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Abstract

Massive gravity is the theory of graviton with mass. This idea has been re-
searched for long time but all attempts had failed because of some ghost prob-
lems. In 2012, for the fist time, consistent theory of massive gravity was con-
structed as dGRT ghost-free massive gravity. And now it is expected to solve
some cosmological problems. I introduce the theoretical aspects of massive
gravity and its cosmological applications, as a review based on Refs [1] ∽ [9] .



TO JASMINE

1



Contents

1 Introduction 4
1.1 Brief Summary of General Relativity . . . . . . . . . . . . . . . . 4

1.1.1 Principles of General Relativity . . . . . . . . . . . . . . . 4
1.1.2 Einstein-Hilbert action and its Linearization . . . . . . . 5
1.1.3 Solution with spherical symmetry . . . . . . . . . . . . . 6
1.1.4 Gravitational Waves and Polarizations . . . . . . . . . . . 9
1.1.5 Dark Energy and Cosmological Constant . . . . . . . . . 10

2 How to build the Consistent Massive Gravity 14
2.1 Fierz-Pauli action . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Fierz-Pauli mass term . . . . . . . . . . . . . . . . . . . . 14
2.1.2 vDVZ discontinuity problem . . . . . . . . . . . . . . . . 16

2.2 Non linear Fierz Pauli action . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Vainshtein mechanism . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Boulware Deser ghost problem again . . . . . . . . . . . 20

2.3 dGRT Ghost-free Massive Gravity . . . . . . . . . . . . . . . . . 22
2.4 Bi-Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Cosmological Aspects of Massive Gravity 24
3.1 FLRW self-accelerating universe and dark energy in massive

gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Gravitational Waves in massive gravity 27

5 Conclusion and Outlook 29

2



Notation

Natural units c = 1 , ℏ = 1

Minkowski metric ηµνis defined as ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Mpl : Planck mass⋍ 2.4 × 1018 GeV
gµν : space-time metric in 4 dimensions
Christoffel symbols are

Γ
µ
νγ(g) ≡ 1

2
gµλ(∂λgνγ − ∂γgλν − ∂νgγλ) (1)

Riemann tensor Rµνρσ is

Rµνρσ ≡ ∂σΓ
µ
νρ − ∂ρΓ

µ
νσ + Γ

λ
νρΓ
µ
λσ − Γ

λ
νσΓ
µ
λρ (2)

Rµν = Ricci tensor
is

Rµν ≡ Rλµλν (3)

Ricci scalar R
is

R = gµνRµν (4)

Einstein contraction rule is

AµBµ ≡
∑
µ

AµBµ (5)
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Chapter 1

Introduction

1.1 Brief Summary of General Relativity

1.1.1 Principles of General Relativity

General Relativity(GR) is the theory of dynamical space-time. It’s based on two
principles.
1. Any observers observe same physical laws.(General Covariance)
2. In small space-time region, one can set up local inertial frame in which one
can cancel out Gravitational field.(Equivalence principle)

In more detail, 1. Any physical laws are invariant under general coordi-
nate transformation. The general coordinate transformation from x coordinate
system to x‘coordinate system in 4 dimension space time is

xµ → x′µ(x) µ = 0, 1, 2, 3 (1.1)

2. intends inertial mass corresponding to gravitational mass.

Minertial =Mgravitational (1.2)

In other words, one can cancel out gravitational field by moving along with
the direction of gravity as free fall. But it is possible only in the small region
because the general gravitational field is not homogeneous.
The action of GR is (with matter and a cosmological constant)

S[gµν] =
M2

pl

2

∫
dx4√−g{R − 2Λ +LM} (1.3)

Mpl is Planck mass.
LagrangianLM is matter which depends on the physical situation. The variable
of (1.3) is gµν(x) defined by inverse matrix of length of world line of space-time

ds2 = gµν(x)dxµdxν (1.4)

gµν represents the metric of curved space time.
√−g is the determinant of gµν.

R[gµν] is Ricci scalar.

R ≡ gµνRµν (1.5)
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{gµν} is 4 × 4 inverse matrix of {gµν},

gµλgλν ≡ δµν (1.6)

∂µ means ∂/∂xµ. (2) is derived from parallel transportation of arbitrary
vector along a small closed region. (1) is from▽λgµν = 0. When one takes
variation of (1.3) respect to gµν, one gets Einstein equation

Gµν ≡ Rµν −
1
2

gµνR + Λgµν = 8πGTµν (1.7)

Λ is a cosmological constant. Tµν is energy momentum tensor defined as

Tµν ≡
2√−g
δSmatter

δgµν
(1.8)

1.1.2 Einstein-Hilbert action and its Linearization

One can expand the Einstein–HIlbert action to 2nd order of perturbation field
hµν,

gµν = ηµν + hµν (1.9)

one consider hµν small relative to ηµν |hµν| ≪ 1. Cosmological constant Λ is
small enough to ignore, so one starts from the free Einstein Hilbert action

S[gµν] =
M2

pl

2

∫
dx4[
√−gR]linearized (1.10)

One expands it to 2nd order of hµν by using√
det(ηµν + hµν) = 1 +

1
2

h + O(hµν 3) (1.11)

h is the trace of hµν. And the Christoffel symbols are

Γ
ρ
µν(ηµν + hµν) = −ηρα(∂νhµα + ∂µhαν − ∂αhµν) + O(h2

µν) (1.12)

So one gets

R = −∂µhαβ + 2∂µhαβ∂αhµβ − (2∂βh∂µhµβ − ∂βh∂βh) +O(hµν2 ) (1.13)

From (1.11) and (1.13), the action of 2nd order of hµν is

Slinear =
M2

pl

2

∫
d4x

1
2

(−∂λhµν∂λhµν + ∂µhνλ∂νhµλ − ∂µh∂νhνµ + ∂µh∂µh) (1.14)

In this equation, the upper index such as hµν is defined by hµν = ηµαηνβhαβ. The
equation of motion is derived from variation of (1.14)

□hµν − ∂λ∂νhλ µ − ∂λ∂µhλ ν + ηµν∂λ∂σhλσ + ∂µ∂νh − ηµν□h = 0 (1.15)
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So one gets the linearlized equation of motion. If there are matter sources, one
adds an energy momentum tensor Tµν

□hµν − ∂λ∂νhλ µ − ∂λ∂µhλ ν + ηµν∂λ∂σhλσ + ∂µ∂νh − ηµν□h = −kTµν (1.16)

In this equation, k = 8πG, G is Newton constant.
Gauge invariance :
(1.16) is invariant under the transformation

h′µν → hµν + ∂µξν + ∂νξµ (1.17)

This transformation is called gauge transformation and such invariance is called
gauge invariance. This transformation is relative to the small coordinate trans-
formation

x′µ = xµ + ξµ (1.18)

because hµν transforms under the small coordinate transformation as

h′µν(xµ + ξµ) = hµν(xµ) +
∂ξα

∂xµ
ηαν +

∂ξβ

∂xν
ηµβ (1.19)

So, explicitly, one gets the gauge transformation

h′µν → hµν + ∂µξν + ∂νξµ (1.20)

Back to (1.16). If one sets gauge as

∂µhµν = 0 h = 0 (1.21)

then, (1.15) yields

□hµν = 0 (1.22)

This is the free wave equation. So gravitational field hµν propagates as waves
with the speed of light. This is the so called Gravitational wave which one refer
in section 4.

1.1.3 Solution with spherical symmetry

The existence of matter makes the space-time curved. In that space-time, parti-
cles -even the light- move along geodesics, for example, in our Solar system, the
light came from vary large distant star is bended by the Sun. This phenomenon
is called lensing effect. In this section, one consider lensing effect in GR and
later compare it to Massive Gravity theory.

The geodesic Line:
First, one get a equation of motion of a particle in gravity field. If there is no
fields except gravity. The particles move the shortest path in the space-time.
The path is called the geodesic line. The length of world line L is

dl2 = gµνdxµdxν (1.23)
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λ is the parameter of the geodesic line. dl is line element. So one can write
down

L(xµ,
dxµ

dλ
) =
∫
|gµνdxµdxν| 12 (1.24)

=

∫
|gµν

dxµ

dλ
dxν

dλ
| 12 dλ (1.25)

This is the functional of xµ and dxµ
dλ . one take variation and get

d
dλ

(Uµ) + ΓµαβU
αUβ = 0 (1.26)

This is the geodesic equation, where Uα = dxα
dλ .

Correspondence to Newton potential:
In non-relativistic limit, The geodesic equation (1.26) should correspond to
Newton’s equation of motion

d2xi

dt2 = −
∂ϕ

∂xi (1.27)

ϕ is the potential of gravity of Newton.
(1) The oneak gravity:

gµν = ηmuν + hµν (1.28)
|hµν| ≪ 1 (1.29)

(2) The stationarity:
The gravity field does not depend on time x0, and

g0i = 0 i = 1, 2, 3 (1.30)

(3) The speed of motion is slooner than that of light

dxi

dτ
≪ 1 (1.31)

Using these assumptions, one can write the (1.26) as

d2xµ

dt2 + Γ
µ
00 = 0 (1.32)

So comparing to (1.27), one finds

−Γµ00 = −
∂ϕ

∂xµ
(1.33)

By using (1) and (1.30) , one can deduce

h00 = −2ϕ (1.34)

So one gets (c = 1)

g00 = −1 − 2ϕ (1.35)
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Spherical symmetry solution:
Let us consider as source the stress energy tensor of mass M point particle at
rest at the origin

Tµν =Mδ0
µδ

0
νδ

3(x) (1.36)

like the Sun at rest at the origin. δνµ is Kronecker delta and δ3(x) is Dirac delta
function. In this situation, one need the spherical symmetric metric such as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdϕ2) (1.37)

ν(r) and λ(r) are functions of r. r is the radius of polar coordinate system. θ and
ϕ are angle of the system. The corresponding metric gµν is

g00 = −eν(r) g11 = eλ(r) g22 = r2 g33 = r2sin2θ (1.38)

Inverse of the metric is

g00 = −e−ν(r) g11 = e−λ(r) g22 =
1
r2 g33 =

1
r2sin2θ

(1.39)

The Ricci tensor of the space time is derived from this gµν as

R00 = eν−λ(
1
2
ν′′ − 1

4
ν′λ′ +

ν′

r
) (1.40)

R11 = −
1
2
ν′′ +

1
4
ν′λ′ − (

1
4
ν′)2 +

λ′

r
(1.41)

R22 = −e−λ +
1
2

re−λ(λ′ − ν′) + 1 (1.42)

R33 = s2
θ(−e−λ +

1
2

re−λ(λ′ − ν′) + 1) (1.43)

other components are 0. Also one need Ricci scalar R

R = e−λ(−ν′′ − 1
2
ν′2 +

2
r

(λ′ − ν′) + 2
r2 +

1
2
ν′λ′) +

2
r2 (1.44)

and put these expression into the Einstein equations

eν−λ(
λ′

r
− 1

r2 ) +
eν

r2 = 8πGT00 (1.45)

ν′

r
+

1
r2 (1 − eλ) = 8πGT11 (1.46)

e−λ

2
r2{− (λ′ − ν′)

r
+ ν′′ +

1
2
ν′2 − λ

′ν′

2
} = 8πGT22 (1.47)

r2sin2θ
e−λ

2
{− (λ′ − ν′)

r
+ ν′′ +

1
2
ν′2 − λ

′ν′

2
} = 8πGT33 (1.48)

λ′ is derivative of λ respect to r. Now one put Rµν into (1.36), and get

e−λ = 1 +
D1

r
(1.49)

eν = D2(1 +
D2

r
) (1.50)
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D1 and D2 are the constants. D2 is set to 1 by redefining of time t. D1 is
determined by the boundary condition such the field becomes Newton like one
at large distance from the origin. From (1.35)

D2 = −2GM (1.51)

So one gets the spherical symmetric solution

ds2 = −(1 − 2GM
r

)dt2 +
1

1 − 2GM
r

dr2 + r2(dθ2 + sin2θdϕ2) (1.52)

This is called the Swartzschild solution. And

rg = 2GM (1.53)

is called Swartzschild radius.

1.1.4 Gravitational Waves and Polarizations

Let us discuss the propagation of gravity filed (1.16) in more detail, and start
from (1.22). Let us investigate the degrees of freedom of Gravitational Waves.
(1.22) is free wave function so that one can put plane wave as the solution

hµν = aµνeiklxl
(1.54)

aµν is 4 × 4 constant matrix. k is the wave length and k2 = 0 from (1.22). For
a convenience, let us choose the direction of wave to x3 . So one can choose
kµ = (−k, 0, 0, k). From the gauge constraints one gets

aν0k + a3νk = 0 (∂µhµν = 0) (1.55)
−a00 + a11 + a22 + a33 = 0 (h = 0) (1.56)

From these equations one gets

{aµν} =



a00 a01 a02 −a00
... a11 a12 −a01
... · · · −a11 −a02
... · · · · · · a00


(1.57)

(hµν = hνµ.) From (1.57), it looks that aµν has 5 degrees of freedom. But
some possibility remained that one can eliminate such degrees by choosing a
coordinate transformation.

One sets gauge

ξµ = bµexp{iklxl} (1.58)

and get new h′µν and a′µν as

h′µν = a′µνe
iklxl

(1.59)

a′µν = aµν + ikµbν + ikνbµ (1.60)
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And investigating the 5 components

a′00 = a00 − 2ikb0 (1.61)
a′01 = a01 + ik0b1 + ik1b0 (1.62)
= a01 − ikb1 (1.63)

a′02 = a02 − ikb2 (1.64)
a′11 = a11 (1.65)
a′12 = a12 (1.66)

(1.67)

one can cancel out the a′00, a′01, a′02 if one chooses

b0 =
a00

2ik
b1 =

a01

ik
b2 =

a02

ik
(1.68)

So the true number of degrees of freedom of GW is 2. And note that a′11 and
a′12 are vertical to the direction of the propagating of the 2 waves. So GW is the
transverse wave.
To make sure, investigate other components

a′03 = a03 − ikb3 + ikb0 (1.69)

= a03 + ik
a00

2ik
− ikb3 = 0 (1.70)

a′13 = a13 + ikb1 (1.71)

= −a01 + ik
a01

ik
= 0 (1.72)

a′23 = a23 + ikb2 (1.73)

= −a02 + ik
a02

ik
= 0 (1.74)

a′33 = a33 + ikb3 + ikb3 (1.75)

= a00 + 2ik(− a00

2ik
) = 0 (1.76)

where

b3 = −
a00

2ik
(1.77)

So, the non zero components are only a′11 and a′12.

1.1.5 Dark Energy and Cosmological Constant

In this section let us assume the metric to depend on time. In other words, one
assumes general homogeneous isotropic universe metric. And let us see how
the self accelerating universes arise.
The solution to the isotropic metric reads

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdϕ2) (1.78)

Fundamental Observer:
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To assume the homogeneous isotropic solution, let us require the existence of
fundamental observer who can see the universe as homogeneous and isotropic.
And one sets the scale of t as fundamental observers one. then

ds2 = −d(x0)2 + eλ(r)dr2 + r2(dθ2 + sin2θdϕ2) (1.79)

And what one wants is

ds2 = −d(x0)2 + a(t)[eλ(r)dr2 + r2(dθ2 + sin2θdϕ2)] (1.80)

where a(t) is time dependent 3 dimension scale factor.

The homogeneous isotropic solution:
To calculate the curvature, one can use the result of (1.44),

(3)R = e−λ(−2
r
λ′ +

2
r2 ) +

2
r2 (1.81)

(3)R is the 3 dimensional part of the R. Then, since the space-time is homoge-
neous, (3)R should be constant so one can integrate and get solution

(3)R =
2
r2

d
dr

(1 − e−λ) (1.82)

R
6

r3 = r(1 − eλ) +D (1.83)

R
6

r2 = (1 − eλ) +
D
r

(1.84)

D is some constant. One sets the boundary condition that eλ should be 0 for
r→ 0. So D is 0. After that,

e−λ = 1 − Kr2 (1.85)

K =
(3)R

6
(1.86)

So one gets the solution as

ds2 = −d(x0)2 + a(t)[
1

1 − Kr2 dr2 + r2(dθ2 + sin2θdϕ2)] (1.87)

This is so called FLRW solution.
If one takes another gauge as r→ |K|−1/2 r, one gets

ds2 = −d(x0)2 + R2(t)[
1

1 − kr2 dr2 + r2(dθ2 + sin2θdϕ2)] (1.88)

where

k =


−1 (K < 0)
0 (K = 0)
1 (K > 0)

(1.89)

R(t) =

|K|−1/2a(t) (K , 0)
a(t) (K = 0)

(1.90)
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So if curvature K is not 0, r is dimensionless and k takes discrete numbers
−1, 0, 1. To get this equation, no Einstein equation was used. So (1.87), (1.88)
are right even in the situation where Einstein equation is modified.

Freedman equation and acceleration of expanding universe :
Now the metric of the universe scale depends on time by a(t). Next target is the
way to know the value of the components of the metric. Let us plug (1.88) into
the Einstein equation, to gets

R0
0 =

3ä
a

(1.91)

Ri
j = [

ä
a
+ 2(

ȧ
a

)2 +
2
a2 K]δi

j (1.92)

Other components are equal to 0. ȧ is the time derivative of a and the double
dots one is the 2nd derivative. So one gets Einstein tensor as

G0
0 = −3[(

ȧ
a

)2 +
K
a2 ] (1.93)

Gi
j = −[2(

ä
a

)(
ȧ
a

)2 +
K
a2 ]δi

j (1.94)

and other components are 0. Energy momentum tensor Tµν need to satisfy the
Einstein equation

Gµν = 8πGTµν (1.95)

So Tµν should be the form as,

{Tµν} =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (1.96)

(the space components are corresponding to each other. ) This Tµν is the so
called perfect fluid. ρ is energy density and p is the pressure of the space-time.
ρ and p only depend on the time. Now one gets the Einstein equations of the
homogeneous isotropic space-time.

(
ȧ
a

)2 =
8πG

3
ρ − K

a2 (1.97)

ä
a
= −4πG

3
(ρ + 3p) (1.98)

This is the Freedman equation.

Dark Energy;
From the observations, one know our universe is expanding and it’s speed is
increasing. To express this situation, one should assume the universe is filled
with the exotic matter which create negative pressure. If one imposes the role to
cosmological constant ( as unordinary matter ), the Einstein equations become

(
ȧ
a

)2 =
8πG

3
ρ − K

a2 +
Λ

3
(1.99)

ä
a
= −4πG

3
(ρ + 3p) +

Λ

3
(1.100)
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So one gets

(
ȧ
a

)2 =
8πG

3
(ρ + ρΛ) − K

a2 (1.101)

ä
a
= −4πG

3
[(ρ + ρΛ + 3(p + pΛ)] (1.102)

where

ρΛ =
Λ

8πG
(1.103)

The observed cosmological constant Λobs is

Λobs < 10−120M2
pl (1.104)

while Λquantum calculated as energy of vacuum from QFT is about

Λquantum �M2
pl (1.105)

then

Λobs

Λquantum
≈ 10−120 (1.106)

So there is the huge gap betoneen observations and theoretical predictions of
cosmological constant. It is called the cosmological constant problem. One
needs some new theory beyond the GR.
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Chapter 2

How to build the Consistent
Massive Gravity

As one have seen, weak gravity field propagate as waves. Things getting better,
(1.22) looks like spin-2 massless particle as the perturbation theory of GR. In
this situation, one can also find the possibility of massive spin-2 particle. But
there are several difficulties to realize it.

2.1 Fierz-Pauli action

In,1939, Fiertz and Pauli built first massive gravity [1]. Not to describe massive
graviton, but massive spin-2 particle. Let us discuss the possibility of a mass
term. As introduced in the previous section, the graviton is described as the
propagation of quantized fields hµν. It is spin-2 massless particle and should
be described in the field theory.

2.1.1 Fierz-Pauli mass term

As the temporary field theory, one imposes the constrains on the action as
below:
1. The action may contain 2nd order of ∂µ at most but to keep the equation of
motion with at most 2nd derivatives of hµν.
2 The action should invariant under global Lorentz transformation, to covariant
the equation of motion under global Lorentz transforms.
The possible mass terms without derivatives are hµνhµν and h2. And the possible
mass part is

Lmass = −
1
4

(hµνhµν + Ah2) (2.1)

A is the constant. Notice that it has no diffeomorphism invariance. Let us
investigate whether the A is constrained one or not. To do that, one decompose
the hµν as

hµν → hµν + 2∂(µχν) (2.2)
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where ∂(µξν) ≡ 1
2 (∂µξν + ∂νξµ) Then the mass part becomes

Lmass =
1
8

m2{(hµν + 2∂(µχν))2 + A(h + 2∂αχα)2} (2.3)

This terms have the gauge invariance under

hµν → hµν + ∂(µξν) (2.4)

χµ → χµ −
1
2
ξµ (2.5)

The kinetic terms of χµ are

Lkineticχ = 4{∂(µχν)}2 + 4A{∂αχα}2 (2.6)

= (∂(µχν))2 + 4A(∂αχα)2 (2.7)

one can decompose it by scalar field π as

χµ → χµ + ∂µπ (2.8)

then, one gets

Lkinetic π = ∂µ∂νπ∂
µ∂νπ + 2∂µ∂νπ∂ν∂µπ + ∂ν∂µπ∂ν∂µπ + 4A∂α∂απ∂λ∂λπ (2.9)

and one can rewrite this by considering surface term

Lkineticπ = 4(1 + A)∂α∂απ∂λ∂λπ = 4(1 + A)(□π)2 (2.10)

It is known that these terms such as higher (more than 2nd ) derivatives have
some instability (called Ostrogradsky instability). More explicitly, by rewriting
with π̃ = 2□π

(□π)2 = π̃□π − 1
4
π̃2 (2.11)

So finally, one chooses π = ϕ1 + ϕ2 and π̃ = ϕ1 − ϕ2. One gets

Lkineticπ = 4(1 + A){ϕ1□ϕ1 − ϕ2□ϕ2 −
1
4

(ϕ1 − ϕ2)2} (2.12)

As you can see, these kinetic terms have opposite sign, while connect to each
other by 1

4 (ϕ1 − ϕ2)2 . So there exist the negative energy particle. Once you
allow to exist the negative kinetic terms, negative kinetic particle can get infinite
energy from other positive kinetic particles. So the system will be break down.
Only what one can do to avoid the instability is to set A = −1. So the possible
mass term is allowed only when

Lmass = −
1
8

m2(hµν 2 − h2) (2.13)

this is called Fierz-Pauli mass term. And it’s action

S =
M2

pl

2

∫
dx4LFP (2.14)
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called Fierz-Pauli action(FP action), where

LFP = −
1
4

hµνϵ̂αβµνhαβ −
1
8

m2(h2
µν − h2) (2.15)

ϵ̂
αβ
µνhαβ = −

1
2

[□hµν − 2∂(µ∂αhαν) + ∂µ∂νh − ηµν(□h − ∂α∂βhαβ)]

2.1.2 vDVZ discontinuity problem

In previous section, the linearlized massive graviton was introduced. If it’s
mass is small, one expects to see the correspondence of the limit of massive
gravity to GR. Of course, If one takes the limit in the action, one sees the
correspondence. In this section, I review the massless limit of MG and compare
it to GR for physical observables, such as quantum transition amplitudes (one
follow [2] here).

Massive spin-2:
Let us start from the equation of motion of (2.15)

ϵ̂
αβ
µνhαβ +

1
2

m2(hµν − hηµν) =
1

Mpl
Tµν (2.16)

the constrains are derived from the trace and the divergence of (2.16)

h = − 1
3m2Mpl

(T +
2

m2 ∂α∂βT
αβ) (2.17)

∂µhµ ν =
1

m2Mpl
(∂µTµ ν +

1
3
∂νT +

2
3m2 ∂ν∂α∂βT

αβ) (2.18)

put back into (2.16)

(□ −m2)hµν =
1

Mpl
[η̃µ(αη̃νβ) −

1
3
η̃µνη̃αβ]Tαβ (2.19)

where

η̃µν = ηµν −
1

m2 ∂µ∂ν (2.20)

Then the propagator of hµν is

Gmassive
µναβ (x, x′) =

f massive
µναβ

□ −m2 (2.21)

where

f massive
µναβ = η̃µ(αη̃νβ) −

1
3
η̃µνη̃αβ (2.22)

Finally one gets the amplitude transition between two sources as

Amassive
TT′ =

∫
d4x hµνT′µν =

∫
d4x T′µν

f massive
µναβ

□ −m2 Tαβ (2.23)
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one wants to take the massless limit of this. In the massless limit, ∂µTµν = 0.
one gets

Am→0
TT′ =

∫
d4x T′µν

1
□

(Tµν −
1
3

Tηµν) (2.24)

Massless spin-2:
The equation of motion is

ϵ̂
αβ
µνhαβ =

1
Mpl

Tµν (2.25)

In massless case, ∂µTµν = 0 is automatically (because of ∂µϵ̂αβµνhαβ = 0). In the de
Donder gauge as

∂µhµ ν =
1
2

pν (2.26)

where pµpµ = −m2 then, (2.25) become,

(□ −m2)hµν = −
2

Mpl
(Tµ −

1
2

Tηµν) (2.27)

So the propagator is

Gmassless
µναβ =

f massless
µναβ

□
(2.28)

where

f massless
µναβ = η̃µ(αη̃νβ) −

1
2
η̃µνη̃αβ (2.29)

Finally one gets theA as

AGR
TT′ =

∫
d4x T′µν

1
□

(Tµν −
1
2

Tηµν) (2.30)

So it is different to (2.24) of massless limit of MG. This discontinuity is called
vDVZ discontinuity. And it is the general problem of FP massive gravity that
different physical predictions from GR in the massive gravity limit m→ 0.

Another example of the discontinuity:
Now the vDVZ discontinuity in spherical symmetric metric is studied. Let us
from the general spherical symmetric metric

ds2 = −A(r)(dt)2 + f (r)(dr)2 + k(r)dΩ2 (2.31)

In GR, it is transformed the k(r)→ r2 and the metric is rewritten to

ds2 = −eν(r)(dt)2 + eλ(r)(dr)2 + r2dΩ2 (2.32)
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without the loss of generality. Because GR has diffeomorphism invariance. In
the FP action, notice that no more that invariance, so (2.31) and (2.32) yield
different equation of motions.
Let us rewrite the metric to convenience to

ds2 = −eν(r)(dt)2 + eλ(r) d
dr (reµ(r)/2)(dr)2 + r2eµ(r)Ω2 (2.33)

So linearized hµν is

h00 = ν hrr = −λ − (rµ)′ hθθ = −r2µ hϕϕ = −r2µsin2θ (2.34)

putting into FP equation (2.16) and yield 3 equations as

1
r
λ′ +

1
r2λ = −

m2

2
(λ + 3µ + rµ′) (2.35)

−1
r
ν′ +

1
r2λ = −m2(µ +

ν
2

) (2.36)

m2(
ν′

2
− λ

r
) = 0 (2.37)

If one sets m = 0, one gets the GR results as

λ = −ν =
rg

r
≡ 2m

Mplr
(2.38)

and one has the property

ν + µ = 0 (2.39)

There is no surprise. On the contrary, If one solves (2.37) one gets

ν = −2C
r

e−mr (2.40)

λ =
C
r

(1 +mr)e−mr (2.41)

µ = C
1 +mr + (mr)2

m2r3 e−mr (2.42)

but the massless limit of the equations are

ν = −2C
r
λ =

C
r
µ =

C
r(mr)2 (2.43)

and

ν + λ , 0 (2.44)

so one sees that m = 0 and m → 0 are totally different. Moreover, FP massive
gravity has no smooth limit of m→ 0 in this case (µ→∞).
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2.2 Non linear Fierz Pauli action

No smooth limit means no consistency. To avoid the vDVZ discontinuity, one
expands the linear FP massive gravity to Non-linear one by introducing the
reference metric fµν built of four scalar fields ϕA.

S =
M2

pl

2

∫
d4x
√−g{R −m2U} + Smatter (2.45)

where

U = HµνHνµ − [H]2 (2.46)

Hµν = gµα fαν − δµnu (2.47)

and

fµν = ηAB∂µϕ
A∂νϕ

B (2.48)

fµν is consist of the stuckelberg scalar fileds ϕA. Notice that fµν keeps the
(2.45) diffeomrphism invariant. From here, all upper and looner indices are
transfered by gµν. In the gauge ϕA = δ

µ
νxµ, one gets fµν = δµν, and gets back the

FP theory after linearization.

2.2.1 Vainshtein mechanism

Let us study whether the Non-linear FP action avoid the vDVZ discontinuity.
To see it, let us reintroduce the spherical metric

ds2 = −eν(r)(dt)2 + eλ(r) d
dr

(reµ(r)/2)(dr)2 + r2eµ(r)Ω2 (2.49)

After one calculates the equation of motion, one compares to linear one. So
expanding ν(r), λ(r) and µ(r) with a parameter ϵ

ν(r) = ν0(r) + ϵν1(r) + ϵ2ν2(r) + . . . (2.50)

λ(r) = λ0(r) + ϵλ1(r) + ϵ2λ2(r) + . . . (2.51)

µ(r) = µ0(r) + ϵµ1(r) + ϵ2µ2(r) + . . . (2.52)

put it into the equation

Gµν = m2Tµν + kTmatter
µν (2.53)

Tµν = 2
∂U
∂gµν

− gµνU (2.54)

where Gµν is the variation of (2.45) respect to gµν, Tµν is the contribution from
mass terms, and Tmatter

µν is from source. If one sets Tmatter
µν as a point source, one

can set Tmatter
µν = 0 except x = 0. Then one gets

ν = −
2rg

r
(1 + c1

rg

m4r5 + . . . ) (2.55)

λ =
rg

r
(1 + c2

rg

m4r5 + . . . ) (2.56)

µ =
rg

m2r3 (1 + c3
rg

m4r5 + . . . ) (2.57)
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Notice that parameter is set to correspond the first term of the Linear FP results
(2.43) . To roughly estimate the scale of second term, one can choose m ∼
(1025cm)−1 and at the edge of the Solar system

rg

m4r5 ∼ 1032 (2.58)

one cannot ignore such large terms. This is the cause of vDVZ discontinuity. So
one cannot take the linear approximation in large r. How large ? The second
term small enough where

r≫ rV = (
rg

m4 )
1
5 ∼ 100Kpc (2.59)

these results imply that the linearization is broken for r ≫ rV. This rV is called
Vainshtein radius. It is argued by Vainshtein [4]. If r is small enough to r≪ rV,
one can take linear approximation. To do that, one should choose the parameter
as mass parameter m, then expands as the corrections of mass order

ν = −
rg

r
(1 + a1(mr)2

√
r
rg
+ . . . ) (2.60)

λ =
rg

r
(1 + a2(mr)2

√
r
rg
+ . . . ) (2.61)

µ =

√
arg

r
(1 + a3(mr)2

√
r
rg
+ . . . ) (2.62)

a1∼3 are the constants adjusting the dimensions. Here one takes massless limit
m→ 0 and the solution is corresponding to (2.38). And notice, when one takes
the linear approximation for first order, one loses the extra degrees of freedom
from the mass because mass is strongly coupled with non-linearity. These
results imply that one cannot detect the mass effect by linearization . It agrees
with observations in the Solar system. i.e. inside rV of gravitational body of
mass M having the gravitational radius rg = 2GM, the gravitational field in
massive gravity (with mass m) is the same as in GR with m = 0. But outside
of rV, the extra degrees of freedom of massive gravity significantly change the
gravitational shield VS GR.

2.2.2 Boulware Deser ghost problem again

Now one solves the mechanism of smooth massless limit by non-linearization.
Next one should investigate the existence of ghost in the non-linear theory. It
was investigated by Boulware and Deser in 1972[6]. The mass term of non-
linear FP action is

U = 1
8

(HµνHνµ − (Hαα)2) (2.63)

Hµν = gµα fαν − δµν , fµν = ηAB∂µϕ
A∂νϕ

B (2.64)

and the equation of motion

Gµν = m2Tµν + kTmatter
µν (2.65)
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where

Tµν = 2
∂U
∂gµν

− gµνU ▽µTµν = 0 (2.66)

To investigate the existence of ghost, one decomposes the Hµν with Stükelberg
fields. First one divides ϕa = xa − 1

mpl
χa to cancel out the ηµν which come from

the decomposition of gµν. Then fµν is

fµν = ∂µϕa∂νϕ
bηab

= ∂µ(xa − 1
Mpl
χa)∂ν(xb − 1

Mpl
χb)ηab

= ηµν −
2

Mpl
∂(µχν) +

1
M2

pl

∂µχ
a∂νχ

bηab (2.67)

where xa is the coordinate variables. one decomposes the χµ again,

χµ = Aµ + ∂µπ (2.68)

So

fµν = ηµν −
2

Mpl
∂(µAν) −

2
Mplm2Πµν +

1
M2

pl

∂µAα∂νAα +
2

M2
plm

4
Π2
µν (2.69)

where Πµν = ∂µπ∂νπ. Here one can rewrite the Hµν as

Hµν =Mpl( fµν − (ηµν +
1

Mpl
hµν))

=Mpl(−
2

Mpl
∂(µAν) −

2
Mplm2Πµν +

1
M2

pl

∂µAα∂νAα +
2

M2
plm

4
Π2
µν −

1
Mpl

hµν)

= −2∂(µAν) −
2

m2Πµν +
1

Mpl
∂µAα∂νAα +

2
Mplm4Π

2
µν − hµν (2.70)

Notice that hµν is the helicity -2 part of the graviton, Aµ is the helicity-1 part and
π is the helicity-0. The graviton is decomposed to the helicity modes(2+ 2+ 1).
The kinetic term of π is most important part for existence of the ghost

LFPmass = HµνH
ν
µ −Hαα

LFP,π =
4

m2 ([Π2] − [Π]2) − 4
Mplm4 ([Π3] − [Π][Π2]) − 1

M2
plm

6
([Π4] − [Π2]2)

(2.71)

The first term is the one of linear FP action (2.10). As one has seen, this quadratic
term is a total derivative and be canceled out as FP structure. But notice that
quartic and cubic terms are not. So these higher derivative terms yield negative
kinetic term as (2.12). Such ghost term called Boulware Deser ghost (BD ghosts).
Of course, the possibility to avoid the BD ghost is still remained by rewriting
the mass term. The non-linear FP mass term is second order of Hµν. One can
generalize it by considering higher order mass terms

Lmass = −
√

(−g)
1
4

m2U(gµν, fµν) (2.72)
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where

U(g, f ) =U2(g, f ) +U3(g, f ) +U4(g, f ) +U5(g, f ) + . . . (2.73)

U2(g, f ) = [ f 2] − [ f ]2 (2.74)

U3(g, f ) = C1[ f 3] + C2[ f 2][ f ] + C3[ f ]3 (2.75)

U4(g, f ) = D1[ f 4] +D2[ f 3][ f ] +D3[ f 2]2 +D4[ f 2][ f ]2 +D5[ f ]4 (2.76)

U5(g, f ) = F1[ f 5] + F2[ f 4][ f ] + F3[ f 3][ f ]2 + F4[ f 3][ f 2] + F5[ f 2]2[ f ] (2.77)

+ F6[ f 2][ f ]3 + F7[ f ]5 (2.78)
...

Where C, D and F are constants. One can analyze the BD ghost for each
combination of constants. But they have not been able to avoid the BD ghost
problem for 40 years.

2.3 dGRT Ghost-free Massive Gravity

In 2010, for the first time, de Rham, Gabadaze and Tolley found the consistent
Massive gravity (dRGT model) [7] without BD ghosts.

LEH[gµν] =
M2

pl

2

∫
d4x
√−gR (2.79)

Lpotential[gµν, fµν] =M2
plm

2
g

∫
d4x
√−g(L2 + α3L3 + α4L4) (2.80)

LdRGT[gµν, fµν] =
M2

pl

2

∫
d4x
√−g(R +Lpotential[gµν, fµν] ) (2.81)

Lpotential[gµν, fµν] =M2
plm

2
g

∫
d4x
√−g(L2 + α3L3 + α4L4) (2.82)

by choosing the extra terms as

L2 =
1
2

([K ]2 − [K2]) (2.83)

L3 =
1
6

([K ]3 − 3[K ][K2] + 2[K3])

L4 =
1
24

([K ]4 − 6[K ]2[K2] + 3[K2]2 + 8[K ][K3] − 6[K4])

where

Kµν = δ
µ
ν − (

√
g−1 f )µν (2.84)

This square root is defined as

(
√

g−1 f )µρ(
√

g−1 f )ρν = f µν = gµρ fρν (2.85)
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As one can see, dRGT model has 2 arbitrary constants α3 and α4. One can
confirm the ghost free property by the decomposition ϕa = xa− 1

mpl
χa and (2.68).

Then

m2M2
plU
√−g = (∂µϕ)2 +

1
(Λ5)5 (()2 + . . . ) +

1
(Λ3)3 (h()2 + . . . ) + . . . (2.86)

where

Λ5 = (Mplm4)
1
5 ∼ 1

1011km
(2.87)

Λ3 = (Mplm2)
1
3 ∼ 1

1011km
(2.88)

(one set Aµ = 0). Therefore, one can adjust the higher derivatives to total
derivatives that vanish on integration. one gets the consistent ghost free mas-
sive gravity.

2.4 Bi-Gravity

The dGRT action, has the form

SMG = SEH[gµν] + Smass[gµν, fµν] + Smatter[gµνΦ] (2.89)

So, the action consist of 1.kinetic term of gµν. 2.mass term = interaction terms
betoneen gµν and fµν and interaction to matter. The metric fµν is non dynamical
one. One can generalize if by making the reference metric fµν also dynamical,
by adding kinetic terms of fµν.

SMG = SEH[gµν] + SEH[ fµν] + Smass[gµν, fµν] + Smatter[gµνΦ] (2.90)

This is so called bi-metric gravity (or bi-gravity) theory. Here, fµν does not
interact with the matter and may be expected to act as the dark energy. dRGT
model is special case of this bi-metric gravity theory.
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Chapter 3

Cosmological Aspects of
Massive Gravity

3.1 FLRW self-accelerating universe and dark en-
ergy in massive gravity

In this section, one review the FLRW solution of dRGT massive gravity [8].
Whether one could build isotopic and homogeneous solution or not is good
test for massive gravity. Let us start from the dGRT action (2.82)

In massive gravity, one needs two metric information to get a solution.

ds2
1 = gµνdxµν = −N(t)2dt2 + a(t)2Ωi jdxidxi (3.1)

and

ds2
2 = fµνdxµdxν = ηab∂µϕ

a∂νϕ
bdxµdxν (3.2)

one redefines fµν by new fields φa and divide it to time and space components
as

fµν = −n2(φ0)∂µφ0∂νφ
0 + α2(φ0)Ωi j(φk)∂µφi∂νφ

j (3.3)

i, j = 1, 2, 3 and

Ωi j(φk) = δi j +
Kδilδ jmφlφm

1 − Kδl,φlφm
(3.4)

K(< 0) is the curvature constant. This is achieved by

ϕ0 = f (φ0)
√

1 − Kδi jφiφ j, φi =
√
−K f (φ0)φi (3.5)

and

n(φ0) =| ˙f (φ0) |, α(φ0) =
√
−K | f (φ0) | (3.6)
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When one adopts the unitary gauge

φ0 = t, φi = xi (3.7)

one gets

fµνdxµdxν = −( ˙f (t))2dt2+ | K | ( f (t))2Ωi j(xk)dxidxj (3.8)

that the Minkowski line element in the open chart.
In this space-time, Einstein-Hilbert term becomes

LEH =
3K
a2 −

3ȧ
a2N2 (3.9)

and contribution of mass terms are

L2 = 3(1 −
√
−K | f |

a
)(2 −

˙f
N
−
√
−k | f |

N
) (3.10)

L3 = (1 −
√
−K | f |

a
)2(4 − 3

˙f
N
−
√
−k | f |

N
) (3.11)

L4 = (1 −
√
−K | f |

a
)3(1 −

˙f
N

) (3.12)

So, varying with respect to f yields

[H − sgn(
˙f

f
)

√
−K
a

][3 + 3α3 + α4 −
2
√
−K | f |

a
(1 + 2α3 + α4)

−K | f |2
a2 (α3 + α4)] = 0 (3.13)

H is the Hubble expansion rate of physical metric gµν

H ≡ ȧ
Na

(3.14)

(3.13) has three solutions, the trivial one ȧ = sgn( ˙f/ f )
√
−KN corresponds to

the Minkowski space time. So what one needs remaining two solutions

α(t) = X±a(t), X± =
1 + 2α3 + α4 ±

√
1 + α3 + α2

3 − α4

α3 + α4
(> 0) (3.15)

To derive Friedman equation, varying the action respect to N(t) and a(t)
yields

3H2 +
3K
a2 =

1
M2

pl

ρm + ρg (3.16)

−2Ṅ
N
+

2K
a2 =

1
M2

pl

(ρm + pm) + (ρg + pg) (3.17)
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ρm and pm are energy density and pressure contribution from the matter action
Lmatter. And

ρg = −m2
g(1 −

√
−K | f |

a
)[3(2 −

√
−K | f |

a
)]

+ α3(1 −
√
−K | f |

a
)(4 −

√
−K | f |

a
) + α4(1 −

√
−K | f |

a
)2] (3.18)

ρg + pg = −m2
g(

˙f
N
−
√
−K | f |

a
)[(3 − 2

√
−K | f |

a
) (3.19)

+ α3(3 −
√
−K | f |

a
)(1 −

√
−K | f |

a
) + α4(1 −

√
−K | f |

a
)2] (3.20)

ρg and pg are contribution from the graviton mass. From the (3.13), ρg+pg = 0
So finally one gets Friedmann equation for massive gravity

3(
ȧ
a

)2 +
3K
a2 =

1
M2

pl

ρm + c±m2
g (3.21)

−2Ṅ
N
+

2K
a2 =

1
M2

pl

(ρm + pm) (3.22)

where c± is

c± = −
1

(α3 + α4)2 [(1 + α3)(2 + α3 + 2α2
3 − 3α4) ± 2(1 + α3 + α

2
3 − α4)3/2] (3.23)

(3.21) correspond to Friedmann equation of Einstein gravity. And note that
mass contribution term c±m2

g roles cosmological constant as of GR (1.101) and
(1.102) when c± > 0. So dRGT massive gravity allows a self-accelerating uni-
verse without negative pressure source and a cosmological constant (Λ = 0).
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Chapter 4

Gravitational Waves in
massive gravity

By the observed cosmological constant (refDEo), one can roughly estimate
the mass of graviton. (If the source of dark energy is effect of the mass of
graviton). After easy calculation (use m2

gc4 < Λ). one considers the mass value
as mg < 10−33[eV]. Even comparing to the electron neutrino, their mass is
mνe < 2.5 [eV]. So it is too small to detect the mass effect of massive gravity by
today’ experiments.
If graviton has no mass, gravitational wave propagate as speed of light. By
contrast, if it has mass, the speed of propagation is

v2
g = 1 −

m2
g

E2 (4.1)

using this relation, one could bound graviton mass. The representative example
is observation of supernova [9]. one can limit value of mass mg < 10−23 [eV].
for 100[Hz] gravitational wave. In detail [9], there is a relationship

1 −
vg

c
= 5 × 10−17(

200Mpc
D

)(
∆t
1s

) (4.2)

D is a distance from source. And ∆t is time distance which represents arriving
time difference between photon and gravitational wave. one can rewrite the
restriction by gravitational wave length of λg as

λg > 3 × 1012km(
D

200Mpc
100Hz

f
)1/2(

1
f∆t

)1/2 (4.3)

As one mentioned in Chapter1, gravitational waves propagate 2 degrees of
freedom in GR. In Massive Gravity, there are 5 polarizations, and it is the
general structure of massive particle include dRGT ghost-free Massive Gravity.
It consist of the helicity-2 mode (tensor mode), helicity-1 mode(vector), and
helicity-0 mode (scalar). It is easily seen by calculating the FP action using
stükelberg fileds.

The helicity-2 mode are produced in the same way as GR and indistinguish-
able when travel distances smaller than the graviton Comptom wavelength
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(λg =
h

mc ). The helicity-1 mode (vector mode) are expected not to be produced
from ordinary source. Because the vector modes don’t couple with matter.
The helicity-0 mode (scalar mode) travel but be suppressed by the Vainshtein
mechanism. To summarize, Massive Gravity has additional 3 polarizations,
but additional scalar mode is suppressed compared to the helicity-2 mode, and
additional vector mode does not couple to known matters.
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Chapter 5

Conclusion and Outlook

I reviewed the possible mass term to add to GR. Finally, I reviewed dRGT ghost-
free massive gravity. The scalar graviton is strongly coupled within Vainshtein
radius rV = (rg/m4)1/5. one cannot take linear approximation for r≫ rV. But for
r≪ rV, one can restore GR. It agrees with today’s observations when Vainshtein
radius is much larger than the edge of Solar system.
dRGT model also allows us to build FLRW homogeneous isotropic solution.
Therefore, it can be applied to a clarification of Dark Energy. The value of
mass is very small m < 10−33 [eV] to detect. But out of the Solar system, dRGT
model has different predictions from GR. The massive gravitational waves have
extra degrees of freedom such as massive scalar graviton and massive vector
graviton, which are difficult to detect.
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