ([3, (7.4)Theorem.])Let X and Y be compact, connected complex mani-
folds of the same dimension. If there exists a generically finite holomorphic map from X
onto Y , then h0(OX(KX)⊗n) ≥ h0(OY (KY )⊗n) for n ≥ 1, hence Kod(X) ≥ Kod(Y ). If
the map is an unramified covering, then Kod(X) = Kod(Y ).

Hence we have Kod(U ′) = −∞ since Kod(U) = −∞. But on the other hand, since
the genus of S ′ is at least 2, there exists a metric with negative constant curvature, which
is a Kähler-Einstein metric ωS′ induced by the Poincaré metric on the upper half plane
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in C such that Ric(ωS′) = −ωS′ and we have c1(KS′) > 0. Then for the canonical bundle
KS′ restricted to U ′, we obtain c1(KS′|U ′) > 0, which means that KS′ |U ′ is positive. By
applying the Kodaira Embedding Theorem (Theorem 2.2.1), we have that KS′ |U ′ is ample.
It follows from the Riemann-Roch Theorem that a nef holomorphic line bundle L over a
smooth projective variety X is big if and only if

c1(L)n =

∫
X

(Rh)
n > 0,

where h is a Hermitian metric on L, Rh is the curvature of h and n is the complex
dimension of X. It follows that since the restricted canonical divisor KS′|U ′ is ample, it is
then nef and big. It follows that we must have Kod(U ′) = 1, which leads a contradiction.

So we have for some sufficiently large j′0 > 0, we have for any j ≥ j′0,∫
D

(ω0 − T Ric(ω0) +
√
−1∂∂̄f ′εj − εjRh′)

2 =

∫
D

ω̃2
εj
> ρ > 0

for some uniform constant ρ > 0.
We then set j̃0 := max{j0, j

′
0}. Hence we have for any j ≥ j̃0,∫

D

(ω0 +
√
−1∂∂̄v)2 ≤ Ã0

∫
D

ω̃2
εj

≤ Ã0capω̃εj (D)

for some uniform sufficiently large constant Ã0 > 0 depending on ω0 and j̃0. Taking
supremum over v, then we obtain

capω0
(D) ≤ Ã0capω̃εj (D).

Remark 3.3.1. (cf. [53]) Recall that the following conditions are equivalent: Let X be
a compact complex manifold with dimCX = n.

(H) there exists a Hermitian metric ω on X such that

∂∂̄ωk = 0 for all k = 1, 2, . . . , n− 1.

The condition (H) is equivalent to either of the following two equivalent conditions:

∂∂̄ω = 0 and ∂∂̄ω2 = 0⇐⇒ ∂∂̄ω = 0 and ∂ω ∧ ∂̄ω = 0.

In Chapter 2, we defined the so called ”curvature” constant Bω. Under consideration
of the condition (H), when the cases ω = ω0 or ω = ω̃εj , the curvature constants Bω0 and
Bω̃εj

with respect to ω0, ω̃εj respectively can be chosen equal to 0 since we have ∂∂̄ω0 = 0,

∂ω0 ∧ ∂̄ω0 = 0 and that the forms −T Ric(ω0) − εjRh′ +
√
−1∂∂̄f ′εj are d-closed. Note

that we have the equivalence that

d-closed⇔ ∂-closed⇔ ∂̄-closed.

Then we can choose uniform constant C > 0 independent εj in the inequality appeared
in Remark 2.5.1.
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The equation ([)j for each j ≥ j0 can be rewritten by

(])j (ω̃εj +
√
−1∂∂̄uεj)

2 = cεjFεjω
2
0,

where we put

Fεj :=
(π∗ωN − εjRh)

2

ω2
0

> 0.

We observe the following lemma:

Lemma 3.3.5. For any p > 1 sufficiently close to 1 and for any j ≥ j0, the functions
Fεj ’s are uniformly bounded in Lp(M,ω2

0).

Proof. We may assume that p′ := 1
p−1

> 1. By the Hölder inequality for 1
p′

+ 1
q′

= 1,∫
M

F p
εj
ω2

0 =

∫
M

F
1
p′
εj (π∗ωN − εjRh)

2

≤
(∫

M

Fεj(π
∗ωN − εjRh)

2
) 1
p′
(∫

M

(π∗ωN − εjRh)
2
) 1
q′

≤
(∫

M

Fεj(π
∗ωN − εjRh)

2
) 1
p′
A

1
q′
0

(∫
M

ω2
0

) 1
q′

for some sufficiently large uniform constant A0 > 0 depending only on ω0.
Since Fεj > 0 for any sufficiently large j ≥ j0,∫

M

Fεj(π
∗ωN − εjRh)

2 ≤ A0

∫
M

Fεjω
2
0

= A0

∫
M

(π∗ωN − εjRh)
2

≤ A2
0

∫
M

ω2
0

for some sufficiently large uniform constant A0 > 0.
Combining these estimates, we obtain∫

M

F p
εj
ω2

0 ≤ Ap0

∫
M

ω2
0

since p′+1
p′

= p.

Hereafter, we consider p > 1 sufficiently close to 1 such that Fεj ’s are uniformly
bounded in Lp(M,ω2

0). We note here that by defining the admissible functioon hj for
each j ≥ j0 by

(♥)j hj(x) := Cc−1
εj
||Fεj ||−1

Lp(M,ω2
0)

exp(ax)

for some constant C > 0 and some number a > 0 depending only on M , ω0, and also
defining

Fhj(x) :=
x

hj(x
− 1

2 )
,
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then from Corollary 2.5.1, (ω̃εj +
√
−1∂∂̄uεj)

2 satisfies the inequality (♣)ω̃εj :∫
D

(ω̃εj +
√
−1∂∂̄uεj)

2 ≤ Fhj(capω̃εj (D))

for any Borel set D ⊂M . Indeed, we have for any Borel set D ⊂M ,

(?)

∫
D

(ω̃εj +
√
−1∂∂̄uεj)

2 = cεj

∫
D

Fεjω
2
0

≤ cεj ||Fεj ||Lp(M,ω2
0)

(∫
D

ω2
0

) 1
q

≤ Ccεj ||Fεj ||Lp(M,ω2
0) exp

( −1
q
α

cap
1
2
ω0(D)

)
≤ Ccεj ||Fεj ||Lp(M,ω2

0) exp
( −α̃

cap
1
2
ω̃εj

(D)

)
for a number α = α(M,ω0) > 0 and a constant C = C(M,ω0) > 0, where we put

α̃ := Ã
− 1

2
0

α
q

and we used the Hölder inequality for 1
p

+ 1
q

= 1 at the second line, the result

in Proposition 2.5.3 at the third line and Lemma 3.3.2 at the forth line for each j ≥ j̃0.
Hence, from the estimate (?), we can apply Proposition 2.5.4 to (ω̃εj +

√
−1∂∂̄uεj)

2 with

the equations (])j, ω = 1
s
ω̃εj , ϕ = uεj and ψ = 0 for each j ≥ j̃0. Recall the definition of

the function κ in Proposition 2.5.4, we define

κj(s
1
2 ) := 4C2

( 1

hj(s)
1
2

+

∫ ∞
s

dx

xhj(x)
1
2

)
,

with a dimensional constant C2. By the definition of the admissible function hj in (♥)j,
we compute and obtain that

κj(x) ≤ C̃c
1
2
εj ||Fεj ||

1
2

Lp(M,ω2
0)

exp(−ãx−
1
2 )

for some uniform constants C̃, ã > 0 independent of εj. As κj is an increasing function,
its inverse function ~j satisfies

~j(x) ≥
(1

ã
log
(C̃c 1

2
εj ||Fεj ||

1
2

Lp(M,ω2
0)

x

))−2

.

We will use Proposition 2.5.4 to prove the following lemma which is used for showing the
uniform convergence.

Lemma 3.3.6. There exists a large number j̃′0 > 0 such that for any j ≥ j̃′0, we have

c0 ≤ cεj ≤ C0,N

for some unform constant C0,N , c0 > 0 independent of εj.
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Proof. Fix 0 < δ < 1. Define Sεj := infM uεj and δ0 is the positive number defined
in Proposition 2.5.4. Then for any 0 < s, t < δ0, we have by applying Remark 2.5.1,

t2capω̃εj ({uεj < Sεj + s}) ≤ C

∫
{uεj<Sεj+s+t}

(ω̃εj +
√
−1∂∂̄uεj)

2

= C

∫
{uεj<Sεj+s+t}

cεjFεjω
2
0

≤ Ccεj ||Fεj ||Lp(M,ω2
0)Volω0({uεj < Sεj + s+ t})

1
q

for some uniform constant C > 0 independent of εj (Remark 3.3.1), where 1
p

+ 1
q

= 1.
Hence for fixed 0 < s = t < δ0, we obtain

capω̃εj ({uεj < Sεj + s}) ≤
Ccεj
s2
||Fεj ||Lp(M,ω2

0)Volω0({uεj < Sεj + 2s})
1
q

≤
C ′cεj
s2

Volω0(M)
1
q =: C0(M)cεjs

−2

for some uniform constant C ′ > 0, where we used that ||Fεj ||Lp(M,ω2
0) is uniformy bounded

from above (lemma 3.3.5) and we put C0(M) := C ′Volω0(M)
1
q > 0.

Then from Proposition 2.5.4, for any j ≥ j̃0,

0 < s ≤ κj(capω̃εj ({uεj < Sεj + s}))

≤ κj(C0(M)cεjs
−2)

≤ C̃c
1
2
εj ||Fεj ||

1
2

Lp(M,ω2
0)

exp
( −ãs

C0(M)
1
2 c

1
2
εj

)
≤ C̃ ′c

1
2
εj exp

( −ãs

C0(M)
1
2 c

1
2
εj

)
for some uniform positive constants C̃, ã and C̃ ′, where we used that ||Fεj ||

1
2

Lp(M,ω2
0)

is

uniformy bounded from above. If cεj → 0 as j →∞, then

0 < s ≤ C̃ ′c
1
2
εj exp

( −ãs

C0(M)
1
2 c

1
2
εj

)
→ 0.

This is a contradiction, and therefore cεj must be uniformly bounded away from 0.
For the uniform upper bound, we use the pointwise arithmetic-geometric means in-

equality and which implies that we have

(ω̃εj +
√
−1∂∂̄uεj) ∧ (π∗ωN − εjRh) ≥

((ω̃εj +
√
−1∂∂̄uεj)

2

(π∗ωN − εjRh)2

) 1
2
(π∗ωN − εjRh)

2

= c
1
2
εj(π

∗ωN − εjRh)
2.

Since we have that
∫
M

(π∗ωN − εjRh)
2 > 0 for sufficiently large j, there exists a large

number j′′0 > 0 such that for any j ≥ j′′0 ,∫
M

(π∗ωN − εjRh)
2 > ρN > 0
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for some uniform constant ρN > 0 depending on ωN and j′′0 . We put j̃′0 := max{j0, j
′′
0}.

It follows that for any j ≥ j̃′0,

c
1
2
εj ≤

(∫
M

(π∗ωN − εjRh)
2
)−1

∫
M

(ω̃εj +
√
−1∂∂̄uεj) ∧ (π∗ωN − εjRh)

=
(∫

M

(π∗ωN − εjRh)
2
)−1

∫
M

(ω0 − T Ric(ω0)− εjRh′) ∧ (π∗ωN − εjRh)

≤ Ã′0
ρN

∫
M

ω2
0 =: C

1
2
0,N

for some sufficiently large Ã′0 > 0 depending on ω0 and j̃′0, where we used that π∗ωN−εjRh

are ∂∂̄-closed.

We now arbitrary choose a sufficiently small open set U ⊂M such that we have

√
−1∂∂̄u′′εj = −T Ric(ω0)− εjRh′ +

√
−1∂∂̄u′εj

for the smooth function u′′εj = T logω2
0 + εj log h′ + u′εj on U . Then the equation ([)j for

each j ≥ j0 on U can be rewritten by

(\)j (ω0 +
√
−1∂∂̄u′′εj)

2 = cεjFεjω
2
0.

Since u′εj converges to u′0 in L1(M,ω2
0), we have u′εj → u′0 in L1(U, ω2

0). Hence we have

that {u′′εj}j is a Cauchy sequence in L1(U, ω2
0). Since the righthand side cεjFεj ’s of the

equations (\)j for any j ≥ j̃′0 are uniformly bounded in Lp(M,ω2
0), {u′′εj}j are uniformly

bounded (Corollary 2.5.2) and the sequence {u′′εj}j is Cauchy in C0(U) (Corollary 2.5.3).
Then we have

u′′εj → u′′0 = T logω2
0 + u′0 ∈ PSH(U, ω0) ∩ C0(U)

uniformly on U as j → ∞, which implies that u′εj converges to u′0 uniformly in C0(U)-
topology as j → ∞ on U . Since M is compact, we can cover M with finitly many
sufficiently small open sets. Therefore, we conclude that, on whole M , as j → ∞ uni-
formly,

(♦) u′εj → u′0 = f ′0 + u0 ∈ PSH(ω0 − T Ric(ω0)) ∩ C0(M).

We may normalize uεj by supM uεj = 0. Then, since the righthand side cεjFεj ’s of the

equations (])j are uniformly bounded in Lp(M,ω2
0) for any j ≥ j̃′0, from Corollary 2.5.2

(cf. [30, Corollary 5.6]), there exists a uniform constant H > 0 such that −H ≤ uεj ≤ 0

for j ≥ j̃0. Indeed, as we see in the proof of [48, Corollary 5.6], by applying the L1-
CLN inequality (Proposition 2.5.1) (cf. [17, Proposition 3.11], [44, p.8]) and the capacity
estimate of sublevel sets ([19, Proposition 2.5]), we have

| inf
M
uεj | ≤ s+

C

~j(s)
∑
B

(∫
M

|uεj |ω2
0 +

∫
B
|ψεj |ω2

0

)
for any 0 < s < δ0 for some uniform positive constant C independent of εj, where ~j is the
inverse function of the function κj, and ψεj are the strictly plurisubharmonic functions
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can be chosen locally on a sufficiently small ball B in M such that for each j ≥ j0 they
are smooth, supB ψεj = 0 and satisfy on the small ball B,

√
−1∂∂̄ψεj ≥ ω̃εj .

Since we have that ψεj are plurisubharmonic on the sufficiently small ball B, by applying
Proposition 2.5.2, the functions ψεj are uniformly integrable on B. Since uεj are uniformly
integrable with respect to ω2

0, then by combining with the lower bound of ~j as we observed
before, we obtain the uniform bound for uεj .

We observe this argument for the uniform bound of uεj more specifically below: Let
{Bi(r)}Ii=1 be a finite covering of M for i = 1, 2, . . . , I, where Bi(r) = B(xi, r) is the ball
centered at xi ∈ M of radius r > 0 with Bi(r) ⊂⊂ Bi(2r). We may choose r > 0 small
enough such that for all i = 1, . . . , I, each j ≥ j0, there exist smooth negative strictly
plurisubharmonic functions ψεj ,i on Bi(3r) and ρi on Bi(2r) satisfying that

sup
Bi(2r)

ψεj ,i = 0,
√
−1∂∂̄ψεj ,i ≥ ω̃εj on Bi(2r),

and
ρi|∂Bi(2r) = 0, inf

Bi(2r)
ρi ≥ −C1,

√
−1∂∂̄ρi ≥ ω0 on Bi(2r),

where C1 > 0 is a constant depending only on the covering and ω0.
Then, since ψεj ,i ∈ PSH(Bi(2r), ω0), thanks to Proposition 2.5.2, we have∫

Bi(2r)

|ψεj ,i|ω2
0 ≤ Ci,r

for some constant Ci,r > 0 independent of εj. Fix a function v ∈ PSH(M,ω0), 0 ≤ v ≤ 1,
then we have for sufficiently small s > 0, Sεj = infM uεj ,∫
{ 1
s
uεj<

1
s
Sεj+s}

(ω0 +
√
−1∂∂̄v)2 ≤ 1

|1
s
Sεj + s|

∫
M

|1
s
uεj |(ω0 +

√
−1∂∂̄v)2

≤ 1

|1
s
Sεj + s|

( I∑
i=1

∫
Bi(r)

|1
s
uεj |(
√
−1∂∂̄(ρi + v))2

)
≤ 1

|1
s
Sεj + s|

( I∑
i=1

∫
Bi(r)

|1
s
uεj +

1

s
ψεj ,i|(

√
−1∂∂̄(ρi + v))2

)
≤

I∑
i=1

CBi(r),Bi(2r)

|1
s
Sεj + s|

||1
s
uεj +

1

s
ψεj ,i||L1(Bi(2r))||ρi + v||2L∞(Bi(2r))

,

where notice that 1
s
uεj + 1

s
ψεj ,i, ρi + v belongs to PSH(Bi(2r)), so we applied the L1-CLN

inequality (Proposition 2.5.1) at the last line. Since ρi, v are uniformly bounded,

||ρi + v||2L∞(Bi(2r))
≤ CBi(2r)
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for some constant CBi(2r) > 0 depends only on ω0 and Bi(2r). Then we have∫
{ 1
s
uεj<

1
s
Sεj+s}

(ω0 +
√
−1∂∂̄v)2 ≤

I∑
i=1

C ′Bi(r),Bi(2r)

|1
s
Sεj + s|

||1
s
uεj +

1

s
ψεj ,i||L1(Bi(2r)),

where we put C ′Bi(r),Bi(2r) := CBi(r),Bi(2r)CBi(2r). Taking supremum over v, we obtain

capω0
({1

s
uεj <

1

s
Sεj + s}) ≤

I∑
i=1

C ′Bi(r),Bi(2r)

|1
s
Sεj + s|

||1
s
uεj +

1

s
ψεj ,i||L1(Bi(2r)).

We compute for 0 < s < δ0,

s2

∫
{ 1
s
uεj<

1
s
Sεj+s}

(1

s
ω̃εj +

√
−1∂∂̄

(uεj − Sεj
s

))2

=

∫
{ 1
s
uεj<

1
s
Sεj+s}

(ω̃εj +
√
−1∂∂̄uεj)

2

= cεj

∫
{ 1
s
uεj<

1
s
Sεj+s}

(π∗ωN − εjRh)
2

≤ Â0C0,N

∫
{ 1
s
uεj<

1
s
Sεj+s}

ω2
0

≤ Â0C0,Ncapω0
({1

s
uεj <

1

s
Sεj + s})

for some large constant Â0 > 0 depending on ω0 and j0, where we used that cεj ≤ C0,N .

Since 0 ≤ uεj−Sεj
s

< s < δ0 < 1 on the set {1
s
uεj <

1
s
Sεj + s} and

uεj−Sεj
s
∈ PSH(

ω̃εj
s

),
by taking supremum, we obtain

cap 1
s
ω̃εj

({1

s
uεj <

1

s
Sεj + s}) ≤ Â0C0,N

s2
capω0

({1

s
uεj <

1

s
Sεj + s}).

We note that by defining the admissible functioon hj,s for each j ≥ j0 by

(♥)j,s hj,s(x) := Cs2c−1
εj
||Fεj ||−1

Lp(M,ω2
0)

exp(ax)

for some constant C > 0 and some number a > 0 depending only on M , ω0, and also
defining

Fhj,s(x) :=
x

hj,s(x
− 1

2 )
,

then from Corollary 2.5.1,

(])j,s (
1

s
ω̃εj +

√
−1∂∂̄(

1

s
uεj))

2 = cεjFεjs
−2ω2

0

satisfies the inequality (♣) ω̃εj
s

:

∫
D

(
1

s
ω̃εj +

√
−1∂∂̄(

1

s
uεj))

2 ≤ Fhj,s(cap 1
s
ω̃εj

(D))
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for any Borel set D ⊂M from the estimate in (?). We then define

κj,s(s
1
2 ) := 4C2

( 1

hj,s(s)
1
2

+

∫ ∞
s

dx

xhj,s(x)
1
2

)
,

with a dimensional constant C2. By the definition of the admissible function hj,s in (♥)j,s,
we compute and obtain that

κj,s(x) ≤ C̃s−1c
1
2
εj ||Fεj ||

1
2

Lp(M,ω2
0)

exp(−ãx−
1
2 )

for some uniform constants C̃, ã > 0 independent of εj. As κj,s is an increasing function,
its inverse function ~j,s satisfies

~j,s(x) ≥
(1

ã
log
(C̃s−1c

1
2
εj ||Fεj ||

1
2

Lp(M,ω2
0)

x

))−2

.

Therefore, since we may apply Proposition 2.5.4 to (1
s
ω̃εj +

√
−1∂∂̄(1

s
uεj))

2 for j ≥ j̃0

with the equations (])j,s, ω = 1
s
ω̃εj , ϕ = 1

s
uεj and ψ = 0, then we have

~j,s(s) ≤ cap 1
s
ω̃εj

({1

s
uεj <

1

s
Sεj + s})

≤ Â0C0,N

s2
capω0

({1

s
uεj <

1

s
Sεj + s})

≤ Â0C0,N

s2|1
s
Sεj + s|

I∑
i=1

C ′Bi(r),Bi(2r)

(∫
Bi(2r)

|1
s
uεj |ω2

0 +

∫
Bi(2r)

|1
s
ψεj ,i|ω2

0

)
≤ Â0C0,N

s2|1
s
Sεj + s|

IC ′B(r),B(2r)

1

s

(∫
M

|uεj |ω2
0 + Cr

)
,

where C ′B(r),B(2r) := max1≤i≤I C
′
Bi(r),Bi(2r)

and Cr := max1≤i≤I Ci,r. Since we have that∫
M
|uεj |ω2

0 ≤ Ĉ for some uniform constant Ĉ > 0, and that c0 ≤ cεj ≤ C0,N for j ≥ j̃′0, we

finally obtain for any j ≥ j̃′′0 := max{j̃0, j̃
′
0},

|Sεj | ≤ s2 +
Â0C0,NIC

′
B(r),B(2r)

s2~j,s(s)
(Ĉ + Cr)

≤ δ2
0 +

1

s2
Â0C0,NIC

′
B(r),B(2r)(Ĉ + Cr)

(1

ã
log
(C̃ ′
s2

))2

< +∞,

uniformly bounded independent of εj, where we used the following estimate:

1

~j,s(s)
≤
(1

ã
log
(C̃s−1c

1
2
εj ||Fεj ||

1
2

Lp(M,ω2
0)

s

))2

≤
(1

ã
log
(C̃ ′
s2

))2

for some uniform positive constants C̃, ã and C̃ ′.

55



Hence, we conclude that uεj for j ≥ j̃′′0 are uniformly bounded and so by rescaling, we
may assume that −1 ≤ uεj ≤ 0. We define

Ukj := inf
M

(uεk − uεj) ≤ 0.

Suppose that Ukj does not converge to 0 as k, j →∞. Then there exists 0 < τ < 1 such
that

Ukj ≤ −4τ

for arbitrary chosen large k 6= j. We choose sufficiently large numbers k̃0, k̃′0 and k̃′′0 in
the same way as the numbers j̃0, j̃′0 and j̃′′0 in Lemma 3.3.2 and in Lemma 3.3.6 and the
argument above respectively. We define m(τ) := infM(uεk − (1− τ)uεj),

U(τ, s) := {uεk < (1− τ)uεj +m(τ) + s}

and τ0 := 1
3

min{τ 2, τ3

16B
, 4(1 − τ)τ 2, 4(1 − τ) τ3

16B
}. Obviously we have m(τ) ≤ Ukj. From

Remark 2.5.1, we have for any 0 < s, t < τ0 and k ≥ k̃′0,

t2capω̃εk (U(τ, s)) ≤ C

∫
U(τ,s+t)

(ω̃εk +
√
−1∂∂̄uεk)

2

= Ccεk

∫
U(τ,s+t)

Fεkω
2
0

≤ CC0,N ||Fεk ||Lp(M,ω2
0)

(∫
U(τ,s+t)

ω2
0

) 1
q

for some uniform constant C > 0 independent of εj (Remark 3.3.1), where 1
p

+ 1
q

= 1 and

we used that cεk ≤ C0 for k ≥ k̃′0.
We can observe the following inclusions hold:

U(τ, s+ t) ⊂ {uεk < uεj + Ukj + τ + s+ t} ⊂ {uεk < uεj − τ} ⊂ {|uεk − uεj | > τ}.

Then we obtain

t2capω̃εk (U(τ, s)) ≤ CC0,N ||Fεk ||Lp(M,ω2
0)

(∫
{|uεk−uεj |>τ}

ω2
0

) 1
q

≤ CC0,N

τ
1
q

||Fεk ||Lp(M,ω2
0)

(∫
M

|uεk − uεj |ω2
0

) 1
q
.

For fixed 0 < s = t = s0 < τ0, from Proposition 2.5.4, we have for k ≥ k̃′′0 ,

s0 ≤ κk(capω̃εk (U(τ, s)))

≤ κk

(CC0,N

s2
0τ

1
q

||Fεk ||Lp(M,ω2
0)

(∫
M

|uεk − uεj |ω2
0

) 1
q
)

≤ κk

( C ′

s2
0τ

1
q

(∫
M

|uεk − uεj |ω2
0

) 1
q
)

≤ C̃c
1
2
εk ||Fεk ||

1
2

Lp(M,ω2
0)

exp
(
− ãs0τ

1
2q

(C ′)
1
2

(∫
M

|uεk − uεj |ω2
0

)− 1
2q
)
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for some uniform positive constants C̃, ã, C ′, where we used that ||Fεk ||Lp(M,ω2
0) is uniformly

bounded from above and the functions κk are increasing.
Recall that the sequence {uεj}j is Cauchy in L1(M,ω2

0). Since we have that ||Fεk ||Lp(M,ω2
0)

is uniformly bounded from above and that c
1
2
εk ≤ C

1
2
0,N for k ≥ k̃′0, then we obtain for some

uniform constant C̃ ′ > 0,

0 < s0 ≤ C̃ ′ exp
(
− ãs0τ

1
2

(C ′)
1
2

(∫
M

|uεk − uεj |ω2
0

)− 1
2q
)
→ 0

as k, j → ∞, which is obviously a contradiction. Hence we have Ukj → 0 as k, j → ∞.
Therefore we obtain

|uεk − uεj | ≤ 2|Ukj| → 0

as k, j → ∞, which indicates that the sequence {uεj}j is Cauchy in C0(M) and u0 ∈
C0(M). Thus, from the convergence result (♦), we have f ′0 ∈ PSH(ω0−T Ric(ω0))∩C0(M)
and then we obtain

||f ′0||C0(M) ≤ C

for some constant C > 0. Therefore, we obtain the following result under the assumptions
in Theorem 3.1.1:

Proposition 3.3.1. We can choose a uniform positive constant C such that

(‡)′ 1

C
(π∗ωN − εjRh) ≤ ω̃εj ≤ C(π∗ωN − εjRh)

holds in the weak sense of currents on M .

From the inequality (‡)′, by restricting on E, we have

1

C
εj(−Rh)|E =

1

C
εjωFS ≤ ω̃εj |E ≤ CεjωFS = Cεj(−Rh)|E

in the weak sense of currents. Now we define

ω̃0 := ω0 − T Ric(ω0) +
√
−1∂∂̄f ′0

as a positive current by the clasical distribution theory. Then we must have∫
E

ϕω̃εj →
∫
E

ϕω̃0 = 0

as j →∞ for any test function ϕ ∈ C∞0 (E). Hence, we have

ω̃0|E = (ω0 − T Ric(ω0) +
√
−1∂∂̄f ′0)|E = 0

in the weak sense of currrents on E.
After passing a subsequence {εji}i, by letting i → ∞ in ([)ji , since u0, f

′
0 ∈ C0(M)

and we have that cεji → c2 for some constant c > 0 from the uniform estimate in Lemma
3.3.6, we obtain

(ω̃0 +
√
−1∂∂̄u0)2 = (cπ∗ωN)2
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on M as currents. Then we obtain (ω̃0 +
√
−1∂∂̄u0)|E = 0 on E as a current. Since we

have ω̃0|E = 0 as a current, we obtain

√
−1∂∂̄u0|E = 0

on E as a current.
Notice that since we have assumed that E is the only one (−1) curve on M and we

have a biholomorphism π|M\E : M \ E
∼=→ N \ {y0}, we may identify forms, metrics and

functions on M \ E and N \ {y0}. Then we have that (ω̃0 +
√
−1∂∂̄u0)2 = (cωN)2 on

M \ E as currents.
For an arbitrary chosen point p ∈M \ E, we choose sufficiently small open neighbor-

hood U of p. We may assume that cωN − (ω̃0 +
√
−1∂∂̄u0) is a positive current on U (If it

is not possible for any sufficiently small U , we consider ω̃0 +
√
−1∂∂̄u0−cωN and choose a

sufficiently small open neighborhood U so that ω̃0 +
√
−1∂∂̄u0− cωN is a positive current

on U). Then (in either case), (cωN − (ω̃0 +
√
−1∂∂̄u0))2 is also a positive current on U

and we have for any ϕ ∈ C∞0 (U) with ϕ ≥ 0 on U ,∫
U

ϕ(cωN − (ω̃0 +
√
−1∂∂̄u0))2 ≥ 0.

On the other hand, using the equality (ω̃0 +
√
−1∂∂̄u0)2 = (cωN)2 on N \ {y0}, we can

find a unitary frame θ1 and θ2 with respect to (cωN , J), where J is the complex structure,
at a fixed point p0 ∈ U , so that

cωN =
√
−1θ1 ∧ θ̄1 +

√
−1θ2 ∧ θ̄2, ω̃0 +

√
−1∂∂̄u0 =

√
−1λθ1 ∧ θ̄1 +

√
−1

λ
θ2 ∧ θ̄2

for some positive constant λ. Additionally, we have

(cωN − (ω̃0 +
√
−1∂∂̄u0))2 = (cωN)2

(
2−

(
λ+

1

λ

))
≤ 0,

with equality if and only if λ = 1.
Then by combining these, we must have ω̃0 +

√
−1∂∂̄u0 = cωN as currents on U . Since

the choice of a point p ∈M \ E was arbitrary, we obtain

ω̃0 +
√
−1∂∂̄u0 = cωN

as currents on whole M \ E. The similar argument can be seen in [67].
We compute that for an arbitrary chosen open set U ⊂M \E, for an arbitrary chosen
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test function ϕ ∈ C∞0 (U) and the function u′0 = f ′0 + u0 ∈ C0(M),∣∣∣ ∫
U

ϕ
√
−1∂u′0 ∧ ∂̄u′0

∣∣∣ =
∣∣∣− ∫

U

u′0
√
−1∂ϕ ∧ ∂̄u′0 −

∫
U

ϕu′0
√
−1∂∂̄u′0

∣∣∣
=

∣∣∣− 1

2

∫
U

√
−1∂ϕ ∧ ∂̄(u′0)2 −

∫
U

ϕu′0
√
−1∂∂̄u′0

∣∣∣
=

∣∣∣1
2

∫
U

(u′0)2
√
−1∂∂̄ϕ−

∫
U

ϕu′0
√
−1∂∂̄u′0

∣∣∣
≤ 1

2
||u′0||2C0(M)

∣∣∣ ∫
U

√
−1∂∂̄ϕ

∣∣∣+ ||u′0||C0(M)

∣∣∣ ∫
U

ϕ
√
−1∂∂̄u′0

∣∣∣
=

1

2
||u′0||2C0(M)

∣∣∣ ∫
U

√
−1∂∂̄ϕ

∣∣∣
+||u′0||C0(M)

∣∣∣ ∫
U

ϕ(T Ric(ω0)− ω0 + cωN)
∣∣∣

≤ CU(||u′0||2C0(M) + ||u′0||C0(M)) <∞

for some positive constant CU = C(U, ω0, ωN), where we used that we have

√
−1∂∂̄u′0 = T Ric(ω0)− ω0 + cωN

as currents on M \E. It follows that we have u′0 ∈ W 1,2(M \E) since U is chosen arbitrary.
From the equality ω̃0 +

√
−1∂∂̄u0 = cωN ,

∆0u
′
0 = −trω0(ω0 − T Ric(ω0)− cωN) =: FM\E

holds in the weak sense of currents on M \ E for (g0)ij̄|M\E, FM\E ∈ C∞(M \ E) and
u′0 ∈ W 1,2(M \ E), where ∆0 is the Laplacian of ω0, and ω0 =

√
−1
∑

i,j(g0)ij̄dz
i ∧ dz̄j

in local coordinates. Then, by applying the regularity theory for weak solutions (cf. [25,
Theorem 8.10]), we have u′0 ∈ Wm,2(M \E) for any m ∈ N, and by the Sobolev imbedding
theorem (cf. [25, Corollary 7.11, Corollary 8.11]), we have u′0 ∈ C∞(M \ E).

We similarly compute for arbitrary chosen open set V ⊂ E, for an arbitrary chosen
test function ϕ ∈ C∞0 (V )∣∣∣ ∫

V

ϕ
√
−1∂f ′0 ∧ ∂̄f ′0

∣∣∣ =
∣∣∣1
2

∫
V

(f ′0)2
√
−1∂∂̄ϕ−

∫
V

ϕf ′0
√
−1∂∂̄f ′0

∣∣∣
≤ 1

2
||f ′0||2C0(M)

∣∣∣ ∫
V

√
−1∂∂̄ϕ

∣∣∣+ ||f ′0||C0(M)

∣∣∣ ∫
V

ϕ
√
−1∂∂̄f ′0

∣∣∣
=

1

2
||f ′0||2C0(M)

∣∣∣ ∫
V

√
−1∂∂̄ϕ

∣∣∣+ ||f ′0||C0(M)

∣∣∣ ∫
V

ϕ(T Ric(ω0)− ω0)
∣∣∣

≤ CV (||f ′0||2C0(M) + ||f ′0||C0(M)) <∞

for some positive constant CV = C(V, ω0), where we used that we have

√
−1∂∂̄f ′0 = T Ric(ω0)− ω0
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as currents on E. It follows that we have f ′0 ∈ W 1,2(E) since V is chosen arbitrary.
Symmetrically, with using that we have as currents on E,

√
−1∂∂̄u0|E = 0, we obtain the

following estimate for any open set V ⊂ E:∣∣∣ ∫
V

ϕ
√
−1∂u0 ∧ ∂̄u0

∣∣∣ ≤ C ′V ||u0||2C0(M) <∞

for some positive constant C ′V . Hence, we also have u0 ∈ W 1,2(E).
From ω̃0|E = 0 in the weak sense on E, the following equation

∆0f
′
0 = −trω0(ω0 − T Ric(ω0)) =: FE

holds in the weak sense of currents on E for f ′0 ∈ W 1,2(E) and (g0)ij̄|E, FE ∈ C∞(E). By
applying the regularity theory for weak solutions, we have f ′0 ∈ Wm,2(E) for any m ∈ N,
and by the Sobolev imbedding theorem, we have f ′0 ∈ C∞(E).

From
√
−1∂∂̄u0|E = 0 in the weak sense on E, the following equation

∆0u0 = 0

holds in the weak sense of currents on E for u0 ∈ W 1,2(E) and (g0)ij̄|E ∈ C∞(E). By
applying the regularity theory for weak solutions, we have u0 ∈ Wm,2(E) for any m ∈ N,
and by the Sobolev imbedding theorem, we have u0 ∈ C∞(E) and u0|E is a constant
function on E since E is compact.

Hence, combining these, we have u′0 = f ′0 + u0 ∈ C∞(E) and then together with
u′0 ∈ C∞(M \ E), we obtain that

u′0 ∈ C∞(M).

As a consequence, there exist a smooth function u′0 on M and a Gauduchon metric ω̂N
on N such that

ω0 − T Ric(ω0) +
√
−1∂∂̄u′0 = π∗ω̂N ,

where ω̂N = cωN .
Therefore, we conclude that we can remove the assumption (†) from the convergence

theorem in the Gromov-Hausdorff sense in [70, Theorem 1.3] on a non-Kähler compact
complex surface.
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Chapter 4

Continuity of the Chern-Ricci flow
after the singular time
on non-Kähler
compact complex surfaces

4.1 Continuous existence on the space-time region

Let M be a non-Kähler compact complex surface, and let ω0 be a Gauduchon metric on
M . The Chern-Ricci flow ω(t) starting at ω0 is a flow of Gauduchon metrics

∂
∂t
ω(t) = −Ric(ω(t)),

ω(t)|t=0 = ω0,

for t ∈ [0, T ) where T = T (ω0) is a finite singular time with 0 < T ≤ ∞ stated by

T = sup{t ≥ 0|∃ψ ∈ C∞(M) with ω0 − tRic(ω0) +
√
−1∂∂̄ψ > 0},

where Ric(ω0) is the Chern-Ricci form associated to ω0. It was shown that a unique
maximal solution of the Chern-Ricci flow ω(t) for t ∈ [0, T ) for a number T ∈ (0,∞]
determined by ω0. If the volume of M with respect to ω(t) tends to zero as t → T , we
say that ω(t) is collapsing at T . Otherwise, we say that ω(t) is non-collapsing at T .

Let N be a non-Kähler compact complex surface and π be a blow-down map of disjoint
irreducible finitely many (−1)-curves to some points. For simplicity, we consider the map
π blows down the only one (−1)-curve E to a point y0 ∈ N . Note that then we have
M \ E ∼= N \ {y0} biholomorphic via π|M\E. We are going to show that there exists a
smooth solution of the Chern-Ricci flow ω(t) on N for t ∈ (T, T ′] for some T ′ > T , where
T > 0 is the singular time of the Chern-Ricci flow ω(t) on M . Then we can prove that
the Chern-Ricci flow ω(t) can be smoothly connected at time T between [0, T )×M and
(T, T ′]×N , outside T × {y0} ∼= T × E via the map π. We define the space-time region

R := ([0, T )×M) ∪ (T × (N \ {y0})) ∪ ((T, T ′]×N).

We specify the meaning of that ω(t) is smooth on the region R in the following.
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Remark 4.1.1. Consider a family of metrics ω(t, x) for (t, x) ∈ R. For t ∈ [0, T ),
t ∈ (T, T ′], we require ω(t) to be smooth at t in the usual sense, in M,N respectively.
On the other hand, if (t, x) = (T, x) ∈ T × (N \ {y0}) ∼= T × (M \ E), then we choose
a sufficiently small neighborhood U of x in M \ E and we consider ω as a metric on
(T − δ, T + δ)× U for some δ > 0 via the map π. We say ω(t) is smooth at (T, x) if ω(t)
is smooth at (T, x) in (T − δ, T + δ)× U . In the same way, we can define what it means
for ω(t) to satisfy a PDE at an arbitrary point of R.

In this sense, we can continue the Chern-Ricci flow starting at a Gauduchon metric
until we contract all finitely many (−1)-curves on a given non-Kähler compact complex
surface and eventually reach a minimal surface. Additionally, that (N,ω(t)) converge to
(N, dT ) in the Gromov-Hausdorff sense can be shown by the same way as in section 6 in
[59] with using Lemma 3.4 and Lemma 3.5 in [70].

The result of Theorem 3.1.1 indicates that the requirement of the cohomology classes
for the convergence of the Chern-Ricci flow:

(†) [ω0] + TcBC1 (KM) = [π∗ω̂N ]

holds under the assumptions in Theorem 3.1.1. Then, we can say that the Chern-Ricci
flow performs a canonical surgical contraction in the sense of Definition 1.2.5:

Theorem 4.1.1. Let ω(t) be a smooth solution of the Chern-Ricci flow on M starting
at ω0 for t ∈ [0, T ), 0 < T < ∞. Assume that ω(t) is non-collapsing at T . Suppose that
there exists a blow-down map π : M → N contracting the only one (−1)-curve E to the
point y0 ∈ N . Then the Chern-Ricci flow ω(t) performs a canonical surgical contraction
with respect to the data E, N and π.

As considering the definition in [70], in order to say that g(t) performs a canonical
surgical contraction in the sense of [70], it additionally requires to show that (N, dT ) is the
metric completion of (N \ {y0}, dgT ), where these notations are the same as in Defenition
1.2.5. It only suffices to prove that dgT = dT |N\{y0}. In the Kähler case (cf. [60]), this
can be shown with using the fact that any Kähler metrics are locally given by Kähler
potentials. Hence we expect that it requres new techniques in the non-Kähler case.

4.2 Key estimates

We will proceed our argument along the way of Section 5 of [59] and we will state some
of its results in the Hermitian case. Remark that our computations are valid for general
complex dimension n, but we will only focus on surfaces.

From Theorem 3.1.1, we may assume to always have the condition

(†) ω0 − T Ric(ω0) +
√
−1∂∂̄u′0 = π∗ω̂N

for a smooth real function u′0 on M and a Gauduchon metric ω̂N on N . Then the Chern-
Ricci flow

(CRF )
∂

∂t
ω(t) = −Ric(ω(t)), ω(t)|t=0 = ω0
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on M is written with using u′0 and ω̂N in the following way:

ω(t) = ω̂t +
√
−1∂∂̄ϕt,

where ω̂t := 1
T

((T − t)ω0 + tπ∗ω̂N) and ϕt solves the parabolic Monge-Ampère flow:

(MAF )
∂

∂t
ϕt = log

ω(t)2

Ω
, ϕt|t=0 = 0,

with Ω = ω2
0e

u′0
T . Note that ϕt is uniformly bounded from above and below on M × [0, T ).

One can show that the two flows (CRF ) and (MAF ) are essentially equivalent:
If ϕt solves (MAF ), then taking

√
−1∂∂̄ of (MAF ) shows that

√
−1∂∂̄

( ∂
∂t
ϕt

)
=
√
−1∂∂̄ log

ω(t)2

ω2
0

− 1

T

√
−1∂∂̄u′0

= −Ric(ω(t)) + Ric(ω0)− 1

T
π∗ω̂N +

1

T
(ω0 − T Ric(ω0))

= −Ric(ω(t))− ∂

∂t
ω̂t,

which implies we have (CRF ). Conversely, if ω(t) solves (CRF ), then we have

∂

∂t
(ω(t)− ω̂t) = −Ric(ω(t))− 1

T
ω0 +

1

T
π∗ω̂N

=
√
−1∂∂̄

(
log

ω(t)2

ω2
0

− 1

T
u′0

)
=
√
−1∂∂̄ log

ω(t)2

Ω

so if we choose ϕt to solve (MAF ), which is an ODE in t for fixed point on M , then we
obtain

∂

∂t
(ω(t)− ω̂t −

√
−1∂∂̄ϕt) = 0

so that indeed ω(t) = ω̂t +
√
−1∂∂̄ϕt and ϕt satisfies (MAF ).

Since the positive current ω(T ), which is smooth on M ′, can be written by

ω(T ) = π∗ω̂N +
√
−1∂∂̄ϕT ≥ 0,

where ϕT is a bounded function satisfies ϕT |E ≡ constant since we have

√
−1∂∂̄ϕT |E = ω(T )|E ≥ 0

and then we apply the strong maximum principle. Hence, from the properties of the
blow-down map π, there exists a bounded function ψT on N , smooth on N \ {y0}, with
ϕT = π∗ψT . Especially, we have ψT ∈ PSH(N \ {y0}, ω̂N) ∩ C0(N \ {y0}).

We here define a ∂∂̄-closed positive (1, 1)-current ω′ on N by

ω′ := ω̂N +
√
−1∂∂̄ψT ≥ 0,
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which is smooth and positive on N \ {y0} and satisfies π∗ω′ = ω(T ). We have

0 ≤ ω′2

ω̂2
N

∈ Lp(N, ω̂2
N)

for some p > 1 sufficiently close to 1 (cf. [59, Lemma 5.4]) and ω′2 > 0 on N \ {y0}. We
consider the equation

ω′2 = f̂ ω̂2
N

on N \ {y0}, where we put f̂ := ω′2

ω̂2
N

. We normalize ψT such that supN\{y0} ψT = 0. Then

ψT is a unique continuous ω̂N -psh solution of the equation ω′2 = f̂ ω̂2
N on N \ {y0}.

We would like to construct a solution of the Chern-Ricci flow on N starting at the
metric ω′. We fix a smooth d-closed (1, 1) form −χ ∈ cBC1 (N). Then there exists T ′ > T
sufficiently close to T such that for all t ∈ [T, T ′], the following (1, 1)-form

ω̂t,N := ω̂N + (t− T )χ

is Gauduchon. We also fix a smooth volume form ΩN on N satisfying

Ric(ΩN) = −
√
−1∂∂̄ log ΩN = −χ ∈ cBC1 (N).

For ε > 0 sufficiently small, and A sufficiently large, define a family of volume forms
Ωε on N by

Ωε := (π|−1
M ′)
∗
( |s|2Ah ω(T − ε)2

|s|2Ah + ε

)
+ εΩN

on N \{y0}, and Ωε|y0 = εΩN |y0 where s is a holomorphic section with E = (s), where (s)
is a principal divisor defined by s, and h is a smooth Hermitian metric on the holomorphic
line bundle [E] associated to the effective divisor E respectively. Note that Ωε is smooth
on N \ {y0}. By choosing A sufficiently large , the volume form Ωε lies in C l(N) for
a fixed large constant l. And note that Ωε converges to ω′2 in C∞ on any compact
subsets of N \ {y0} as ε → 0. Now, for each ε > 0, by the theorem of Tosatti and
Weinkove (Theorem 2.5.5), there exist a unique constant Cε ∈ R>0 and a unique function
ψT,ε ∈ Ck(N) ∩ C∞(N \ {y0}) for some positive integer k with supN\{y0} ψT,ε = 0 such
that

(ω̂N +
√
−1∂∂̄ψT,ε)

2 = Cεf̂εω̂
2
N ,

where we put f̂ε := Ωε
ω̂2
N

. Since we have 0 ≤ ω′2

ω̂2
N
∈ Lp(N, ω̂2

N) for some p > 1, f̂ε’s are

uniformly bounded in Lp(N, ω̂2
N) for some p > 1. Notice that we can freely rase k by

increasing l and A. The constants Cε > 0 satisfy that Cε → 1 as ε → 0. We define
the admissible function h(x) := CC−1

ε ||f̂ε||−1
Lp(N,ω̂2

N )
exp(ax) for some uniform constants

C, a > 0. Then (ω̂N +
√
−1∂∂̄ψT,ε)

2 satisfies (♣)ω̂N from Proposition 2.5.3, and then we
may apply Proposition 2.5.4.

Lemma 4.2.1. There exists a uniform positive constant C = C(||fε||Lp , N, ω̂N) > 0 such
that

1

C
≤ Cε ≤ C.
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Proof. Fix 0 < δ < 1. Define Sε := infN ψT,ε and

δ0 :=
1

3
min{δ2,

δ3

16B
, 4(1− δ)δ2, 4(1− δ) δ3

16B
}.

Then for 0 < s, t < δ0, we have (Remark 2.5.1)

t2capω̂N ({ψT,ε < Sε + s}) ≤ C

∫
{ψT,ε<Sε+s+t}

Cεf̂εω̂
2
N

≤ CCε||f̂ε||Lp(N,ω̂2
N )Volω̂N ({ψT,ε < Sε + s+ t})

1
q ,

where 1
p

+ 1
q

= 1. Hence for fixed 0 < s = t < δ0, we obtain

capω̂N ({ψT,ε < Sε + s}) ≤ CCε
sn
||f̂ε||Lp(N,ω̂2

N ))Volω̂N ({ψT,ε < Sε + 2s})
1
q

≤ C ′Cε
sn

Volω̂N (N)
1
q =: CεC1s

−n

for some uniform constant C ′ > 0, where we used that ||f̂ε||Lp(N,ω̂2
N )) is uniformly bounded

from above. and then from Proposition 2.5.4,

s ≤ κ(capω̂N ({ψT,ε < Sε + s})) ≤ κ(CεC1s
−n).

Since limx→0+ κ(x) = 0, Cε must be uniformly bounded away from 0.

Since f̂ε → f̂ in L1(N, ω̂2
N), we also have f̂

1
2
ε → f̂

1
2 in L1(N, ω̂2

N). Since we have∫
N
f̂

1
2 ω̂2

N > 0, for ε sufficiently small, we obtain∫
N

f̂
1
2
ε ω̂

2
N >

1

2

∫
N

f̂
1
2 ω̂2

N > 0.

By the pointwise arithmetic-geometric means inequality implies that

(ω̂N +
√
−1∂∂̄ψT,ε) ∧ ω̂N ≥

((ω̂N +
√
−1∂∂̄ψT,ε)

2

ω̂2
N

) 1
2
ω̂2
N = (Cεf̂ε)

1
2 ω̂2

N .

It follows that for sufficiently small ε,

C
1
2
ε ≤

2∫
N
f̂

1
2 ω̂2

N

∫
N

(ω̂N +
√
−1∂∂̄ψT,ε) ∧ ω̂N =

2∫
N
f̂

1
2 ω̂2

N

∫
N

ω̂2
N ,

where we used the Stokes theorem and that ω̂N is Gauduchon.

Suppose that there exists a subsequence Cεk → c 6= 1 as k → ∞. Consider the
equation

(ω̂N +
√
−1∂∂̄ψT,εk)

2 = Cεk f̂εk ω̂
2
N .

Then since the family {ψT,εk ∈ PSH(ω̂N)∩C0(N \ {y0}); supN\{y0} ψT,εk = 0} is relatively

compact in L1(N \{y0}, ω̂2
N), after passing a subsequence, still write ψT,εk , since Cεk f̂εk are

uniformly bounded in Lp(N, ω̂2
N) for some p > 1 sufficiently close to 1, we have that {ψT,εk}
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is a Cauchy sequence in C0(N \ {y0}) (Corollary 2.5.3). This means that ψT,εk → ψ′T for
some ψ′T ∈ PSH(ω̂N)∩C0(N \ {y0}) in C0(N \ {y0})-topology with supN\{y0} ψ

′
T = 0. By

the Bedford-Taylor convergence theorem (Theorem 2.5.1), we obtain by taking the limit
on N \ {y0}, since ψT is the unique solution of the equation (ω′)2 = f̂ ω̂2

N ,

(ω′)2 = (ω̂N +
√
−1∂∂̄ψ′T )2 = cf̂ ω̂2

N = c(ω′)2,

which is a contradiction. Hence we conclude that Cε → 1 as ε→ 0.
For the following two equations

(ω̂N +
√
−1∂∂̄ψT )2 =

ω′2

ω̂2
N

ω̂2
N , (ω̂N +

√
−1∂∂̄ψT,ε)

2 =
CεΩε

ω̂2
N

ω̂2
N ,

we apply the stability theorem:

Proposition 4.2.1. ([50, Theorem A.])Let (Xn, ω) be a compact n-dimensional Hermi-
tian manifold. Let 0 ≤ f, g ∈ Lp(X,ωn), p > 1, be such that

∫
X
fωn > 0,

∫
X
gωn > 0.

Consider two continuous ω-psh solutions of the complex Monge-Ampère equation

(ω +
√
−1∂∂̄u)n = fωn, (ω +

√
−1∂∂̄v)n = gωn

with supX u = supX v = 0. Assume that f that

f ≥ c0 > 0

for some uniform positive constant c0 > 0. Fix 0 < α < 1
n+1

. Then, there exists a positive
constant C = C(c0, α, ||f ||Lp , ||g||Lp) > 0 such that

||u− v||L∞ ≤ C||f − g||αLp .

Now we apply Proposition 4.2.1 for X = N \ {y0}, u = ψT,ε, v = ψT , f = CεΩε
ω̂2
N

and

g = ω′2

ω̂2
N

, since we have 0 ≤ ω′2

ω̂2
N
, CεΩε
ω̂2
N
∈ Lp(N, ω̂2

N) for some p > 1 and (ω′)2 > 0 on N \{y0},
which indicates that we can choose a uniform constant c0 > 0 independent of ε such that

CεΩε

ω̂2
N

≥ c0 > 0.

Then we obtain, for arbitrary fixed 0 < α < 1
3
,

||ψT,ε − ψT ||L∞(N\{y0}) ≤ C
∣∣∣∣∣∣CεΩε

ω̂2
N

− ω′2

ω̂2
N

∣∣∣∣∣∣α
Lp(N\{y0})

.

Hence ψT,ε converges to ψT on N \ {y0} in L∞-topology as ε → 0. It follows that we
obtain that as ε→ 0,

||ψT,ε − ψT ||L∞(N) = sup
N
|ψT,ε − ψT | = sup

N\{y0}
|ψT,ε − ψT | → 0.

Thus we have that ψT ∈ PSH(N, ω̂N) ∩ C0(N) with supN ψT = 0.
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With using the regularity of the functions ψT,ε, we can show the following result for
solutions ϕε = ϕε(t) of the parabolic complex Monge-Ampère equations

∂

∂t
ϕε = log

(ω̂t,N +
√
−1∂∂̄ϕε)

2

ΩN

, for t ∈ [T, T ′], ϕε|t=T = ψT,ε,

which is equivalent to the Chern-Ricci flow

∂

∂t
ωε(t) = −Ric(ωε(t)), for t ∈ [T, T ′], ωε(T ) = ωT,ε

where ωε = ωε(t) := ω̂t,N +
√
−1∂∂̄ϕε and ωT,ε := ω̂N +

√
−1∂∂̄ψT,ε. Then we obtain the

following results as in [59].

Proposition 4.2.2. ([59, Proposition 5.1])
There exists a function ϕ ∈ C0([T, T ′]×N) ∩ C∞((T, T ′]×N) such that

(1) ||ϕε||L∞ ≤ C for some uniform constant C > 0 for all ε > 0 sufficiently small.

(2) ϕε → ϕ in L∞([T, T ′]×N).

(3) The convergence ϕε → ϕ is C∞ on compact subsets of (T, T ′]×N .

(4) ϕ is the unique solution of

∂

∂t
ϕ = log

(ω̂t,N +
√
−1∂∂̄ϕ)2

ΩN

, ϕ|t=T = ψT

for t ∈ (T, T ′] in the space C0([T, T ′]×N) ∩ C∞((T, T ′]×N).

We take advantage of the following result:

Proposition 4.2.3. ([54,Theorem 1.1, Corollary 1.2.])
Fix r with 0 < r < 1. Let ω(t) solve the Chern-Ricci flow for t ∈ [0, T0], T0 <∞, starting
at ω0; a Hermitian metric on a Hermitian manifold M , in a neighborhood of Br, which is
the ball of radius r at the origen in Cn, for t ∈ [0, T0]. Assume R > 1 satisfies

1

R
ω0 ≤ ω(t) ≤ Rω0 on Br × [0, T0].

Then there exist positive constants C, α, β depending only on ω0 such that

(1) |∇0ω|2ω ≤ CRα

r2
on B r

2
× [0, T0], where ∇0 is the Chern connection of ω0.

(2) |Rm|2ω ≤ CRβ

r4
on B r

4
× [0, T0], for Rm the Chern curvature tensor of ω.

(3) For any δ > 0 with 0 < δ < T0, there exist constants Cm, αm and γm for m =
1, 2, 3, . . . depending only on ω0 and δ such that

|(∇0
R)mω|2ω0

≤ CmR
αm

rγm
on B r

8
× [δ, T0],

where ∇0
R is the Levi-Civita covariant derivative associated to ω0.
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For the metric ωT,ε, which is smooth away from y0, we have the following estimate:

Lemma 4.2.2. For all sufficiently small ε > 0, there exist positive uniform constants C,
α, independent of such ε, such that on N \ {y0},

|s|2αh
C

ω̂N ≤ ωT,ε ≤
C

|s|2αh
ω̂N .

Fix a large positive integer K. Then for each integer 0 ≤ k ≤ K there exist Ck, αk > 0
such that

|(∇̂N
R )kωT,ε|2ω̂N ≤

Ck

|s|2αkh

,

where ∇̂N
R denotes the real Levi Civita covariant derivative with respect to the metric ω̂N .

Remark 4.2.1. We identify a small neighborhood of y0 ∈ Y with a small ball B centered
at the origin of C2. From the property of the blow-down map π, we identify via π the sets
π−1(B \ {0}) and B \ {0}, and for the various functions and (1, 1)-forms on these sets.
For instance, we write |s|2αh as (π|−1

M\E)∗(|s|2αh ) for simplicity.

Proof. We fix arbitrary sufficiently small real numbers ε0 and δ with ε0 > δ > 0 and
consider ε ∈ [δ, ε0]. From the definition of Ωε, ω

2
T,ε = CεΩε, together with

(∗) |s|2ηh
C

ω0 ≤ ω(t) ≤ C

|s|2ηh
ω0

for t ∈ [0, T ) and for some uniform positive constants C, η, where ω(t) = ω̂t +
√
−1∂∂̄ϕt,

ω̂t = 1
T

((T − t)ω0 + tπ∗ω̂N) (cf. [54, Theorem 1.1] and [59 ,Lemma 2.5]), we have, for

Fε := log
ω2
T,ε

ω̂2
N

= log
CεΩε

ω̂2
N

,

∣∣∣∆̂Fε∣∣∣ =
∣∣∣∆̂ log

(ω2
T,ε

ω̂2
N

)∣∣∣ =
∣∣∣− trω̂N Ric(Ωε) + trω̂N Ric(ω̂N)

∣∣∣ ≤ C

|s|2βh
for some uniform constants β, C > 0, where ∆̂ for the Laplacian with respect to ĝ (cf.
[59,Lemma 5.3]).

By choosing local coordinates (z1, z2), then locally we will write ωT,ε =
√
−1gij̄dz

i∧dz̄j,
ω̂N =

√
−1ĝij̄dz

i ∧ dz̄j. We write ∇, ∇̂ for the Chern connections associated to g, ĝ
respectively. We also write ∆ for the Laplacian of g.

Then we can estimate (cf. [72, Proposition 3.1])

∆ log trĝg ≥ − 2

(trĝg)2
Re
(
gkl̄T̂ iki∇̂l̄trĝg

)
− Ctrgĝ −

1

trĝg
trĝ Ric(g)

≥ − 2

(trĝg)2
Re
(
gkl̄T̂ iki∇̂l̄trĝg

)
− Ctrgĝ −

1

trĝg

C

|s|2βh
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for some uniform constants β, C > 0, where T̂ is the torsion tensor of ĝ and Ric(g) is the
second Ricci tensor with respect to g and we used that |∆̂Fε| ≤ C

|s|2βh
for estimating

∣∣∣trĝ Ric(g)
∣∣∣ ≤ C

|s|2βh

for some constant C > 0. Here note that we will write Ric1, Ric for the first Ricci tensor
and the second Ricci tensor with respect to g:

(Ric1)kl̄ = gij̄Rij̄kl̄, Ricij̄ = gkl̄Rij̄kl̄.

We define

Q := log trĝg − Aψ̃T,ε +
1

ψ̃T,ε + C̃

for sufficiently large A,α > 0, where ψ̃T,ε := ψT,ε − 1
A

log |s|2αh and C̃ is a constant such

that ψ̃T,ε + C̃ ≥ 1. Since Q → −∞ as x → y0, we may assume that Q achieves its

maximum at a point x0 ∈ N \{y0}. Note that we may assume that trĝg ≥ 1 and |s|2βh ≤ 1
at x0.

At the point x0, we have

1

trĝg
∇̂l̄trĝg =

(
A+

1

(ψ̃T,ε + C̃)2

)
∂l̄ψ̃T,ε.

We compute at x0,

0 ≥ ∆Q ≥ − 2

(trĝg)2
Re
(
gkl̄T̂ iki∇̂l̄trĝg

)
− Ctrgĝ −

C

|s|2βh

−
(
A+

1

(ψ̃T,ε + C̃)2

)
trg(g − ĝ +

α

A
Rh) +

2|∂ψ̃T,ε|2g
(ψ̃T,ε + C̃)3

≥ (−C + Ac0)trgĝ −
CA

|s|2βh

for some constant CA > 0, where we used that for an arbitrary fixed constant 1 > c0 > 0,
ĝ− α

A
Rh ≥ c0ĝ for sufficiently large A, Rh is the curvature of the smooth Hermitian metric

h given locally by
Rh = −

√
−1∂∂̄ log h.

Remark that we have
√
−1∂∂̄ log h =

√
−1∂∂̄ log |s|2h away from y0. And we also estimated

in the following way:

(f)
∣∣∣ 2

(trĝg)2
Re
(
gkl̄T̂ iki∇̂l̄trĝg

)∣∣∣ ≤ ∣∣∣ 2

trĝg
Re
((
A+

1

(ψ̃T,ε + C̃)2

)
gkl̄T̂ iki∂l̄ψ̃T,ε

)∣∣∣
≤

|∂ψ̃T,ε|2g
(ψ̃T,ε + C̃)3

+ CA2(ψ̃T,ε + C̃)3 trgĝ

(trĝg)2
.
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Since we may assume that (trĝg)2 ≥ A2(ψ̃T,ε + C̃)3, we have

− 2

(trĝg)2
Re
(
gkl̄T̂ iki∇̂l̄trĝg

)
≥ −

|∂ψ̃T,ε|2g
(ψ̃T,ε + C̃)3

− Ctrgĝ.

If necessary, we again choose a much larger constant A and then we have Ac0 > C in
the estimate above. Therefore, we obtain

trgĝ(x0) ≤ C

|s|2βh
.

Hence we have

trĝg(x0) ≤ trgĝ(x0)eFε ≤ C

|s|2βh
.

Since ψT,ε is uniformly bounded, we obtain

Q ≤ Q(x0) ≤ log(C|s|2(α−β)
h ) + C ≤ C

for α sufficiently large so that α > β and we obtain the desired estimate.
For the higher order estimates for ωT,ε, we firstly consider the quantity

ST,ε := |(∇HT,ε)H
−1
T,ε|

2
g

where (HT,ε)
i
l := ĝij̄glj̄, ∇ is the covariant derivative with respect to ωT,ε = g and we here

write ∆ for the rough Laplacian of ωT,ε, ∆ = ∇k̄∇k, where ∇k̄ = gk̄l∇l (cf. [52], [54]).
Note that we compute

H i
jl := ((∇jHT,ε)H

−1
T,ε)

i
l = Γijl − Γ̂ijl

where Γijl, Γ̂ijl denote the Christoffel symbols of ωT,ε = g, ω̂N = ĝ respectively and then
we have

ST,ε = |H|2g.

By commuting ∇ and ∇̄, we obtain

∆̄H i
jl −∆H i

jl = (Ric1) r
j H

i
rl + (Ric1) r

l H
i
jr − (Ric1) i

r H
r
jl

for some constant C > 0, where (Ric1) r
j is the first Ricci tensor with respect to ωT,ε.

With using the inequality

(∗∗) |s|2αh
C

ω̂N ≤ ωT,ε ≤
C

|s|2αh
ω̂N

and the following;
∆H i

jl = ∇k̄R̂ i
jk̄l −∇

k̄R i
jk̄l ,

where R i
jk̄l

, R̂ i
jk̄l

are the Chern curvature tensors of ωT,ε, ω̂N respectively.
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Here we notice that the Bianchi identities will not hold necessarily for general Hermi-
tian manifolds: Let (M, g) be a n-dimensional compact Hermitian manifold and let ∇ be
the Chern connection of g with Christoffel symbols Γkij and torsion T given by:

Γkij = gkl̄∂igjl̄, T kij = Γkij − Γkji

and
Tikl̄ = T jikgjl̄ = T̂ jikĝjl̄ = T̂ikl̄

since gij̄ = ĝij̄ + ∂i∂j̄ψT,ε. There are extra torsion terms in the following identities:

Rij̄kl̄ −Rkj̄il̄ = −∇j̄Tikl̄

Rij̄kl̄ −Rkl̄ij̄ = −∇iTj̄ l̄k

Rij̄kl̄ −Rkl̄ij̄ = −∇j̄Tikl̄ −∇kTj̄ l̄i

∇pRij̄kl̄ −∇iRpj̄kl̄ = −T rpiRrj̄kl̄

∇q̄Rij̄kl̄ −∇j̄Riq̄kl̄ = −T s̄q̄j̄Ris̄kl̄.

With using the identities above, we then compute

∆ST,ε = gpq̄∇p∇q̄

(
giāgjb̄gkc̄H

k
ijH

c
ab

)
= |∇̄H|2g + |∇H|2g + giāgjb̄gkc̄

(
∆Hk

ij ·Hc
ab +Hk

ij · ∆̄Hc
ab

)
= |∇̄H|2g + |∇H|2g + 2Re

(
(−∇pRip̄jl̄g

kl̄ +∇pR̂
k

ip̄j )H ij
k

)
+giāgjb̄gkc̄H

k
ij

(
(Ric1)r̄āH

c
rb + (Ric1)r̄b̄H

c
ar − (Ric1)c̄r̄H

r
ab

)
= |∇̄H|2g + |∇H|2g

+2Re
(
− (∇̂iR̂icjk̄ −Hr

ijR̂icrk̄ − ∇̂i∂j∂k̄Fε +Hr
ij∂r∂k̄Fε)H

ij
k

+∇i∇p̄T̂pjl̄g
kl̄H ij

k +∇i∇jT̂p̄l̄pg
kl̄H ij

k + T̂pis̄g
rs̄Rrp̄jl̄g

kl̄H ij
k

+(∇̂pR̂
k

ip̄j −Hr
piR̂

k
rp̄j −Hr

pjR̂
k

ip̄r +Hk
prR̂

r
ip̄j )H ij

k

)
+giāgjb̄gkc̄H

k
ij(

RicrāHc
rb − ∇̂p̄T̂psāg

sr̄Hc
rb +Hm

paH
c
rbT̂psm̄g

sr̄ − ∇̂sT̂p̄āpg
sr̄Hc

rb +Hm
spH

c
rbT̂p̄āmg

sr̄

+ Ricrb̄H
c
ar − ∇̂p̄T̂psb̄g

sr̄Hc
ar +Hm

pbH
c
arT̂psm̄g

sr̄ − ∇̂sT̂p̄b̄pg
sr̄Hc

ar +Hm
spH

c
arT̂p̄b̄mg

sr̄

−(Riccr̄Hr
ab − ∇̂p̄T̂psr̄g

sc̄Hr
ab +Hm

prH
r
abT̂psm̄g

sc̄ − ∇̂sT̂p̄r̄pg
sc̄Hr

ab +Hm
spH

r
abT̂p̄r̄mg

sc̄)
)

≥ 1

2
|∇̄H|2g +

1

2
|∇H|2g −

C

|s|2βh
(S

3
2
T,ε + ST,ε + S

1
2
T,ε + 1)

since we have Ricrā = R̂icrā− ∂r∂āFε and |∆̂Fε| ≤ C

|s|2βh
, where Ric and R̂ic are the second
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Ricci curvatures with respect to g and ĝ respectively and we used that Tijk̄ = T̂ijk̄,

∇pRip̄jl̄ = ∇iRpp̄jl̄ − T rpiRrp̄jl̄

= ∇iRjl̄pp̄ −∇i∇p̄Tpjl̄ −∇i∇jTp̄l̄p − T̂pis̄grs̄Rrp̄jl̄

= ∇iR̂icjl̄ −∇i∂j∂l̄Fε −∇i∇p̄T̂pjl̄ −∇i∇jT̂p̄l̄p − T̂pis̄grs̄Rrp̄jl̄

= ∇̂iR̂icjl̄ −Hr
ijR̂icrl̄ − ∇̂i∂j∂l̄Fε +Hr

ij∂r∂l̄Fε

−∇i∇p̄T̂pjl̄ −∇i∇jT̂p̄l̄p − T̂pis̄grs̄Rrp̄jl̄,

∇i∇p̄T̂pjl̄ = ∇i(∇̂p̄T̂pjl̄ −Hs
plT̂pjs̄)

= ∇̂i∇̂p̄T̂pjl̄ −Hr
ip∇̂p̄T̂rjl̄ −Hr

ij∇̂p̄T̂prl̄ −∇īH
s
plT̂pjs̄

−Hs
pl∇̂iT̂pjs̄ +Hs

plH
r
ipT̂rjs̄ +Hs

plH
r
ipT̂prs̄,

∇i∇jT̂p̄l̄p = ∇i(∇̂jT̂p̄l̄p −Hr
jpT̂p̄l̄r)

= ∇̂i∇̂jT̂p̄l̄p −Hr
ij∇̂rT̂p̄l̄p −Hr

ip∇̂jT̂p̄l̄r −∇iH
r
jpT̂p̄l̄r

−Hr
jp∇̂iT̂p̄l̄r +Hr

jpH
s
irT̂p̄l̄s,∣∣∣∇īH

s
plT̂pjs̄g

kl̄H ij
k

∣∣∣ ≤ CST,ε +
1

4
|∇̄H|2g,∣∣∣∇iH

r
jpT̂p̄l̄rg

kl̄H ij
k

∣∣∣ ≤ CST,ε +
1

2
|∇H|2g

and ∣∣∣2Re(T̂pis̄g
rs̄Rrp̄jl̄g

kl̄H ij
k )
∣∣∣ ≤ CST,ε +

1

4
|∇̄H|2g

for some constant C > 0.
We also compute

∆trĝg = −ĝkl̄ Rickl̄

−gij̄ ĝkl̄
(

Γ̂plj∇̂kgip̄ + R̂kl̄iq̄ĝ
pq̄gpj̄ − Γ̂pki∇̂l̄gpj̄ − Γ̂pkiΓ̂

q
ljgpq̄

)
+gij̄ ĝkl̄gpq̄

(
∇̂kgiq̄ + Γ̂skigsq̄

)(
∇̂l̄gpj̄ + Γ̂mlj gpm̄

)
+gij̄ ĝkl̄

(
(∇̂iT̂

p
jl)ĝkp̄ + (∇̂l̄T̂

p
ik)ĝpj̄

)
−gij̄ ĝkl̄

(
∇̂iT̂

p
jl − R̂il̄sj̄ ĝ

sp̄
)
gkp̄ − gij̄ ĝkl̄

(
∇̂l̄T̂

p
ik − R̂il̄kq̄ĝ

pq̄
)
gpj̄

−gij̄ ĝkl̄
(
T̂ pjl∇̂igkp̄ + T̂ pik∇̂l̄gpj̄

)
≥ C1

|s|2βh
ST,ε −

C

|s|2βh
(S

1
2
T,ε + 1)

for some sufficiently large β > 0 and for some constant C1 > 0. Note that we have

|∇trĝg|2g ≤
C

|s|2βh
ST,ε
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for some sufficiently large β > 0, and

|∇ST,ε|2g ≤ 2ST,ε(|∇̄H|2g + |∇H|2g).

Let Br be a small ball centered at the origin in C2 with radius r > 0. Let ρ be a smooth
cut off function with suppρ ⊂ Br and ρ ≡ 1 on B r

2
such that |∇ρ|2g + |∆ρ| ≤ C

r2
. We

define K := C

|s|2βh
for sufficiently large β > 0 and for the constant C > 0 in the inequality

(∗∗) such that
K

2
≤ K − trĝg ≤ K.

Additionally, for sufficiently large β > 0, we may assume that |s|2βh << 1 on Br and then
we have

|∇K|g ≤
C

|s|3βh
, |∆K|g ≤

C

|s|4βh
.

For α0, α1 > 0 sufficiently large with α0 = 3β < α1, we define

f := ρ2|s|2α1
h

ST,ε
K − trĝg

+ A|s|2α0
h trĝg.

Note that we may suppose that we have for any sufficiently large α0 > 0,

|∇|s|2α0
h |g ≤ C|s|α0

h , |∆|s|
2α0
h | ≤ C|s|α0

h .

We may assume that f achieves its maximum at a point x0 ∈ Br \ {0}. Then, at x0,
we compute

0 = ∇̄f = ∇̄(ρ2)|s|2α1
h

ST,ε
K − trĝg

+ ρ2∇̄(|s|2α1
h )

ST,ε
K − trĝg

+ ρ2|s|2α1
h

∇̄ST,ε
K − trĝg

+ρ2|s|2α1
h

ST,ε
(K − trĝg)2

(∇̄trĝg − ∇̄K) + A∇̄(|s|2α0
h )trĝg + A|s|2α0

h ∇̄trĝg.

And then, with using this computation, we have at x0,

0 ≥ ∆f = ∆(ρ2)|s|2α1
h

ST,ε
K − trĝg

+ ρ2∆(|s|2α1
h )

ST,ε
K − trĝg

+ ρ2|s|2α1
h

∆ST,ε
K − trĝg

+ρ2|s|2α1
h

ST,ε
(K − trĝg)2

(
∆trĝg −∆K

)
+ A∆(|s|2α0

h )trĝg + A|s|2α0
h ∆trĝg

+4Re
(
ρ∇(ρ) · ∇̄(|s|2α1

h )
ST,ε

K − trĝg

)
+ 4Re

(
ρ∇(ρ) · ∇̄ST,ε

|s|2α1
h

K − trĝg

)
+2ρ2Re

(
∇(|s|2α1

h ) · ∇̄ST,ε
1

K − trĝg

)
+ 2ARe

(
∇(|s|2α0

h ) · ∇̄trĝg
)

−2Re
( Atrĝg

K − trĝg
(∇trĝg −∇K) · ∇̄(|s|2α0

h )
)
− 2

A|s|2α0
h

K − trĝg
|∇trĝg|2g

+2
A|s|2α0

h

K − trĝg
Re
(
∇trĝg · ∇̄K

)
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We estimate the each term above in the following ways:

|∆(ρ2)||s|2α1
h

ST,ε
K − trĝg

≤ C

r2
|s|2α1

h

ST,ε
K

,

ρ2|∆(|s|2α1
h )| ST,ε

K − trĝg
≤ Cρ2|s|2α1

h

ST,ε
K

,

ρ2|s|2α1
h

∆ST,ε
K − trĝg

≥ ρ2|s|2α1
h

K − trĝg

(1

2
|∇̄H|2g +

1

2
|∇H|2g −

C

|s|2βh
(S

3
2
T,ε + ST,ε + S

1
2
T,ε + 1)

)
≥ ρ2|s|2α1

h

K

(
|∇̄H|2g + |∇H|2g

)
− Cρ2

K
|s|2(α1−β)

h (S
3
2
T,ε + ST,ε + S

1
2
T,ε + 1),

(
ρ2|s|2α1

h

ST,ε
(K − trĝg)2

+ A|s|2α0
h

)
∆trĝg

≥
(
ρ2|s|2α1

h

ST,ε
(K − trĝg)2

+ A|s|2α0
h

)( C1

|s|2βh
ST,ε −

C

|s|2βh
(S

1
2
T,ε + 1)

)
≥ C ′

4ρ2|s|2(α1−β)
h

K2
S2
T,ε + AC1|s|2(α0−β)

h ST,ε

−Cρ
2|s|2(α1−β)

h

K2
(S

3
2
T,ε + ST,ε)− CA|s|2(α0−β)

h (S
1
2
T,ε + 1),

A|∆(|s|2α0
h )|trĝg ≤ CA|s|α0−2β

H ,

4
∣∣∣Re
(
ρ∇(ρ) · ∇̄(|s|2α1

h )
ST,ε

K − trĝg

)∣∣∣ ≤ C

rK
|s|α1

h ST,ε,

4
∣∣∣Re
(
ρ∇(ρ) · ∇̄ST,ε

|s|2α1
h

K − trĝg

)∣∣∣ ≤ Cρ

rK
|s|2α1

h |∇̄ST,ε|g

≤ Cρ

rK
|s|2α1

h S
1
2
T,ε

(
|∇̄H|2g + |∇H|2g

) 1
2

≤ ρ2

2K
|s|2α1

h

(
|∇̄H|2g + |∇H|2g

)
+
CST,ε
r2K

|s|2α1
h ,

2ρ2
∣∣∣Re
(
∇(|s|2α1

h ) · ∇̄ST,ε
1

K − trĝg

)∣∣∣ ≤ Cρ2

K
|∇(|s|2α1

h )| · |∇̄ST,ε|g

≤ Cρ2

K
|s|α1

h S
1
2
T,ε

(
|∇̄H|2g + |∇H|2g

) 1
2

≤ ρ2

2K
|s|2α1

h

(
|∇̄H|2g + |∇H|2g

)
+
C

K
ST,ε,

2A
∣∣∣Re
(
∇(|s|2α0

h ) · ∇̄trĝg
)∣∣∣ ≤ CA|s|α0

h |∇̄trĝg|g ≤ CA|s|α0−β
h S

1
2
T,ε,

74



2
∣∣∣Re
( Atrĝg

K − trĝg
(∇trĝg −∇K) · ∇̄(|s|2α0

h )
)∣∣∣ ≤ CA|s|α0−β

h S
1
2
T,ε + CA|s|α0−3β

h ,

2
A|s|2α0

h

K − trĝg
|∇trĝg|2g ≤

CA

K
|s|2(α0−β)

h ST,ε ≤ C2A|s|2α0
h ST,ε,

2
A|s|2α0

h

K − trĝg

∣∣∣Re
(
∇trĝg · ∇̄K

)∣∣∣ ≤ 4A|s|2α0
h

K
|∇trĝg|g · |∇̄K|g ≤ CA|s|2α0+2β−β−3βS

1
2
T,ε

= CA|s|4βh S
1
2
T,ε,

and finally,

ρ2|s|2α1
h

ST,ε
(K − trĝg)2

∣∣∣∆K∣∣∣ ≤ ρ2|s|2α1
h

ST,ε
K2

C

|s|4βh
≤ Cρ2|s|2α1

h ST,ε

for some constants C,C2 > 0, C’s are different from each other in these estimates.
Since we may assume that |s|2h < 1, by choosing α0 = 3β < α1, we obtain at x0,

0 ≥ −CA+
4C1ρ

2|s|2(α1−β)
h

K2
ST,ε

(
ST,ε −

C

4C1

(S
1
2
T,ε + 1)− CK

4C1

S
1
2
T,ε

)
+AC1|s|4βh ST,ε − C2A|s|2α0ST,ε − C3AS

1
2
T,ε − C4ST,ε

for some constants C,C3, C4 > 0.
We may assume that ST,ε > 1 at x0 and then we may say that there exists a small

constant κ > 0 such that(
ST,ε −

C

4C1

(S
1
2
T,ε + 1)− CK

4C1

S
1
2
T,ε

)
> κ > 0.

And also we can say that, for sufficiently large A, β > 0, we have at x0,

|s|4βh
(
AC1ST,ε − C2A|s|2βh ST,ε −

C3A

|s|4βh
S

1
2
T,ε −

C4

|s|4βh
ST,ε

)
> Aκ′2

(
(κ′′ − C4

Aκ′2
)ST,ε −

C3

κ′2
S

1
2
T,ε

)
> Aκ′2

(
κ′′′ST,ε −

C3

κ′2
S

1
2
T,ε

)
since 0 < κ′ < |s|2βh (x0) << 1 sufficiently small so that C1 − C2|s|2βh (x0) > κ′′ > 0 by
choosing a sufficiently large β for some small constant κ′′, κ′′′ > 0 with κ′′− C4

Aκ′2
> κ′′′ for

sufficiently large A.. If κ′′′ST,ε − C3

κ′2
S

1
2
T,ε ≤ 0 at x0, we obtain

S
1
2
T,ε ≤

C3

κ′′′κ′2
,
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hence we obtain the upper bound for ST,ε at x0.

On the other hand, if κ′′′ST,ε − C3

κ′2
S

1
2
T,ε > 0 at x0, we then have

|s|4βh (x0)
(
AC1ST,ε − C2A|s|2βh ST,ε −

C3A

|s|4βh
S

1
2
T,ε −

C4

|s|4βh
ST,ε

)
(x0) > 0.

Therefore, at x0, in this case we have

ρ2|s|2α1

K
ST,ε ≤

C5A

κ

for some constant C5 > 0. Putting these together, we have

f(x) ≤ f(x0) ≤
(

2ρ2(x0) max
{C5A

κ
,
|s|2α1

h

K

( C3

κ′′′κ′2

)2}
+C6A|s|2(α0−β)

h (x0)
)
≤ A(C7 +C6)

for some constant C6, C7 > 0.
Hence, on B r

2
, we obtain

ST,ε ≤
AC8

|s|2α2
h

for some uniform constants C8, α2 := α1 + β > 0. With using this computation for ST,ε,
we can obtain the upper bound for the curvature of ωT,ε and then we also have bounds
on its all covariant derivatives by an analogue of [59, Proposition 4.2]. Additionally,
with using the Sobolev inequality and a bootstrap argument, we obtain the higher order
estimates.

We firstly show an estimate for its volume form and after that, with using the estimate,
we can show estimates for ωε as in Lemma 4.2.2 by applying [59, Lemma 5.4] and [70,
Lemma 3.5] respectively.

Lemma 4.2.3. ([59, Lemma 5.4])There exist positive constants α and C, independent of
ε, such that

ω2
ε

ΩN

≤ C

|s|2αh
on [T, T ′]× (N \ {y0}).

Lemma 4.2.4. For all sufficiently small ε > 0, there exist positive uniform constants C,
α, independent of ε, such that on [T, T ′]× (N \ {y0}),

|s|2αh
C

ω̂N ≤ ωε ≤
C

|s|2αh
ω̂N .

Fix a large positive integer L. Then for each integer 0 ≤ k ≤ L there exist Ck, αk > 0
such that

|(∇R)kωε|2ωT,ε ≤
Ck

|s|2αkh

for t ∈ (T, T ′], where ∇R is the Levi-Civita covariant derivative associated to the metric
ωT,ε = g.

76



Proof. We write ωε =
√
−1(gε)ij̄dz

i ∧ dz̄j, ω̂N =
√
−1ĝij̄dz

i ∧ dz̄j and ω̂t,N =√
−1(ĝt,N)ij̄dz

i ∧ dz̄j with local coordinates.
We define the quantity

Q′ε := log(|s|2αh trĝgε)− Aϕε +
1

ϕ̃ε + C0

,

for sufficiently large α > 0, where ϕ̃ε := ϕε − 1
A

log |s|2αh and choose a constant C0 such
that ϕ̃ε + C0 ≥ 1, for A a large constant to be determined. Observe that Q′ε tends to
negative infinity as x ∈ N tends to y0, for any t ∈ [T, T ′]. From Lemma 4.2.2, Q′ε|t=T is
uniformly bounded from above by choosing α sufficiently large.

We apply [72, Proposition 3.1] to log trĝgε, then we have( ∂
∂t
−∆ε

)
log trĝgε ≤

2

(trĝgε)2
Re
(
g l̄kε T̂

p
kp∇̂l̄trĝgε

)
+ Ctrgε ĝ,

where ∆ε is the Laplacian with respect to gε, ∇̂ is the covariant derivative with respect to
ĝ, T̂ is the torsion tensor of ĝ, and assuming that we compute at a point where we have
trĝgε ≥ 1. Suppose that Q′ε achieves its maximum at x0 ∈ N \ {y0}. Then we have at x0,

∇̂l̄trĝgε
trĝgε

= A∂l̄ϕ̃ε +
∂l̄ϕ̃ε

(ϕ̃ε + C0)2

and with using this equality, we compute as in the estimate (f):∣∣∣ 2

trĝgε
Re
(
g l̄kε T̂

p
kp

∇̂l̄trĝgε
trĝgε

)∣∣∣ ≤ |∂ϕ̃ε|2gε
(ϕ̃ε + C0)3

+ CA2(ϕ̃ε + C0)3 trgε ĝ

(trĝgε)2
.

We compute ( ∂
∂t
−∆ε

)
ϕ̃ε = log

ω2
ε

ΩN

− trgε(gε − ĝt,N +
α

A
Rh),

where we used that
√
−1∂∂̄ log |s|2h =

√
−1∂∂̄ log h away from y0.

Since we may assume that at the maximum of Q′ε we have (trĝgε)
2 ≥ A2(ϕ̃ε + C0)3,

we have at x0,

0 ≤
( ∂
∂t
−∆ε

)
Q′ε

≤
|∂ϕ̃ε|2gε

(ϕ̃ε + C0)3
+ C ′trgε ĝ +

(
A+

1

(ϕ̃ε + C0)2

)(
log

ΩN

ω2
ε

+ 2
)

−
(
A+

1

(ϕ̃ε + C0)2

)
trgε(ĝt,N −

α

A
Rh)−

2|∂ϕ̃ε|2gε
(ϕ̃ε + C0)3

≤ C ′trgε ĝ +
(
A+

1

(ϕ̃ε + C0)2

)
log

ω̂2
N

ω2
ε

−
(
A+

1

(ϕ̃ε + C0)2

)
trgε(ĝt,N −

α

A
Rh)

+
(
A+

1

(ϕ̃ε + C0)2

)
log

ΩN

ω̂2
N

)
+ 2(A+ 1)

for some uniform constant C ′, C > 0.
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For an arbitrary fixed constant 1 > c0 > 0, we have

ĝt,N −
α

A
Rh ≥ c0ĝt,N

for any t ∈ [T, T ′] and for sufficiently large A > 0 and for all t ∈ [T, T ′]. If necessary, we
again choose a much larger constant A, and then we have

Ac0trgε ĝt,N ≥ (C ′ + 1)trgε ĝ.

With using these estimates, we obtain at x0,

0 ≤ C ′trgε ĝ +
(
A+

1

(ϕ̃ε + C0)2

)
log

ω̂2
N

ω2
ε

− Ac0trgε ĝt,N

+
(
A+

1

(ϕ̃ε + C0)2

)
log

ΩN

ω̂2
N

+ 2(A+ 1)

≤ C ′trgε ĝ +
(
A+

1

(ϕ̃ε + C0)2

)
log

ω̂2
N

ω2
ε

− (C ′ + 1)trgε ĝ + C

Then at x0, we have

trgε ĝ +
(
A+

1

(ϕ̃ε + C0)2

)
log

ω2
ε

ω̂2
N

≤ C

for some uniform constant C > 0. Now we choose local coordinates around the point x0

such that ĝij̄(x0) = δij and (gε)ij̄(x0) = λiδij with λ1, λ2 > 0. Then we have

2∑
i=1

( 1

λi
+
(
A+

1

(ϕ̃ε + C0)2

)
log λi

)
≤ C.

Note that we have

A ≤
(
A+

1

(ϕ̃ε + C0)2

)
≤ A+ 1.

For any λ > 0, since the function λ 7→ 1
λ

+ (A+ 1
(ϕ̃ε+C0)2

) log λ is uniformly bounded from
below for sufficiently large A, for each i we have

1

λi
+
(
A+

1

(ϕ̃ε + C0)2

)
log λi ≤ C

for some uniform constant C > 0. And then for each i, we obtain (A+ 1
(ϕ̃ε+C0)2

) log λi ≤ C,
which gives a uniform upper bound λi ≤ C for some uniform constant C > 0. Therefore,
we have

trĝgε(x0) ≤ C

and
Q′ε ≤ Q′ε(x0) ≤ C

since ϕε is uniformly bounded for all sufficiently small ε > 0 as we see in Proposition 2.3.
Then we obtain, on [T, T ′]× (N \ {y0}),

ωε ≤
C

|s|2αh
ω̂N .
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We can also obtain the bound of the Chern curvature tensor with respect to ωε, the
bound of its covariant derivatives and the higher order estimates with the application of
[45, Theorem 8.11.1&Theorem 8.12.1] by the same way as in [54].

Since ϕt = ϕ(t) for t ∈ [T, T ′] is the limit of ϕε as ε→ 0, the metric

ω(t) = ω̂t,N +
√
−1∂∂̄ϕt

for t ∈ [T, T ′] is a solution of the Chern-Ricci flow on N :

∂

∂t
ω(t) = −Ric(ω(t)) for t ∈ (T, T ′], ω(T ) = ω′.

Lemma 4.2.4 gives estimates on ω(t) for t ∈ [T, T ′] on N \ {y0} and Proposition 4.2.3
gives us estimates on ω(t) for t ∈ (0, T ) on M \ E. We can show that the Chern-Ricci
flow can be smoothly connected at time T between [0, T ) ×M and (T, T ′] × N , outside
T × {y0} ∼= T × E via the map π.

Theorem 4.2.1. The solution ω(t) is a smooth solution of the Chern-Ricci flow in the
space-time region R.

Proof. From Lemma 4.2.4 and Proposition 4.2.3, ω(t) satisfies the Chern-Ricci flow
and is smooth at time T in the sense of Remark 4.1.1.

This completes the proof of (4) in Definition 1.2.5.
It remains to show that (N,ω(t)) converges in the Gromov-Hausdorff sense to (N, dT )

as t→ T+. We obtain the following estimate by the same proof as in [59].

Proposition 4.2.4. ([59, Proposition 6.1]) There exist δ > 0 and a uniform constant
C > 0 such that for t ∈ [T, T ′],

(1) ω(t) ≤ C
|s|2h
ω̂N ,

(2) ω(t) ≤ C

|s|2(1−δ)h

(π|−1
M\E)∗ω0,

where ω0 is the initial metric of the Chern-Ricci flow on M .

Proof. We identify a coordinate chart U at y0 ∈ N via coordinates (z1, z2) with the
unit ball D in C2

D = {(z1, z2) ∈ C2; |z1|2 + |z2|2 < 1}.
Put r2 := |z1|2 + |z2|2. Let fε be a family of positive smooth functions on N of the form
fε(z) = ε + r2 on D, which converges to a function f which is of the form f(z) = r2 on
D and is positive on M \D. By the definition of the blow-down map, there is a smooth
volume form ΩM on M such that π∗ΩN = (π∗f)ΩM . Note that ω̂t,N − ε

T
ω̂N is positive

definite for sufficiently small ε > 0 on N for t ∈ [T, T ′]. For such sufficiently small ε > 0,
we consider the following family of Monge-Ampère flows on M :

∂

∂t
ρε = log

(π∗(ω̂t,N − ε
T
ω̂N) + ε

T
ω0 +

√
−1∂∂̄ρε)

2

(π∗fε)ΩM

, ρε|t=T = ϕT−ε.
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Observe that at t = T ,(
π∗(ω̂t,N −

ε

T
ω̂N) +

ε

T
ω0

)∣∣∣
t=T

=
(

1− ε

T

)
π∗ω̂N +

ε

T
ω0

is equal to ω̂T−ε, where ω̂t is a family of reference metrics for t ∈ [0, T ), of form

ω̂t =
1

T
((T − t)ω0 + tπ∗ω̂N) ∈ [ω0] + tcBC1 (KM)

since we have π∗ω̂N = ω0 − T Ric(ω0) +
√
−1∂∂̄u′0 for a smooth function u′0 on M .

We can obtain a uniform bound for |ρε| independent of ε by considering ρε±A±(T −t)
for sufficiently large uniform constants A± > 0 as in [61, Lemma 3.2]. For the upper bound
of ρε, we apply the maximum principle to

θε,+ := ρε + A+(T − t)

for A+ > 0 a uniform constant to be determined later. Then we have

∂

∂t
θε,+ = log

(π∗(ω̂t,N − ε
T
ω̂N) + ε

T
ω0 +

√
−1∂∂̄θε,+)2

(π∗fε)ΩM

− A+.

Since M× [T, T ′] is compact, θε,+ attains a maximum at some point (x0, t0) ∈M× [T, T ′].
We claim that if A+ is sufficiently large we have t0 = T . Otherwise we have t0 > T and
then by applying Proposition 1.6 in [61], at (x0, t0),

0 ≤ ∂

∂t
θε,+ ≤ log

(π∗(ω̂t0,N − ε
T
ω̂N) + ε

T
ω0)2

(π∗fε)ΩM

− A+ ≤ −1,

which is a contradiction, where we have chosen the uniform constant A so that

A+ ≥ 1 + sup
M×[T,T ′]

log
(π∗(ω̂t,N − ε

T
ω̂N) + ε

T
ω0)2

(π∗fε)ΩM

.

Hence we have proved the claim that t0 = T , which gives that

sup
M×[T,T ′]

θε,+ ≤ sup
M

θε,+|t=T = sup
M

ϕT−ε ≤ C+

for some uniform constant C+ > 0 and therefore

ρε(x, t) ≤ A+(t− T ) + C+ ≤ A+T
′ + C+

for any (x, t) ∈M × [T, T ′]. We apply a similar argument to

θε,− := ρε − A−(T − t)

for A− > 0 a uniform constant with

A− ≥ 1− inf
M×[T,T ′]

log
(π∗(ω̂t,N − ε

T
ω̂N) + ε

T
ω0)2

(π∗fε)ΩM

.
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Assume that θε,− attains a minimum at some point (x0, t0) ∈M × [T, T ′] with t0 > T and
then we have at (x0, t0),

0 ≥ ∂

∂t
θε,− ≥ log

(π∗(ω̂t0,N − ε
T
ω̂N) + ε

T
ω0)2

(π∗fε)ΩM

+ A− ≥ 1,

which is a contradiction. Hence we obtain t0 = T and

inf
M×[T,T ′]

θε,− ≥ inf
M
θε,−|t=T = inf

M
ϕT−ε ≥ −C−

for some uniform constant C− > 0,

ρε(x, t) ≥ −A−T ′ − C−

for any (x, t) ∈M × [T, T ′], which gives the lower bound of ρε.
And also, by modifying the argument in [59, Lemma 2.5] to deal with the extra terms

coming from fε, we obtain, for

ωε := π∗
(
ω̂t,N −

ε

T
ω̂N

)
+
ε

T
ω0 +

√
−1∂∂̄ρε,

ωε ≤
C

|s|2h
π∗ωN , ωε ≤

C

|s|2(1−δ)
h

ω0

on M \E × [T, T ′] and C∞-estimates for ωε on compact subsets away from E. By letting
ε→ 0, and pushing forward to N , we obtain a smooth solution ρ̃ of the following parabolic
complex Monge-Ampère equation

∂

∂t
ρ̃ = log

(ω̂t,N +
√
−1∂∂̄ρ̃)2

ΩN

, ρ̃|t=T = ψT

on N \ {y0} × [T, T ′] with ω̂t,N +
√
−1∂∂̄ρ̃ satisfying the estimates (1), (2). On the other

hand, ρ̃ is equal to the solution ϕ on N in Proposition 4.2.2. Hence, the estimates (1),
(2) holds for ω(t).

Then we can obtain an analogue of [59, Lemma 2.6, Lemma 2.7] and then the conver-
gence in the Gromov-Hausdorff sense follows by the argument in [59, Section 3].

Theorem 4.2.2. (N,ω(t)) converges in the Gromov-Hausdorff sense to (N, dT )
as t→ T+.
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Chapter 5

Cα-convergence of the solution
of the Chern-Ricci flow
on elliptic surfaces

5.1 A non-Kähler properly elliptic surface

The normalized Chern-Ricci flow is given by
∂
∂t
ω(t) = −Ric(ω(t))− ω(t),

ω(t)|t=0 = ω0,

where ω0 =
√
−1(g0)ij̄dz

i ∧ dz̄j is a starting Gauduchon metric and the globally defined
smooth real (1, 1)-form locally given by

Ric(ω) = −
√
−1∂∂̄ log det(g)

is the Chern-Ricci form of ω.
A non-Kähler properly elliptic surface M is a compact complex surface with its first

Betti number b1(M) = odd and the Kodaira dimension Kod(M) = 1 which admits an
elliptic fibration π : M → S to a smooth compact curve S. The Kodaira-Enriques
classification tells us that properly elliptic surfaces are the only one case for minimal
non-Kähler complex surfaces with Kod = 1 (cf. [3, p.244]).

We assume that M is minimal, that is, there is no (−1)-curve on M . It has been
shown that the universal cover of M is C × H [38, Theorem 28], where H is the upper
half plane in C. Also, it is known that there is a finite unramified covering p : M ′ → M
which is a minimal properly elliptic surface π′ : M ′ → S ′ and π′ is an elliptic fiber bundle
over a compact Riemann surface S ′ of genus at least 2, with fiber an elliptic curve E (cf.
[12, Lemmas 1, 2]). So we firstly assume that π : M → S is an elliptic bundle with fiber
E with genus g(S) ≥ 2, with M minimal, non-Kähler and Kod(M) = 1. That g(S) ≥ 2
implies that the universal cover of S is the upper half plane H in C and there exists a
metric on S with negative constant curvature induced by the Poincaré metric on H, then
we have c1(S) < 0. And also we have Kod(S) = 1.
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It will be more convenient for us to work with C∗×H, where C∗ := C\{0}. We define

h : C×H → C∗ ×H, h(z, z′) = (e−
z
2 , z′),

which is a holomorphic covering map. We will write (z1, z2) for the coordinates on C∗×H
and zi = xi +

√
−1yi, xi, yi ∈ R for i = 1, 2, which means that we have y2 > 0.

It has been shown by Maehara (cf. [46]) that there exists a discrete subgroup Γ ⊂
SL(2,R) with H/Γ = S, together with λ ∈ C∗ with |λ| 6= 1 and C∗/〈λ〉 = E and with
a character χ : Γ → C∗ such that M is biholomorphic to the quotient of C∗ ×H by the
Γ× Z-action defined by((a b

c d

)
, n
)
· (z1, z2) =

(
(cz2 + d) · z1 · λn · χ

((a b
c d

))
,
az2 + b

cz2 + d

)
for

(
a b
c d

)
∈ Γ, n ∈ Z, and then the map π : M → S is induced by the projection

C∗ × H → H (cf. [6, Proposition 2], [75, Theorem 7.4]). Note that all orientation
preserving isometries of the complex upper half plane H coincide with all linear fractional
transformations of the form

z 7→ az + b

cz + d
with ad− bc = 1 for z ∈ H, a, b, c, d ∈ R.

We define two forms on C∗ ×H below:

α :=

√
−1

2y2
2

dz2 ∧ dz̄2, γ :=
√
−1(− 2

z1

dz1 +

√
−1

y2

dz2) ∧ (− 2

z̄1

dz̄1 −
√
−1

y2

dz̄2).

The unique Kähler-Einstein metric ωS on S with Ric(ωS) = −ωS is induced by the form

α. Since we can check that the forms on C∗ ×H;
√
−1
y22
dz2 ∧ dz̄2 and − 2

z1
dz1 +

√
−1
y2
dz2 are

Γ × Z-invariant, these forms α and γ are invariant under the Γ × Z-action. Hence they
descend to M and we define a Hermitian metric discovered by Vaisman in [74].:

ωV = 2α + γ,

which is a Gauduchon metric, i.e., ωV is a ∂∂̄-closed Hermitian metric. Indeed, it satisfies
that

∂̄ωV = −
√
−1

y2
2 z̄1

dz̄2 ∧ dz2 ∧ dz̄1, ∂∂̄ωV = 0.

In [74, (2.9)], Vaisman introduced its pullback h∗ωV by the holomorphic covering map h
on C×H.

Note that we may work in a single compact fundamental domain for M in C∗ × H
using z1, z2 as local coordinates and we may assume that z1, z2 are uniformly bounded
and that y2 is uniformly bounded from below away from zero.

Our main result is as follows:
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Theorem 5.1.1. Let M be a minimal non-Kähler properly elliptic surface and let ω(t)
be the solution of the normalized Chern-Ricci flow starting at a Gauduchon metric of the
form

ω0 = ωV +
√
−1∂∂̄ψ > 0.

Then the metrics ω(t) are uniformly bounded in the C1-topology, and as t→∞,

ω(t)→ π∗ωS,

in the Cα-topology, for every 0 < α < 1, where ωS is the orbifold Kähler-Einstein metric
on S with Ric(ωS) = −ωS away from finitely many orbifold points induced by the form√
−1

2y2
dz ∧ dz̄ on C∗ ×H, H is the upper half palne in C, z ∈ H is the variable, y = Imz.

5.2 Proof of Theorem 5.1.1

We define reference metrics

ω̃ := e−tωV + (1− e−t)α = e−tγ + (1 + e−t)α,

which are Hermitian metrics for any t ≥ 0. We denote these metrics g̃ and also denote
quantities with respect to g̃ with using a tilde such as the torsion tensor, the Chern
connection and the Chern curvature tensor.

We define a volume form Ω by
Ω = 2α ∧ γ

and we write Ric(Ω) for the globally defined real (1, 1)-form given locally by−
√
−1∂∂̄ log Ω.

Then we have
Ric(Ω) = −α ∈ cBC1 (M) = −cBC1 (KM), .

which implies that cBC1 (M) = π∗c1(S). Since we have assumed that g(S) ≥ 2, we have
c1(S) < 0. So we have cBC1 (KM) ≥ 0, which means that the first Bott-Chern class of the
canonical bundle cBC1 (KM) is nef. Here, we say that cBC1 (KM) is nef if for any ε > 0,
there exists a real smooth function fε on M such that −Ric(ω0) +

√
−1∂∂̄fε > −εω0,

or equivalently for any ε > 0, there exists a smooth Hermitian metric hε on the fibers
of the canonical bundle KM with its curvature form bigger than −εω0. Hence from [71,
Theorem 2.1], the normalized Chern-Ricci flow (equivalently the Chern-Ricci flow) has a
smooth solution defined for all t ≥ 0. For instance, the following time-metric scaling for
the solution of the Chern-Ricci flow

∂
∂t
ω(t) = −Ric(ω(t)),

ω(t)|t=0 = ω0,

allows us to transform a solution of the normalized Chern-Ricci flow:

ω(t) = esω̃(s), s(t) = log(t+ 1),
∂
∂s
ω̃(s) = −Ric(ω̃(s))− ω̃(s),

ω̃(s)|s=0 = ω0,
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where ω0 = ωV +
√
−1∂∂̄ψ.

We can observe that the following normalized Chern-Ricci flow is equivalent to the
parabolic Monge-Ampère flow for t ∈ [0,∞)

(†) ∂

∂t
ϕ = log

et(ω̃ +
√
−1∂∂̄ϕ)2

Ω
− ϕ, ω̃ +

√
−1∂∂̄ϕ > 0, ϕ(0) = ψ.

If ϕ = ϕ(t) solves (†), then ω(t) = ω̃ +
√
−1∂∂̄ϕ is the solution of the normalized Chern-

Ricci flow. On the other hand, given a solution ω(t) of the normalized Chern-Ricci flow,
we can find a solution ϕ = ϕ(t) of the equation (†) with ω(t) = ω̃ +

√
−1∂∂̄ϕ.

Here we let ϕ = ϕ(t) solves the equation above and we will write

ω = ω(t) = ω̃ +
√
−1∂∂̄ϕ

with ω0 = ω(0) = ωV +
√
−1∂∂̄ψ.

We have the following lemma (cf. [22, Lemma 2.2], [71, Lemma 3.4]):

Lemma 5.2.1. There exists a uniform constant C > 0 such that for all t ≥ 0,

(1) |ϕ| ≤ C(1 + t)e−t

(2) |ϕ̇| ≤ C

(3) C−1ω̃2 ≤ ω2 ≤ Cω̃2.

Proof. We firstly observe that

et log
etω̃

Ω
= et log

(2α ∧ γ + e−t(γ2 + 2γ ∧ α)

2α ∧ γ

)
= et log(1 +O(e−t)).

Hence we have ∣∣∣et log
etω̃2

Ω

∣∣∣ ≤ C1,

for uniform positive constant C1. Define

W := etϕ− (C1 + 1)t.

We assume that W achieves its maximum on M × [0, t0] for some t0 > 0 at (x0, t0) ∈
M × [0, t0]. Then we have at (x0, t0),

0 ≤ ∂

∂t
W ≤ et log

etω̃2

Ω
− C1 − 1 ≤ −1,

which is a contradiction. It follows that the maximum value of W on M must be bounded
from above by its value at time 0. This gives us ϕ ≤ C(1+ t)e−t for some uniform positive
constant C. For the lower bound, we similarly consider

W ′ := etϕ+ (C1 + 1)t

and get a contradiction. Then by combining these, we obtain |ϕ| ≤ C(1 + t)e−t for some
uniform positive constant C.
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We now choose a positive constant C0 so that C0ω̃ > α for all t ≥ 0. For the Laplacian
∆ of g = g(t), metrics corresponding to ω(t), we compute( ∂

∂t
−∆

)
(ϕ̇− (C0 − 1)ϕ) = trω(α− ω̃) + 1− C0ϕ̇+ (C0 − 1)trω(ω − ω̃)

< 1− C0ϕ̇+ 2(C0 − 1).

By the maximum principle, we obtain the upper bound for ϕ̇. For the lower bound, we
compute ( ∂

∂t
−∆

)
(ϕ̇+ 2ϕ) = trω(α− ω̃) + 1 + ϕ̇− 2trω(ω − ω̃)

≥ trω(ω̃)− 3 + ϕ̇

≥ 1

C
e−

ϕ+ϕ̇
2 + ϕ̇− 3,

for a uniform positive constant C, where we used the geometric-arithmetric means in-
equality and that etω̃2 and Ω are uniformly equivalent. It follows that ϕ̇ is bounded from
below by the maximum principle.

We can show the desired result by computing directly as in [22] and the following
estimates play the most important role in our argument.

Lemma 5.2.2. There exists a uniform constant C > 0 such that

(1) |T̃ |g̃ ≤ C.

(2) |∂̄T̃ |g̃ + |∇̃T̃ |g̃ + |R̃|g̃ ≤ C.

(3) |∇̃R̃|g̃ + |∇̃∇̃T̃ |g̃ + |∇̃∇̃T̃ |g̃ ≤ C,

where T̃ is the torsion tensor of g̃, written locally as T̃ kij = Γ̃kij − Γ̃kji, T̃ijl̄ = T̃ kijgkl̄, R̃

is the Chern curvature tensor of g̃, locally written as R̃ l
ij̄k = −∂j̄Γ̃lik and ∇̃ is the Chern

connection associated to g̃.

Proof. Using the local coordinates (z1, z2) as in the previous section, we will write
ω =
√
−1gij̄dz

i ∧ dz̄j, ω̃ =
√
−1g̃ij̄dz

i ∧ dz̄j and we have

g̃11̄ =
4

|z1|2
e−t, g̃12̄ =

√
−1

2

z1y2

e−t, g̃21̄ = −
√
−1

2

z̄1y2

e−t,

g̃22̄ =
1 + e−t

2y2
2

+
e−t

y2
2

, det g̃ =
2e−t(1 + e−t)

|z1|2y2
2

,

and

g̃11̄ =
et(1 + 3e−t)|z1|2

4(1 + e−t)
, g̃12̄ =

√
−1

z1y2

1 + e−t
, g̃21̄ = −

√
−1

z̄1y2

1 + e−t
, g̃22̄ =

2y2
2

1 + e−t
.

The Christoffel symbols Γ̃kij of the Chern connection of g̃ are as follows:

Γ̃2
11 = Γ̃1

12 = Γ̃2
12 = 0,
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Γ̃1
21 = −

√
−1

1

y2(1 + et)
, Γ̃2

21 = − 2

z1(1 + et)
,

Γ̃1
22 = −z1(1 + 3e−t)

4y2
2(1 + e−t)

, Γ̃1
11 = − 1 + 3e−t

z1(1 + e−t)
+

2

z1(1 + et)
,

and

Γ̃2
22 = −

√
−1

1

y2(1 + et)
+
√
−1

1 + 3e−t

y2(1 + e−t)
.

Hence the torsion tensor T̃ of g̃ can be given by

T̃ 1
21 = −

√
−1

1

y2(1 + et)
, T̃ 2

12 =
2

z1(1 + et)
.

The Chern curvature tensor R̃ of g̃ can be computed in the following way:

R̃ 1
22̄1 =

1

2y2
2(1 + et)

, R̃ 2
22̄2 = − 2 + et

2y2
2(1 + et)

,

R̃ 1
22̄2 = −

√
−1

z1(1 + 3e−t)

4y3
2(1 + e−t)

and other components of the tensor R̃

R̃ 1
21̄2 , R̃ 1

21̄1 , R̃ 2
12̄1 , R̃ 2

11̄1 , R̃ 1
11̄1 , R̃ 2

21̄2 , R̃ 1
12̄1 , R̃ 2

11̄2 , R̃ 2
12̄2 , R̃ 2

21̄1 , R̃ 2
22̄1 , R̃ 1

11̄2 , R̃ 1
12̄2

are all equal to zero.
We compute

∂1̄T̃
2
12 = ∂2̄T̃

2
12 = 0, ∂1̄T̃

1
21 = 0, ∂2̄T̃

1
21 = − 1

2y2
2(1 + et)

and
∇̃1T̃

2
12 = ∂1T̃

2
12 − Γ̃1

11T̃
2
12 = O(e−t), ∇̃1T̃

1
21 = 0,

∇̃2T̃
1
21 = ∂2T̃

1
21 − Γ̃2

22T̃
1
21 + Γ̃1

22T̃
2
21 = O(e−t), ∇̃2T̃

2
12 = −Γ̃1

21T̃
2
12 + Γ̃2

21T̃
1
12 = O(e−2t).

By direct calculation, we have

∇̃1∇̃2̄T̃
1
21 = 0, ∇̃2∇̃2̄T̃

1
21 = ∂2∂2̄T̃

1
21 + (Γ̃1

22 − Γ̃2
22)∂2̄T̃

1
21 = O(e−t),

∇̃2̄∇̃1̄T̃
1
21 = −Γ̃2

21∂2̄T̃
1
21 = O(e−2t), ∇̃2̄∇̃2̄T̃

1
21 = ∂2̄∂2̄T̃

1
21 − Γ̃2

22∂2̄T̃
1
21 = O(e−t)

and
∇̃2∇̃2̄T̃

2
12 = Γ̃2

21∂2̄T̃
1
12 = O(e−2t), ∇̃2∇̃1̄T̃

2
12 = 0, ∇̃1∇̃1̄T̃

2
12 = 0,

∇̃1∇̃2̄T̃
2
12 = ∂1∂2̄T̃

2
12 − Γ̃1

11∂2̄T̃
2
12 + Γ̃2

11∂2̄T̃
1
12 = 0.

For any i, j = 1, 2, we have

∇̃i∇̃1̄T̃
1
21 = 0, ∇̃1̄∇̃j̄T̃

1
21 = 0
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and
∇̃ī∇̃j̄T̃

2
12 = 0.

We can also check that

∇̃2R̃
2

22̄2 , ∇̃1R̃
1

22̄2 , ∇̃2R̃
1

22̄2

are of order O(1),

∇̃2R̃
1

22̄1

is of order O(e−t), and other components

∇̃1R̃
2

21̄2 , ∇̃2R̃
2

21̄2 , ∇̃1R̃
2

22̄2 , ∇̃1R̃
1

11̄1 , ∇̃2R̃
1

11̄1 , ∇̃1R̃
2

11̄1 , ∇̃2R̃
2

11̄1 , ∇̃1R̃
2

12̄1 , ∇̃2R̃
2

12̄1 ,

∇̃1R̃
1

21̄1 , ∇̃2R̃
1

21̄1 , ∇̃1R̃
1

22̄1 , ∇̃1R̃
1

21̄2 , ∇̃2R̃
1

21̄2

are all equal to zero.

Using the estimates in Lemma 5.2.1, we can obtain the following estimates (cf. [22,
Theorem 2.4], [71, Section 5,6,7]):

Lemma 5.2.3. For ϕ = ϕ(t) solving (†) on M , the estimates below hold.

(1) There exists a uniform constant C > 0 such that

1

C
ω̃ ≤ ω(t) ≤ Cω̃.

(2) There exists a uniform constant C > 0 such that the Chern scalar curvature Scalg(t)
of g(t) satisfies the bound

−C ≤ Scalg(t) ≤ C.

(3) For any η, σ with 0 < η, σ < 1
2
, there exists a constant Cη,σ > 0 such that

−Cη,σe−ηt ≤ ϕ̇(t) ≤ Cη,σe
−σt.

(4) For any ε with 0 < ε < 1
4
, there exists a constant Cε > 0 such that

(1− Cεe−εt)ω̃ ≤ ω(t) ≤ (1 + Cεe
−εt)ω̃.

Remark 5.2.1. Even if we choose initial Gauduchon metric ω0 arbitrary, we can have the
same estimates in Lemma 5.2.3 above except for the estimate in (2) by choosing 0 < σ < 1

4

and 0 < ε < 1
8

in (3) and (4) respectively [71, Lemma 6.4 & Theorem 7.1]. Speaking
of the estimate for the scalar curvature in (2), when choosing ω0 arbitrary, although the
lower bound can be chosen uniformly, the upper bound depends on t [71, Theorem 6.1].

For proving these estimats above, we firstly require the following lemma.
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Lemma 5.2.4. For t ≥ 0, the following evolution inequality holds:( ∂
∂t
−∆

)
log trω̃ω ≤

2

(trω̃ω)2
Re
(
g̃il̄gkq̄T̃kil̄∂q̄trω̃ω

)
+ Ctrωω̃.

Proof. Firstly we compute

∂

∂t
trω̃ω = g̃kl̄∂k∂l̄ log det(g)− trω̃ω − g̃il̄g̃kj̄gij̄

∂

∂t
g̃kl̄

= gij̄ g̃kl̄∇̃l̄∇̃kgij̄ − gpj̄giq̄g̃kl̄∇̃kgij̄∇̃l̄gpq̄ − g̃kl̄g̃ij̄R̃kl̄ij̄ − trω̃ω − g̃il̄g̃kj̄gij̄
∂

∂t
g̃kl̄

From Tijk̄ = T̃ijk̄, we have

∇̃i∇̃j̄gkl̄ = ∇̃i∇̃l̄gkj̄ + (∇̃iT̃
p
jl)g̃kp̄ − (∇̃iT̃

q
jl)gkq̄ − T̃

q
jl∇̃igkq̄.

Switching covariant derivatives and arguing as above,

∇̃i∇̃l̄gkj̄ = ∇̃l̄∇̃igkj̄ − R̃il̄kq̄g̃
pq̄gpj̄ + R̃il̄pj̄ g̃

pq̄gkq̄

= ∇̃l̄∇̃kgij̄ + (∇̃l̄T̃
p
ik)g̃pj̄ − (∇̃l̄T̃

p
ik)gpj̄ − T̃

p
ik∇̃l̄gpj̄ − R̃il̄kq̄g̃

pq̄gpj̄ + R̃il̄pj̄ g̃
pq̄gkq̄

It follows we have

∆trω̃ω = gij̄ g̃kl̄∇̃i∇̃j̄gkl̄

= gij̄ g̃kl̄∇̃l̄∇̃kgij̄ + gij̄ g̃kl̄
(

(∇̃iT̃
p
jl)g̃kp̄ + (∇̃l̄T̃

p
ik)g̃pj̄ − (∇̃iT̃

q
jl − R̃il̄pj̄ g̃

pq̄)gkq̄

−(∇̃l̄T̃
p
ik + R̃il̄kq̄g̃

pq̄)gpj̄ − T̃ qjl∇̃igkq̄ − T̃ pik∇̃l̄gpj̄

)
.

Putting together, we obtain( ∂
∂t
−∆

)
log trω̃ω

=
1

trω̃ω

(
− gpj̄giq̄g̃kl̄∇̃kgij̄∇̃l̄gpq̄ +

1

trω̃ω
gkl̄∂ktrω̃ω∂l̄trω̃ω

−2Re
(
gij̄ g̃kl̄T̃ pki∇̃l̄gpj̄

)
− gij̄ g̃kl̄T̃ pikT̃

q
jlgpq̄

+gij̄ g̃kl̄(∇̃iT̃
q
jl − R̃il̄pj̄ g̃

pq̄)gkq̄ − gij̄∇̃iT̃ ljl − g
ij̄ g̃kl̄g̃pj̄∇̃l̄T̃

p
ik

+gij̄ g̃kl̄T̃ pikT̃
q
jlg̃pq̄ − trω̃ω − g̃il̄g̃kj̄gij̄

∂

∂t
g̃kl̄

)
.

Note that we have Tijk̄ = T̃ijk̄. We observe that ∂
∂t
g̃ = α − g̃ ≥ −g̃ and then we have

−trω̃ω − g̃il̄g̃kj̄gij̄ ∂∂t g̃kl̄ ≤ 0. We can estimate

1

trω̃ω

(
− gpj̄giq̄g̃kl̄∇̃kgij̄∇̃l̄gpq̄ +

1

trω̃ω
gkl̄∂ktrω̃ω∂l̄trω̃ω

−2Re
(
gij̄ g̃kl̄T̃ pki∇̃l̄gpj̄

)
− gij̄ g̃kl̄T̃ pikT̃

q
jlgpq̄

)
≤ 2

(trω̃ω)2
Re
(
g̃il̄gkq̄T̃kil̄∂q̄trω̃ω

)
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and

1

trω̃ω

(
gij̄ g̃kl̄(∇̃iT̃

q
jl − R̃il̄pj̄ g̃

pq̄)gkq̄ − gij̄∇̃iT̃ ljl − g
ij̄ g̃kl̄g̃pj̄∇̃l̄T̃

p
ik

+gij̄ g̃kl̄T̃ pikT̃
q
jlg̃pq̄ − trω̃ω − g̃il̄g̃kj̄gij̄

∂

∂t
g̃kl̄

)
≤ Ctrωω̃.

5.2.1 Proof of Lemma 5.2.3

We consider the quantity

Q := log trω̃ω − Aϕ+
1

C̃ + ϕ
,

where C̃ is a unform constant chosen so that C̃ +ϕ ≥ 1, and A ia a large constant too be
determined later. We assume that Q achives it maximum at a point (x0, t0) with t0 > 0.
At the point (x0, t0), we have

0 = ∂q̄Q =
∂q̄trω̃ω

trω̃ω
−
(
A+

1

(C̃ + ϕ)2

)
∂q̄ϕ.

Then we have at (x0, t0),

2

(trω̃ω)2
Re
(
g̃il̄gkq̄T̃kil̄∂q̄trω̃ω

)
=

2

trω̃ω
Re
(
g̃il̄gkq̄T̃kil̄

(
A+

1

(C̃ + ϕ)2

)
∂q̄ϕ
)

≤ CA2

(trω̃ω)2
(C̃ + ϕ)3gkq̄g̃il̄T̃kil̄g̃

mj̄T̃qjm̄ +
|∂ϕ|2g

(C̃ + ϕ)3

≤ CA2

trω̃ω
+
|∂ϕ|2g

(C̃ + ϕ)3
,

where we used that trω̃ω and trωω̃ are uniformly equivalent. Since we have( ∂
∂t
−∆

)(
− Aϕ+

1

C̃ + ϕ

)
≤ CA− Atrωω̃ −

2|∂ϕ|2g
(C̃ + ϕ)3

,

we obtain at the point (x0, t0),( ∂
∂t
−∆

)
Q ≤ CA2 + Ctrωω̃ + CA− Atrωω̃,

where we are assuming without loss of generality we have trω̃ω(x0, t0) ≥ 1. By choosing
A sufficiently large so that A ≥ C + 1, we obtain at the point,

trωω̃ ≤ CA2 + CA.
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It fllows taht trω̃ω(x0, t0) is uniformly bounded from above, and then we obtain the
uniform upper bound of trω̃ω.

We put St := Scalg(t) = −gij̄∂i∂j̄ log det g. We compute

∂

∂t
St = ∆St + |Ric |2g + St

≥ ∆St +
1

2
S2
t + St,

and then we obtain the lower bound for St.
For the upper bound of St, we require the following evolution inequalities.

Lemma 5.2.5. There exists a uniform constant such that for t ≥ 0, we have( ∂
∂t
−∆

)
trω̃ω ≤ −

1

C
|∇̃g|2g + C,

and ( ∂
∂t
−∆

)
trωα ≤ |∇̃g|2g −

1

C
|∇trωα|2g + C.

Combining these, there are uniform positive constants C0, C1 such that for t ≥ 0,( ∂
∂t
−∆

)
(trωα + C0trω̃ω) ≤ −|∇̃g|2g −

1

C1

|∇trωα|2g + C1.

Proof. For t ≥ 0, we can compute( ∂
∂t
−∆

)
trω̃ω

= −gpj̄giq̄g̃kl̄∇̃kgij̄∇̃l̄gpq̄ − 2Re
(
gij̄ g̃kl̄T̃ pki∇̃l̄gpj̄

)
−gij̄ g̃kl̄T̃ pikT̃

q
jlgpq̄ + gij̄ g̃kl̄(∇̃iT̃

q
jl − R̃il̄pj̄ g̃

pq̄)gkq̄

−gij̄∇̃iT̃ ljl − g
ij̄ g̃kl̄g̃pj̄∇̃l̄T̃

p
ik + gij̄ g̃kl̄T̃ pikT̃

q
jlg̃pq̄ − trω̃ω

−g̃il̄g̃kj̄gij̄(αkl̄ − g̃kl̄)

≤ − 1

C
|∇̃g|2g + C.

The second inequality is a parabolic Schwarz Lemma for the map π : M → S. Since we
have showed that ω and ω̃ are uniformly equivalent, we obtain trωα ≤ C for some uniform
positive constant C. Given any point x ∈M , we choose local coordinates (z1, z2) centered
at x such that g is the identity at x, and a coodinate w on S near π(x) ∈ S, which may
be assumed to be normal for gP , where gP is the Poincaré metric

ωP =
√
−1gPdz2 ∧ dz̄2 =

√
−1

2y2
2

dz2 ∧ dz̄2

on the upper half plane H. In these coordinates, we can represent the map π as a local
holomorphic function f . We will write fi := ∇if = ∂if , fij := ∇i∇jf = ∂jfi − Γkjifk and
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we have fij̄ = fj̄i = 0. The pullback of the metric α = f ∗ωP is given by fifj̄gP . Put

hij̄ := gil̄gkj̄fkflgP , which is semipositive definite and satisfies |h|2g := hij̄hkl̄gil̄gkj̄ ≤ C.
We have at the point x,

∆trωα = gij̄∂i∂j̄

(
gkl̄fkflgP

)
= gij̄gkl̄fkifljgP + gij̄hpq̄Rij̄pq̄ − gij̄gkl̄fifjfkflRP

≥ gij̄gkl̄fkifljgP + gij̄hpq̄Rij̄pq̄,

where RP < 0 is the scalar curvature of gP . Note that we have at the point x,

∂itrωα =
∑
k

fkifk.

Then we can compute at x,

|∇trωα|2g =
∑
i,k,p

fkifpifpfk

≤
(∑

k

|fk|
(∑

i

|fki|2
) 1

2
)2

≤
(∑

l

|fl|2
)(∑

i,k

|fki|2
)

= trωαg
ij̄gkl̄fkifljgP

≤ Cgij̄gkl̄fkifljgP .

We need the following calculations for completing the proof.

Rij̄pq̄ = −grq̄∂j̄Γrip
= −grq̄∂j̄Γrpi + grq̄∂j̄T

r
pi

= Rjp̄qī + grq̄∂j̄T
r
pi

= Rpq̄ij̄ + gis̄∂pT sqj + grq̄∂j̄T
r
pi

Since we have Tijl̄ = T̃ijl̄, we differentiate both side

gkl̄∂pT
k
ij + T kij∇̃pgkl̄ = ∇̃pTijl̄ = ∇̃pT̃ijl̄ = g̃rl̄∇̃pT̃

r
ij,

which is
∂pT

s
ij = gsl̄g̃rl̄∇̃pT̃

r
ij − gsl̄gkb̄g̃rb̄T̃ rij∇̃pgkl̄.

With using this, we compute

∂pT sqj = g̃rs̄g
rj̄∂pT̃ sqj − g̃rs̄grb̄gkj̄T̃ sqj∇̃pgkb̄ = grj̄∇̃pT̃qjr̄ − grb̄gkj̄T̃qjr̄∇̃pgkb̄,

∂j̄T
r
pi = grl̄∂j̄T̃

s
pig̃sl̄ − grl̄T spi∇̃j̄gsl̄ = grl̄∇̃j̄T̃pil̄ − grl̄gsb̄T̃pib̄∇̃j̄gsl̄.
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Then we obtain

gij̄hpq̄(Rpq̄ij̄ −Rij̄pq̄) = −hpq̄∂pT jqj − grq̄gij̄hpq̄∂j̄T rpi
= −hpq̄grj̄∇̃pT̃qjr̄ + hpq̄grb̄gaj̄T̃qjr̄∇̃pgab̄

−hpq̄gij̄∇̃j̄T̃piq̄ + hpq̄gij̄gar̄T̃pir̄∇̃j̄gaq̄.

Finally we have
|gij̄hpq̄(Rpq̄ij̄ −Rij̄pq̄)| ≤ |∇̃g|2g + C,

where we used that the metrics g and g̃ are uniformly equivalent and |h|g ≤ C.

We consider the quality u := ϕ̇ + ϕ, we know that |u| ≤ C for some uniform positive
constant C and can compute −∆u = St + trωα ≥ St. Hence, we require to get an upper
bound for −∆u in order to obtain the upper bound for St. We compute( ∂

∂t
−∆

)
u = trωα− 1,

( ∂
∂t
−∆

)
∆u = Sij̄t uij̄ + ∆u+ ∆trωα.

( ∂
∂t
−∆

)
∆u = −|Ric |2g − St − giq̄gpj̄Rpq̄ − trωα + ∆trωα

= −|∇∇̄u|2g − giq̄gpj̄upq̄αij̄ + ∆u+ ∆trωα

≥ −3

2
|∇∇̄u|2g + ∆u+ ∆trωα− C,

where we used that Rij̄ = −uij̄ − αij̄ and |α|g ≤ C.
From the second inequality in Lemma 5.2.5, we have

−∆trωα ≤ C + |∇̃g|2g −
1

C
|∇trωα|2g + hij̄

∂

∂t
gij̄

≤ C + |∇̃g|2g −
1

C
|∇trωα|2g + hij̄(uij̄ + αij̄)

≤ C + |∇̃g|2g −
1

C
|∇trωα|2g +

1

2
|∇∇̄u|2g.

ByCombining these inequalties, we have( ∂
∂t
−∆

)
(−∆u) ≤ 2|∇∇̄u|2g −∆u+ C + |∇̃g|2g −

1

C
|∇trωα|2g.
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We compute

∆|∇u|2g
= gij̄gkl̄

(
∇i∇j̄∇ku∇l̄u+∇ku∇i∇j̄∇l̄u+∇i∇ku∇j̄∇l̄u+∇i∇l̄u∇j̄∇ku

)
= |∇∇̄u|2g + |∇∇u|2g + gij̄gkl̄

(
∇i∇k∇l̄u∇l̄u+∇ku∇i∇l̄∇j̄u−∇ku∇i(T

p
jl∇p̄u)

)
= |∇∇̄u|2g + |∇∇u|2g + 2Re〈∇∆u,∇u〉g − gij̄gkl̄T pik∇p∇j̄u∇l̄u

+gij̄gkl̄gpq̄Ril̄pj̄∇q̄u∇ku− gij̄gkl̄T pjl∇ku∇i∇p̄u− gij̄gkl̄∂iT pjl∇ku∇p̄u

= |∇∇̄u|2g + |∇∇u|2g + 2Re〈∇∆u,∇u〉g + gkl̄gpq̄Rpl̄∇q̄u∇ku

−2Re
(
gij̄gkl̄T pik∇p∇j̄u∇l̄u

)
+ gkl̄gpq̄∂l̄T

i
pi∇q̄u∇ku− gij̄gkl̄∂iT pjl∇ku∇p̄u

≥ 1

2
|∇∇̄u|2g + |∇∇u|2g + 2Re〈∇∆u,∇u〉g + gkl̄gpq̄Rpl̄∇q̄u∇ku

−C|∇u|2g − C|∇̃g|g|∇u|2g

and

∂

∂t
|∇u|2g = gkl̄gpq̄Rpl̄∇ku∇q̄u+ |∇u|2g + 2Re〈∇∆u,∇u〉g + 2Re〈∇trωα,∇u〉g.

Therefore we obtain( ∂
∂t
−∆

)
|∇u|2g ≤ −

1

2
|∇∇̄u|2g − |∇∇u|2g + 2Re〈∇trωα,∇u〉g + C|∇u|2g + C|∇̃g|g|∇u|2g.

Now we fix a sufficiently large constant A so that |u|+1 ≤ A and compute the following
evolution inequality:( ∂
∂t
−∆

)( |∇u|2g
A− u

)
=

1

A− u

( ∂
∂t
−∆

)
|∇u|2g +

|∇u|2g
(A− u)2

( ∂
∂t
−∆

)
u

− 2

(A− u)2
Re〈∇|∇u|2g,∇u〉g −

2|∇u|4g
(A− u)3

≤ 1

A− u

(
− 1

2
|∇∇̄u|2g − |∇∇u|2g + 2Re〈∇trωα,∇u〉g

+C|∇u|2g + C|∇̃g|g|∇u|2g
)

+
|∇u|2g

(A− u)2
(trωα− 1)− 2

(A− u)2
Re〈∇|∇u|2g,∇u〉g −

2|∇u|4g
(A− u)3

For ε > 0 small, we rewite a term in the evolution inequality above.

2

(A− u)2
Re〈∇|∇u|2g,∇u〉g = ε

2

(A− u)2
Re〈∇|∇u|2g,∇u〉g

+
2(1− ε)
A− u

Re
〈
∇
( |∇u|2g
A− u

)
,∇u

〉
g
−

2(1− ε)|∇u|4g
(A− u)3

,
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Then the first term on the right hand side can be estimated in the following way.

−ε 2

(A− u)2
Re〈∇|∇u|2g,∇u〉g ≤ ε

2
√

2

(A− u)2
|∇u|2g(|∇∇̄u|2g + |∇∇u|2g)

1
2

≤ ε

2

|∇u|4g
(A− u)2

+ 4ε
|∇∇̄u|2g + |∇∇u|2g

(A− u)2

≤ ε

2

|∇u|4g
(A− u)2

+
1

2

|∇∇̄u|2g + |∇∇u|2g
(A− u)2

,

where provided that ε ≤ 1
8

and we now fix such ε. By estimating

C|∇̃g|g|∇u|2g
A− u

≤ C|∇̃g|2g +
ε

2

|∇u|4g
(A− u)2

,

and absorbing the term
|∇u|2g

(A−u)2
(trωα− 1) in the term

C|∇u|2g
A−u , we obtain

( ∂
∂t
−∆

)( |∇u|2g
A− u

)
≤ 1

A− u

(
2Re〈∇trωα,∇u〉g + C|∇u|2g

)
+ C|∇̃g|2g

−ε
|∇u|4g

(A− u)3
− 2(1− ε)

A− u
Re
〈
∇
( |∇u|2g
A− u

)
,∇u

〉
g
.

We define

H :=
|∇u|2g
A− u

+ C2(trωα + C0trω̃ω)

for a sufficiently large uniform positive constant C2 to be fixed later. Then we have( ∂
∂t
−∆

)
H ≤ 1

A− u

(
2Re〈∇trωα,∇u〉g + C|∇u|2g

)
+ C|∇̃g|2g

−ε
|∇u|4g

(A− u)3
− 2(1− ε)

A− u
Re
〈
∇
( |∇u|2g
A− u

)
,∇u

〉
g

−C2

2
|∇̃g|2g − 2|∇trωα|2g + C.

Note that we can show that |∇trω̃ω|2g̃ ≤ 2|∇̃g|2g̃ by computing with local coordinates
around a point such that g̃ is identity at the point, and since g̃ and g are uniformly
equivalent, we obtain

|∇trω̃ω|2g ≤ C|∇̃g|2g.

If needed, we choose much larger C2 so that −C2

2
|∇̃g|2g ≤ −|∇trω̃ω|2g and we fix such

constant C2. By estimating

C|∇u|2g
A− u

≤ ε

4

|∇u|4g
(A− u)3

+ C,

2

A− u
Re〈∇trωα,∇u〉g ≤ |∇trωα|2g +

ε

4

|∇u|4g
(A− u)3

+ C,
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and combining these, we have( ∂
∂t
−∆

)
H ≤ −ε

2

|∇u|4g
(A− u)3

− 2(1− ε)
A− u

Re
〈
∇
( |∇u|2g
A− u

)
,∇u

〉
g

−|∇trω̃ω|2g − |∇trωα|2g + C

= −ε
2

|∇u|4g
(A− u)3

− 2(1− ε)
A− u

Re〈∇H,∇u〉g

+
2(1− ε)C2

A− u
Re〈∇trωα,∇u〉g +

2(1− ε)C0C2

A− u
Re〈∇trω̃ω,∇u〉g

−|∇trω̃ω|2g − |∇trωα|2g + C

≤ −ε
4

|∇u|4g
(A− u)3

− 2(1− ε)
A− u

Re〈∇H,∇u〉g + C,

where we used the following bounds at the last line:

2(1− ε)C2

A− u
Re〈∇trωα,∇u〉g ≤ |∇trωα|2g +

ε

8

|∇u|4g
(A− u)3

+ C,

2(1− ε)C0C2

A− u
Re〈∇trω̃ω,∇u〉g ≤ |∇trω̃ω|2g +

ε

8

|∇u|4g
(A− u)3

+ C.

We may assume that H achieves its maximum at x0 ∈ M , t0 > 0, and then at the point
we have

|∇u|4g(x0, t0) ≤ C

for some uniform constant C > 0. Therefore, we conclude that H ≤ C uniformly bounded
and that |∇u|2g ≤ C everywhere for some uniform positive constant C. It follows that we
have ( ∂

∂t
−∆

)
|∇u|2g ≤ −

1

2
|∇∇̄u|2g − |∇∇u|2g + |∇trωα|2g + |∇̃g|2g + C,

and then for sufficiently large constant C3 > 0, we obtain( ∂
∂t
−∆

)
(−∆u+ 6|∇u|2g + C3(trωα + C0trω̃ω)) ≤ −|∇∇̄u|2g −∆u+ C

≤ −1

2
(−∆u)2 + (−∆u) + C,

where we used the Cauchy-Schwarz inequalty at the last line. We may assume that
−∆u+ 6|∇u|2g +C3(trωα+C0trω̃ω) achieves its maximum at x0 ∈M , t0 > 0 and then we
have 1

2
(−∆u)2(x0, t0) ≤ −∆u(x0, t0) + C. It follows that we have that −∆u(x0, t0) ≤ C

and
−∆u+ 6|∇u|2g + C3(trωα + C0trω̃ω) ≤ C

for some uniform constant C > 0 everywhere. Therefore, we conclude that we have the
uniform upper bound −∆u, which implies that we obtain the uniform upper bound also
for St.
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Third, we observe that ϕ̇ decays exponentially fast as t→∞. Since we have

∂

∂t
ϕ̇ = −St − 1− ϕ̇,

and |ϕ̇|, |St| are uniformly bounded, we obtain∣∣∣ ∂
∂t
ϕ̇
∣∣∣ ≤ C0

for some uniform constant C0 > 0. Suppose that we do not have the bound ϕ̇ ≤ Ce−σt

for any constant C > 0. Then there exists a sequence (xk, tk) ∈M × [0,∞) with tk →∞
as k →∞ such that

ϕ̇(xk, tk) ≥ ke−σtk .

Define

γk :=
k

2C0

e−σtk .

We work at the point xk. Then by ∂
∂t
ϕ̇ ≥ −C0, we obtain for any a ∈ [0, γk],

ϕ̇(tk + a)− ϕ̇(tk) =

∫ tk+a

tk

∂

∂t
ϕ̇dt ≥ −C0γk,

which implies that we have for any t ∈ [tk, tk + γk],

ϕ̇(t) ≥ k

2
e−σtk .

Thus, we have

k2

4C0

e−2σtk = γk
k

2
e−σtk ≤

∫ tk+γk

tk

ϕ̇dt = ϕ(tk + γk)− ϕ(tk) ≤ C(1 + tk)e
−tk ,

which leads a contradiction for σ < 1
2

when k → ∞. The lower bound ϕ̇ ≥ −Ce−ηt for
any 0 < η < 1

2
and some uniform constant C > 0 can be obtaind similarly.

Forth, we show that ω(t) and ω̃ approach each other exponentially fast as t→∞. We
start with the evolution of trωω̃. Firstly, we compute

∂

∂t
trωω̃ = trωω̃ + trω(α− ω̃) + gij̄hpq̄Rpq̄ij̄.

And we have, since we can compute

∇̃i∇̃j̄gpq̄ = ∇̃i

(
∂j̄gpq̄ − Γ̃sjqgps̄

)
= ∂i∂j̄gpq̄ − Γ̃rip∂j̄grq̄ − gps̄∂iΓ̃sjq − Γ̃sjq∂igps̄ + Γ̃ripΓ̃

s
jqgrs̄

= R̃ij̄rq̄g̃
rs̄gps̄ −Rij̄pq̄ + grs̄∇̃igps̄∇̃j̄grq̄,
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∆trωω̃ = gij̄∇̃i∇̃j̄(g
kl̄g̃kl̄)

= −gij̄∇̃i(g
kq̄gpl̄(∇̃j̄gpq̄)g̃kl̄)

= gij̄gks̄grq̄gpl̄g̃kl̄∇̃igrs̄∇̃j̄gpq̄ + gij̄gps̄grl̄gkq̄g̃kl̄∇̃igrs̄∇̃j̄gpq̄ − gij̄gkq̄gpl̄g̃kl̄∇̃i∇̃j̄gpq̄

= gij̄gks̄grq̄gpl̄g̃kl̄∇̃igrs̄∇̃j̄gpq̄ + gij̄gkq̄gpl̄g̃kl̄Rij̄pq̄ − gij̄gpq̄R̃ij̄pq̄.

By putting together, we obtain( ∂
∂t
−∆

)
trωω̃ ≤ C + gij̄hpq̄(Rpq̄ij̄ −Rij̄pq̄)− gij̄gkl̄hpq̄∇̃igkq̄∇̃j̄gpl̄

≤ C − 1

2C0

|∇̃g|2g,

where we used that g and h are uniformly equivalent and the bounds

−gij̄gkl̄hpq̄∇̃igkq̄∇̃j̄gpl̄ ≤ −
1

C0

|∇̃g|2g,

|gij̄hpq̄(Rpq̄ij̄ −Rij̄pq̄)| ≤ C +
1

2C0

|∇̃g|2g.

For arbitrary given 0 < ε < 1
2
, we choose 1

2
> η > ε such that ε + η < 1 and

2ε < δ < ε+ η. Define
J1 := eεt(trωω̃ − 2)− eδtϕ

and compute the evolution of J1,( ∂
∂t
−∆

)
J1 ≤ Ceεt + εeεt(trωω̃ − 2)− δeδtϕ− eδtϕ̇− eδt(trωω̃ − 2)

≤ Ceεt + Ce(δ−η)t − eδt(trωω̃ − 2),

where we used that ϕ̇ ≥ −Ce−ηt and trωω̃ ≤ C. Since δ − η < ε, at a maximum point of
J1,

eδt(trωω̃ − 2) ≤ Ceεt

and hence
eεt(trωω̃ − 2) ≤ Ce(2ε−δ)t ≤ C

since 2ε < δ. Thus J1 has the uniform upper bound everywhere. It follows that for any
0 < ε < 1

2
, there exists a uniform positive constant C such that for t ≥ 0,

trωω̃ − 2 ≤ Ce−εt.

Recall that for t ≥ 0, ( ∂
∂t
−∆

)
trω̃ω ≤ C.

Define
J2 := eεt(trω̃ω − 2)− eδtϕ

and compute the evolution of J2,( ∂
∂t
−∆

)
J2 ≤ Ceεt − eδt(trω̃ω − 2),
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where we used |ϕ̇| ≤ Ce−ηt for 0 < ε < η < 1
2
, and δ − η < ε < 1

2
. We have

trωω̃ =
ω̃2

ω2
trω̃ω = trω̃ω +

( ω̃2

ω2
− 1
)

trω̃ω.

Since we have ϕ̇ = log ω2

ω̃2 +O(e−ηt), we obtain∣∣∣ ω̃2

ω2
− 1
∣∣∣ = |eO(e−ηt) − 1| ≤ Ce−ηt.

Since trω̃ω is uniformly bounded, for t ≥ 0, we have( ∂
∂t
−∆

)
J2 ≤ Ceεt − eδt(trω̃ω − 2).

Then at a maximum point of J2, we have, since δ > 2ε,

eεt(trω̃ω − 2) ≤ Ce(2ε−δ)t ≤ C.

It follows that for any 0 < ε < 1
2
, there exists a uniform positive constant C such that for

t ≥ 0,
trω̃ω − 2 ≤ Ce−εt.

Finally, by applying the following lemma, we conclude the forth inequality in Lemma
5.2.3.

Lemma 5.2.6. Let ε > 0 be small. Suppose that trωω̃ − 2 ≤ ε and trω̃ω − 2 ≤ ε. Then
we have

(1− 2
√
ε)ω̃ ≤ ω ≤ (1 + 2

√
ε)ω̃.

Proof. Choose local coordinates around a point at which g̃ is the identity and g is
diagonal with eigenvalues λ1, λ2 > 0. From our assumption, we have

λ1 ≤ 2 + ε− λ2,
1

λ2

≤ (2 + ε)λ1 − 1

λ1

,

which imply (2 + ε)λ1 − 1 > 0,

−λ2 ≤ −
λ1

(2 + ε)λ1 − 1

and

λ1 ≤ 2 + ε− λ1

(2 + ε)λ1 − 1
.

Then, we obtain
λ2

1 − (2 + ε)λ1 + 1 ≤ 0

and by completing the square,

(λ1 − (1 +
1

2
))2 ≤ ε+

ε2

4
.

Assuming that ε > 0 is smaller that some universal constant, by symmetry, we obtain for
i = 1, 2,

1− 2
√
ε ≤ λi ≤ 1 + 2

√
ε.
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5.2.2 A third order estimate

Denote by Ψk
ij := Γkij − Γ̃kij, the difference of the Christoffel symbols of g and g̃, which

satisfies S := |∇̃g|2g = |Ψ|2g. The quantity |∇̃g|2g is equivalent to |∇̃g|2g̃ from the result (1)

in Lemma 5.2.3. Note that we will write locally α =
√
−1αij̄dz

i ∧ dz̄j.
Then we compute the evolution of S (cf. [52], [54]):( ∂

∂t
−∆

)
S = S − |∇Ψ|2g − |∇Ψ|2g

+gij̄grs̄gab̄
(
∇rTbjā +∇b̄Tarj̄

)
Ψk
ipΨ

l
sqg

pq̄gkl̄

+gij̄grs̄gab̄
(
∇rTbjā +∇b̄Tarj̄

)
Ψk
piΨ

l
qsg

pq̄gkl̄

−gij̄grs̄gab̄
(
∇kTbsā +∇b̄Taks̄

)
Ψk
ipΨ

m
jqg

pq̄grm̄

−2Re
[
[grs̄(∇i∇pTslr̄ +∇i∇s̄Trpl̄

−T airRas̄pl̄ + gkl̄∇rR̃
k

is̄p ) + gkl̄g̃
ks̄∇̃iαps̄]Ψl

jqg
ij̄gpq̄

]
,

where ∇, ∆ are the Chern connection and the Laplacian with respect to g, and in this
computation, we used especially that ∂

∂t
g̃kl̄ = −g̃kl̄ + αkl̄ and ∂

∂t
Γ̃kip = g̃kδ̄∇̃iαpδ̄.

With using T̃ijk̄ = T̃ kij g̃kl̄ = T kijgkl̄ = Tijk̄, we can compute as follows:

∇b̄Tarj̄ = ∇̃b̄T̃arj̄ −Ψs
bjT̃ars̄,

∇i∇s̄T
k
rp = g l̄k

(
∇̃i∇̃s̄T̃rpl̄ −Ψa

ir∇̃s̄T̃apl̄ −Ψa
ip∇̃s̄T̃ral̄

−(∇̃iΨ
q
sl)T̃rpq̄ −Ψq

sl(∇̃iT̃rpq̄ −Ψa
irT̃apq̄ −Ψa

ipT̃raq̄)
)

grs̄T airRas̄pl̄ = grs̄gab̄T̃irb̄

(
R̃ δ
as̄p gδl̄ −∇s̄Ψ

δ
apgδl̄

)
.

And we also can easily compute

∇rR̃
k

is̄p = ∇̃rR̃
k

is̄p −Ψa
riR̃

k
as̄p −Ψa

rpR̃
k

is̄a + Ψk
raR̃

a
is̄p ,

and
|∇̃α|g̃ ≤ C

since the only nonzero component of α is α22̄ = 1
2y22

and we can compute in the following:

∇̃1α12̄ = −Γ̃2
11α22̄ = 0, ∇̃1α22̄ = −Γ̃2

12α22̄ = 0,

∇̃2α12̄ = −Γ̃2
21α22̄ =

1

z1y2
2(1 + et)

= O(e−t), ∇̃2α22̄ = ∂2α22̄ − Γ̃2
22α22̄ = O(1).

Therefore, with using the estimate in Lemma 5.2.2 and (1) in Lemma 5.2.3, we obtain( ∂
∂t
−∆

)
S ≤ C(S

3
2 + 1)− 1

2
(|∇Ψ|2g + |∇Ψ|2g).
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We also have the evolution of trg̃g (cf. [54]):( ∂
∂t
−∆

)
trg̃g = −gj̄pgq̄ig̃ l̄k∇̃kgij̄∇̃l̄gpq̄ − 2Re

(
gj̄ig̃ l̄kT̃ pki∇̃l̄gpj̄

)
−gj̄i

(
∇̃iT̃

p
jp + g̃ l̄k∇̃l̄T̃ikj̄

)
+ gj̄ig̃ l̄k

(
∇̃iT̃

q
jl − R̃

s
il̄p g̃sj̄ g̃

q̄p
)
gkq̄

+gj̄ig̃ l̄kT̃ pikT̃
q
jl(g̃ − g)pq̄ − g̃k2̄g̃2l̄gkl̄α22̄.

We use the fact that g and g̃ are uniformly equivalent in Lemma 5.2.3 (1). We compute
that

g̃k2̄g̃2l̄gkl̄α22̄ ≤ Cg̃k2̄g̃2l̄g̃kl̄α22̄ = Cg̃22̄α22̄ =
C

1 + e−t
≤ C

for some constant C > 0 independent of t, then we again use the result in Lemma 5.2.2
and can obtain ( ∂

∂t
−∆

)
trg̃g ≤ −

1

C0

S + C(S
1
2 + 1),

for a uniform constant C0, C > 0. Then we apply the way in [54, Section 3] and we have
the uniform estimate S ≤ C: Since our estimates are local, we work in a small open
ball Br of radius r > 0 centered at the origin in Cn. Choose a smooth cutoff function ρ
supported in Br and which is identically 1 on B r

2
. We may assume that |∇ρ|2, |∆ρ| are

bounded by C
r2

. Let K be a large uniform constant, at least sufficiently large so that

K

2
≤ K − trĝg ≤ K.

Let A be another sufficiently large constant to be determined later. Then we define

Φ := ρ2 S
K − trĝg

+ Atrĝg.

Suppose that f achieves its maximum on Br × [0, T ] at a point (x0, t0). We assume for
the moment that t0 > 0 and that x0 does not lie on the boundary of Br. We may assume
without loss of generality that S > 1 at (x0, t0). At (x0, t0), we have

0 = ∇̄Φ = 2ρ∇̄ S
K − trĝg

+ ρ2 ∇̄S
K − trĝg

+ ρ2 S∇̄trĝg

(K − trĝg)2
+ A∇̄trĝg.

Then we have at (x0, t0),

0 ≤
( ∂
∂t
−∆

)
Φ = A

( ∂
∂t
−∆

)
trĝg + (−∆(ρ2))

S
K − trĝg

+ ρ2 S
(K − trĝg)2

( ∂
∂t
−∆

)
trĝg

+ρ2 1

K − trĝg

( ∂
∂t
−∆

)
S − 4Re

(
ρ

1

K − trĝg
∇ρ · ∇̄S

)
+

2A|∇trĝg|2

K − trĝg

≤
(
− A

2C0

S + CA
)

+
CS
r2K

+
(
− ρ2

2K2C0

S2 +
Cρ2

K2
S
)

+
(
− ρ2

2K
(|∇̄Ψ|2 + |∇Ψ|2) +

ρ2

4K2C0

S2 + Cρ2S
)

+
( ρ2

4K
(|∇̄Ψ|2 + |∇Ψ|2) +

C

Kr2
S
)

+
CA

K
S

≤ − A

2C0

S + CA+
C ′

r2
S +

CA

K
S.
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Choose K ≥ 4C0C so that at (x0, t0),

0 ≤ − A

4C0

S + CA+
C ′

r2
S.

Then choose A = 8C′C0

r2
so that at (x0, t0),

C ′

r2
S ≤ CA.

It follows that Φ is uniformly bounded from above by C
r2

. Thus, we conclude that S on

B r
2

is uniformly bounded from above by C
r2

. It remains to deal with the cases when t0 = 0

or x0 lies on the boundary of Br. In either case, we obtain

Φ(x0, t0) ≤ Atrĝg(x0, t0) ≤ C

r2

and the same bound holds.
Note that we write locally ωV =

√
−1(gV )ij̄dz

i ∧ dz̄j. As we confirmed in Lemma 2.1,
since all components of the Christoffel symbols of g̃ are uniformly bounded as t approaches
infinity, we have that

|Γ̃− ΓV |gV ≤ C

for some uniform constant C > 0, where ΓV are the Christoffel symbols of gV . Together
with the fact that g̃ ≤ CgV for some uniform constant C > 0, we finally obtain

|∇V g|gV ≤ |∇̃g|gV + C ≤ C|∇̃g|g̃ + C ≤ C

for some uniform constant C > 0.
Then it only suffices to apply the same way in the proof of [71, Corollary 1.2] and

the result holds also on a minimal non-Kähler properly elliptic surface: Considering the
general case when π : M → S is not a fiber bundle, it is known that π is a quasi-bundle
[12, Lemma 1] i.e., π has no singular fibers but it might have multiple fibers. Recall
that there exists a finite unramified covering p : M ′ →M with a covering transformation
group Γ(p) := Aut(p), where Aut(p) is the set of automorphisms of p, i.e., any τ ∈ Aut(p)
is biholomorphic τ : M ′ ∼= M ′, satisfies p ◦ τ = p and is called a covering transformation.
Here M ′ is a minimal properly elliptic surface, π′ : M ′ → S ′ is an elliptic fiber bundle
over a compact Riemann surface S ′ of genus at least 2 (since Γ(p) acts also S ′, π′ is Γ(p)-
equivalent) and M is a non-Kähler minimal properly elliptic surface which admits an
elliptic fibration π : M → S to a smooth compact curve S. The curve S ′ is a finite cover
of S ramified at the images of the multiple fibers of π (precisely equal to the image of the
quotient map q : S ′ → S of the set of finitely many fixed points under the Γ(p)-action),
with quotient S = S ′/Γ(p), π : M → S is equal to the Γ(p)-quotient of π′ : M ′ → S ′ and
so that the map q satisfies q ◦ π′ = π ◦ p.

Note that when π : M → S is not a fiber bundle, π has no singular fibers, but it
might have multiple fibers. Let D ⊂M be the set of all multiple fibers of π, so that π(D)
consists of finitely many orbifold points, which is precisely equal to the set of branch
points, also equal to the image of the map q of fixed points under the Γ(p)-action on S ′.
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Then from [6, Proposition 2], [46] and [75, Theorem 7.4], we have that M is a quotient of
C∗ ×H by a discrete subgroup Γ′ of SL(2,R)× C∗, which acts by((a b

c d

)
, t
)
· (z1, z2) =

(
(cz2 + d) · z1 · t,

az2 + b

cz2 + d

)
for (

(
a b
c d

)
, t) ∈ Γ′, and the map π : M → S is induced by the projection C∗×H → H.

The case we were considering in the previous section can be obtained by mapping

SL(2,R)× Z 3 (A, n) 7→ (A, λnχ(A)) ∈ SL(2,R)× C∗,

where λ ∈ C∗ with |λ| 6= 1 and C∗/〈λ〉 = E and with a character χ : SL(2,R) → C∗. If
we consider the projection Γ′′ of Γ′ to SL(2,R), the Γ′′-action on H is generally not free.
Note that Γ′′ acts properly discontinuously on H. Hence the quotient S = H/Γ′′ is an
orbifold, especially it is called a good orbifold (cf. [75, p.139]), i.e., which is a global finite
quotient of a manifold.

Since the two forms α and γ on C∗ × H are still invariant under the Γ′-action, they
descend to M . We can then define ω0 as in the case of the fiber bundle. The form
α =

√
−1

2y22
dz2 ∧ dz̄2 on C∗ × H induces the unique Kähler-Einstein metric ωS′ on S ′ with

Ric(ωS′) = −ωS′ and also induces the orbifold Kähler-Einstein metric ωS on S with
Ric(ωS) = −ωS away from finitely many orbifold points and we have q∗ωS = ωS′ since α
is Γ-invariant and also Γ′′-invariant. Since we see that π∗ωS and π′∗ωS′ are induced by α,
we have that π′∗ωS′ is a smooth real (1, 1)-form on M ′ and that p∗π∗ωS = π′∗ωS′ since α
is Γ× Z-invariant and also Γ′-invariant.

Given any initial metric ω0 in the ∂∂̄-class of the Vaisman metric on M , we denote
ω′0 = p∗ω0, which is a Γ(p)-invariant Gauduchon metric in the ∂∂̄-class of the Vaisman
metric on M ′. Then, let ω(t), ω′(t) be solutions of the normalized Chern-Ricci flow on
each surface M ′ and M starting at ω0, ω′0 respectively. Note that p∗ω(t) is equal to ω′(t),
which is also Γ(p)-invariant, and Γ(p) acts by isometries of p∗ω(t).

For a sufficiently small open set U ⊂ M so that p−1(U) is a disjoint union of finitly
many copies Uj of U . Then p : Uj → U is a biholomorphism for each j and the Γ(p)-action
on p−1(U) permutes the Uj’s. Hence for each j, the map p : Uj → U gives an isometry
between (Uj, ω

′(t)|Uj) and (U, ω(t)|U) and also between (Uj, (π
′∗ωS′)|Uj) and (U, (π∗ωS)|U)

since we have that Uj
p∼= U is biholomorphic, ω′(t) = p∗ω(t) and π′∗ωS′ = p∗π∗ωS.

We now apply the argument we discussed above to the elliptic bundle π′ : M ′ → S ′.
Since we have

||ω′(t)|Uj − (π′∗ωS′)|Uj ||Cα(Uj ,g′0) → 0

as t→∞, it follows that we have, as t→∞,

||ω(t)|U − (π∗ωS)|U ||Cα(U,g0) → 0

for any α ∈ (0, 1) as t → ∞, where we write locally ω′0 =
√
−1(g′0)ij̄dz

i ∧ dz̄j and ω0 =√
−1(g0)ij̄dz

i ∧ dz̄j. Hence, we conclude that the solution of the normalized Chern-Ricci
flow ω(t) on a non-Kähler minimal properly elliptic surface M starting at a Gauduchon
metric ω0 converges to π∗ωS in Cα-topology for any α ∈ (0, 1) as t→∞.
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Chapter 6

Conclusion and research plan

In the setting of Theorem 3.1.1, we removed the condition (†) and completed the argument
for proving the correspondence between canonical surgical contraction (Definition 1.2.5)
and the blow-down of (−1)-curves E1, . . . , Ek on M to points y1, . . . , yk ∈ N . Additionally,
in order to say that the Chern-Ricci flow performs the canonical surgical contraction in
the sense of [70], we would like to prove that (N, dT ) is the metric completion of (N ′, dgT ),
where dT is the distance function in Definition 1.2.6 and N ′ = N \{y1, . . . , yk}. We showed
that the normalized Chern-Ricci flow on non-Kähler minimal properly elliptic surface
converges in Cα-topology by choosing the initial metric from the ∂∂̄-class of the Vaisman
metric. We would like to obtain much better convergence results on elliptic surfaces, Hopf
surfaces and Inoue surfaces. Moreover, we are interested in extending these results to the
higher-dimensional manifolds. In fact, there are higher-dimensional analogues of Inoue
surfaces, constructed by Oeljeklaus-Toma [51], and it is natural to conjecture that similar
behavior occurs. Similarly, there are non-Kähler higher dimensional torus bundles with
c1 = 0 but with cBC1 6= 0 over compact Riemann surfaces of genus at least 2 [66], and one
would expect that at least some of the results of [71] on elliptic bundles should generalize
to these higher-dimensional torus bundles. These researchs are useful to improve the
applicability of the Chern-Ricci flow. For instance, surfaces of class V II0 with the second
Betti number b2 = 0 are classified completely and these are Hopf surfaces or Inoue surfaces.
In the case of b2 = 1, Teleman proved the global spherical conjecture and these surfaces
are classified into Kato surfaces. On the other hand, class V II0 surfaces with b2 > 1 are
still unclassified. It is known as Kato’s conjecture proven by Dloussky, Oeljeklaus and
Toma [20] that if surfaces of class V II0 with b2 > 0 have b2-rational curves, then they
admit global spherical shells, which implies that they are classified into Kato surfaces
as well. We hope that eventually the Chern-Ricci flow will be applied to solving these
classification problems of minimal complex surfaces.

104



Bibliography

[1] Adem, A., Leida, J., Ruan, Y. Orbifolds and Stringy Topology, Cambridge Tracts In
Mathematics 171, Cambridge University Press, 2007.

[2] Andrews, B., Hopper, C. The Ricci Flow in Riemannian Geometry : A Complete
Proof of the Differentiable 1/4-Pinching Sphere Theorem, Lecture Notes in Mathe-
matics 2011, 2011.

[3] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A. Compact complex surfaces,
Springer-Verlag, Berlin, 2004.

[4] Bedford, E., Taylor, B.A. The Dirichlet problem for a complex Monge-Ampère oper-
ator, Invent. math. 37 (1976), 1-44.

[5] Bedford, E., Taylor, B.A. A new capacity for plurisubharmonic functions, Acta.
Math. 149 (1982), 1-40.

[6] Belgun, F.A. On the metric structure of non-Kähler complex surfaces, Math. Ann.
317 (2000) no. 1, 1-40.

[7] Birkar, C., Cascini, P., Hacon, C. and McKernan, J. Existence of minimal models for
varieties of log general type, preprint, arXiv:math/0610203.

[8] Blocki, Z. The complex Monge-Ampère operator in pluripotential theory, unfinished
lecture notes based on graduate course at Jagiellonian University, 1997, last modified:
November 2002.

[9] Blocki, Z., Kolodziej, S. On regularization of plurisubharmonic functions on mani-
folds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089-2093.

[10] Bogomolov, F. A. Classification of surfaces of class V II0 with b2 = 0, Math. USSR
Izv. 40 (1976), 255-269 (1977).

[11] Boucksom, S. On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10,
1043-1063.
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