ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 05 都市環境
  2. 0501 地理環境
  3. 0501c 紀要論文
  4. Geographical reports of Tokyo Metropolitan University
  5. 第057号

Comparison between random forest and multiple linear regression to create digital maps of soil chemical properties in the Thung Kula Ronghai region, Thailand

http://hdl.handle.net/10748/00012791
http://hdl.handle.net/10748/00012791
09eda50f-aeb1-421a-8f11-27b2a1d529b2
名前 / ファイル ライセンス アクション
20005-057-001.pdf 20005-057-001.pdf (2.0 MB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2022-03-29
タイトル
タイトル Comparison between random forest and multiple linear regression to create digital maps of soil chemical properties in the Thung Kula Ronghai region, Thailand
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 environmental variables
キーワード
言語 en
主題Scheme Other
主題 predictor variable
キーワード
言語 en
主題Scheme Other
主題 spatial distribution
キーワード
言語 en
主題Scheme Other
主題 spectral indices
キーワード
言語 en
主題Scheme Other
主題 topographic indices
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 Srisomkiew, Sasirin

× Srisomkiew, Sasirin

Srisomkiew, Sasirin

Search repository
Kawahigashi, Masayuki

× Kawahigashi, Masayuki

Kawahigashi, Masayuki

Search repository
Limtong, Pitayakon

× Limtong, Pitayakon

Limtong, Pitayakon

Search repository
抄録
内容記述タイプ Abstract
内容記述 Using machine learning (ML) algorithms to digital soil mapping (DSM) allows the
elucidation of relationships between soil properties and environmental variables enabling the precise prediction of soil nutrient levels. The accuracy of the predicted values using the random forest (RF) algorithm, which is the most popular ML algorithm for digital soil mapping, and multiple linear regression (MLR) were compared to create digital maps of soil chemical properties in the Thung
Kula Ronghai (TKR) region, Thailand. The spectral indices including moisture stress index (MSI), normalized difference water index (NDWI), saturation index (SI), brightness index (BI), and coloration index (CI) obtained from remote sensing (RS) data were found to be more effective for predicting the various soil properties than the topographic indices derived from the DEM in the plain area. The MLR and RF models successfully predicted soil chemical properties with good predictive
accuracy. The results indicated that the RF model has a slightly higher accuracy than the MLR model.
However, the MLR model is superior in interpreting the relationship with the model equations.
書誌情報 en : Geographical reports of Tokyo Metropolitan University

巻 57, p. 1-11, 発行日 2022
ISSN
収録物識別子タイプ ISSN
収録物識別子 03868710
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00200173
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 Department of Geography Tokyo Metropolitan University
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 14:36:39.752444
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3